2 research outputs found

    Hybrid DOM-Sensitive Change Impact Analysis for JavaScript

    Get PDF
    JavaScript has grown to be among the most popular programming languages. However, performing change impact analysis on JavaScript applications is challenging due to features such as the seamless interplay with the DOM, event-driven and dynamic function calls, and asynchronous client/server communication. We first perform an empirical study of change propagation, the results of which show that the DOM-related and dynamic features of JavaScript need to be taken into consideration in the analysis since they affect change impact propagation. We propose a DOM-sensitive hybrid change impact analysis technique for Javascript through a combination of static and dynamic analysis. The proposed approach incorporates a novel ranking algorithm for indicating the importance of each entity in the impact set. Our approach is implemented in a tool called Tochal. The results of our evaluation reveal that Tochal provides a more complete analysis compared to static or dynamic methods. Moreover, through an industrial controlled experiment, we find that Tochal helps developers by improving their task completion duration by 78% and accuracy by 223%

    Actionable Program Analyses for Improving Software Performance

    Get PDF
    Nowadays, we have greater expectations of software than ever before. This is followed by constant pressure to run the same program on smaller and cheaper machines. To meet this demand, the application’s performance has become the essential concern in software development. Unfortunately, many applications still suffer from performance issues: coding or design errors that lead to performance degradation. However, finding performance issues is a challenging task: there is limited knowledge on how performance issues are discovered and fixed in practice, and current performance profilers report only where resources are spent, but not where resources are wasted. The goal of this dissertation is to investigate actionable performance analyses that help developers optimize their software by applying relatively simple code changes. To understand causes and fixes of performance issues in real-world software, we first present an empirical study of 98 issues in popular JavaScript projects. The study illustrates the prevalence of simple and recurring optimization patterns that lead to significant performance improvements. Then, to help developers optimize their code, we propose two actionable performance analyses that suggest optimizations based on reordering opportunities and method inlining. In this work, we focus on optimizations with four key properties. First, the optimizations are effective, that is, the changes suggested by the analysis lead to statistically significant performance improvements. Second, the optimizations are exploitable, that is, they are easy to understand and apply. Third, the optimizations are recurring, that is, they are applicable across multiple projects. Fourth, the optimizations are out-of-reach for compilers, that is, compilers can not guarantee that a code transformation preserves the original semantics. To reliably detect optimization opportunities and measure their performance benefits, the code must be executed with sufficient test inputs. The last contribution complements state-of-the-art test generation techniques by proposing a novel automated approach for generating effective tests for higher-order functions. We implement our techniques in practical tools and evaluate their effectiveness on a set of popular software systems. The empirical evaluation demonstrates the potential of actionable analyses in improving software performance through relatively simple optimization opportunities
    corecore