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Abstract

Nowadays, we have greater expectations of software than ever before. This is
followed by constant pressure to run the same program on smaller and cheaper
machines. To meet this demand, the application’s performance has become the
essential concern in software development. Unfortunately, many applications still
suffer from performance issues: coding or design errors that lead to performance
degradation. However, finding performance issues is a challenging task: there is
limited knowledge on how performance issues are discovered and fixed in practice,
and current performance profilers report only where resources are spent, but not
where resources are wasted.

The goal of this dissertation is to investigate actionable performance analyses that
help developers optimize their software by applying relatively simple code changes.
To understand causes and fixes of performance issues in real-world software, we first
present an empirical study of 98 issues in popular JavaScript projects. The study
illustrates the prevalence of simple and recurring optimization patterns that lead
to significant performance improvements. Then, to help developers optimize their
code, we propose two actionable performance analyses that suggest optimizations
based on reordering opportunities and method inlining. In this work, we focus on
optimizations with four key properties. First, the optimizations are effective, that is,
the changes suggested by the analysis lead to statistically significant performance
improvements. Second, the optimizations are exploitable, that is, they are easy to
understand and apply. Third, the optimizations are recurring, that is, they are
applicable across multiple projects. Fourth, the optimizations are out-of-reach for
compilers, that is, compilers can not guarantee that a code transformation preserves
the original semantics. To reliably detect optimization opportunities and measure
their performance benefits, the code must be executed with sufficient test inputs.
The last contribution complements state-of-the-art test generation techniques by
proposing a novel automated approach for generating effective tests for higher-order
functions.

We implement our techniques in practical tools and evaluate their effectiveness
on a set of popular software systems. The empirical evaluation demonstrates the
potential of actionable analyses in improving software performance through relatively
simple optimization opportunities.
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Zusamenfassung

Die heutigen Erwartungen an Software sind größer als je zuvor. Vor allem der Druck
bestehende Programme auf günstigerer und weniger leistungsfähiger Hardware
auszuführen, lässt Performance zum zentralen Anliegen in der Softwareentwicklung
werden. Und doch haben viele Anwendungen Performanceprobleme, also Design-
oder Programmierfehler, die zu Leistungseinbußen führen. Eben jene Performan-
ceprobleme zu finden, ist allerdings eine anspruchsvolle Aufgabe: Das Wissen, wie
Performanceprobleme in der Praxis gefunden und behoben werden ist begrenzt
und heutige Profiler zeigen nur auf, wo Ressourcen ausgegeben, aber nicht wo sie
verschwendet werden.

Ziel dieser Arbeit ist es, praktisch umsetzbar Performanceanalysen zu unter-
suchen, die Entwicklern helfen ihre Software durch relative einfache Änderungen
am Quelltext zu optimieren. Um besser zu verstehen wie Performanceproblemen
verursacht und behoben werden, stellen wir zunächst eine empirische Studie über 98
Probleme in weit verbreiteten JavaScript-Projekten vor. Die Studie zeigt einfache
und wiederkehrende Optimierungsmuster auf, die zu signifikanten Performance-
verbesserungen führen. Darauf aufbauend stellen wir zwei praktisch umsetzbar
Performanceanalysen vor, die Entwicklern helfen ihre Programme durch Reorder-
ing und durch Methoden-Inlining zu optimieren. Dabei fokussieren wir uns auf
Optimierungen mit vier zentralen Eigenschaften. Erstens sind die Optimierungen
effektiv, das heißt die von der Analyse vorgeschlagenen Änderungen führen zu
statistisch signifikanten Leistungssteigerungen. Zweitens sind die Optimierungen
nutzbar, das heißt sie sind leicht zu verstehen und anzuwenden. Drittens sind die
Optimierungen wiederkehrend, das heißt projektübergreifend anwendbar. Viertens
sind die Optimierungen unerreichbar für Compiler, das heißt Compiler können nicht
garantieren, dass eine Code-Transformation semantikerhaltend ist. Um die Opti-
mierungsmöglichkeiten zuverlässig zu erkennen und deren Leistungsverbesserung
messen zu können, muss der Code schließlich mit ausreichend Testeingaben ausge-
führt werden. Der letzte Beitrag in dieser Arbeit ergänzt Testgenerierungstechniken
auf dem Stand der Technik durch einen neuen, automatisierten Ansatz zur Gener-
ierung effektiver Tests für Funktionen höherer Ordnung.

Wir implementierung die genannten Techniken in praxistauglichen Werkzeugen
und bewerten deren Effektivität auf einer Reihe weit verbreiteter Softwaresys-
teme. Die empirische Auswertung zeigt, dass praktisch umsetzbar Performance-
analysen in der Lage sind die Leistung von Software durch relativ einfache Opti-
mierungsvorschläge zu verbessern.
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Introduction

Regardless of the domain, software performance is one of the most important aspects
of software quality: it is important to ensure an application’s responsiveness, high
throughput, efficient loading, scaling, and user satisfaction. Poorly performing
software wastes computational resources, affects perceived quality and increases
maintenance cost. Furthermore, a web application that is perceived “slow” can
result in an unsatisfied customer who may opt for a competitor’s better performing
product, resulting in loss of revenue.

To improve software performance, three kinds of approaches have been proposed:

• Performance profiling. Developers conduct performance testing in the form
of CPU [GKM82] and memory profiling [JSSC15] to identify code locations
that use the most resources. However, traditional profiling techniques have at
least two limitations: they show where the resources are spent, but not how
to optimize the program. Furthermore, they often introduce large overheads,
which may affect the software’s behavior and reduce the accuracy of the
collected information.

• Compiler optimizations. Compiler optimizations [ASU86] automatically trans-
form a program into a semantically equivalent, yet more efficient program.
However, many powerful optimization opportunities are beyond the capabilities
of a typical compiler. The main reason for this is that the compiler cannot
ensure that a program transformation preserves the semantics, a problem that
is especially relevant for hard-to-analyze languages, such as JavaScript. For
example, a just-in-time (JIT) compiler applies speculative optimizations: it
uses profiling information to make assumptions about possible input values.

• Manual tuning. Finally, developers often rely on manual performance tun-
ing [HNS09] (e.g., manually optimizing code fragments or modifying software
and hardware configurations), which can be effective but it is time consuming
and often requires expert knowledge.

The need for improving software performance is never-ending. Limitations of
existing performance analyses pose several research challenges and motivate the
need for techniques that provide advice on how to improve software performance.
This dissertation addresses some of those limitations and proposes new approaches
to help developers optimize their code with little effort.

1



CHAPTER 1. INTRODUCTION

_.map = function(obj, iterator, context) {
var results = [];
if (obj == null) return results;
_.each(obj, function(value, index, list) {

results.push(iterator(value, index, list));
});
return results;

};

(a) Performance issue.

_.map = function(obj, iterator, context) {
if (obj == null) return [];
var keys = _.keys(obj);
var length = keys.length, currentKey;
var results = Array(length);
for (var index = 0; index < length; index++) {

currentKey = keys[index];
results[index] = iterator(obj[currentKey], currentKey, obj);

}
return results;

};

(b) Optimized code.

Figure 1.1: Performance issue from Underscore library (pull request 1708).

1.1 Terminology
In this work, we use the term actionable analysis to denote an analysis that demon-
strates the impact of implementing suggested optimization opportunities. In par-
ticular, an actionable analysis provides evidence of performance improvement (e.g.,
speedup in execution time or reduced memory consumption) or shows additional
compiler optimizations triggered by applying a suggested optimization. Furthermore,
the term optimization refers to a source code change that a developer applies to
improve the performance of a program, and compiler optimization refers to an
automatically applied transformation by a compiler.

1.2 Challenges and Motivation
Recent research shows that relatively small changes can make a program signifi-
cantly more efficient [JSS+12]. However, exploring and exploiting such changes is
a challenging task. To illustrate the potential of small code transformations on
software performance, Figure 1.1 illustrates a performance issue and an associated
optimization reported in Underscore, one of the most popular JavaScript utility
libraries.

Figure 1.1a shows the initial implementation of the map method, which produces
a new array of values by mapping the value of each property in an object through
a transformation function iterator. To iterate over object properties, the method

2



1.2. CHALLENGES AND MOTIVATION

uses an internal _.each function. However, a more efficient way is to first compute
the object properties using the keys function, and then iterate through them with
a traditional for loop. The optimized version of the map method is shown in
Figure 1.1b. This optimization improves performance because JavaScript engines
are able to specialize the code in the for loop and execute it faster.

The optimization in Figure 1.1 has four interesting properties. First, the op-
timization is effective, that is, the optimized method is on average 20% faster
than the original one. Second, the optimization is exploitable, that is, the code
transformation affects few lines of code and is easy to apply. Third, the optimization
is recurring, that is, developers of real-world applications can apply the optimization
across multiple projects. Fourth, the optimization is out-of-reach for compilers, that
is, due to the dynamism of the JavaScript language, a compiler can not guarantee
that the code transformation is always semantics preserving.

Detecting such optimization opportunities in a fully automatic way poses at least
three challenges:

• C1: Understanding performance problems and how developers address them.
Despite the overall success of optimizing compilers, developers still apply
manual optimizations to address performance issues in their code. The first
step in building actionable performance analyses is to understand the common
root causes of performance issues and code patterns that developers use to
optimize their code. The next step is to identify optimization patterns amenable
for actionable performance analyses. Our intuition is that developers are more
likely to apply code changes that improve the application’s performance but
do not sacrifice code readability and maintainability. An example of such an
optimization is already given in Figure 1.1.

• C2: Analysis of program behavior to detect instances of performance issues.
Based on patterns of common performance issues, the next step is to develop
techniques to find code locations suffering from those issues and to suggest
beneficial optimizations. For actionable analyses, we focus on the optimiza-
tion opportunities with the four aforementioned characteristics: effective,
exploitable, recurring and out-of-reach for compilers. To identify instances
of known code patterns, there have been various approaches based on either
static or dynamic program analysis or the combination of both. The key
challenge is to develop an analysis that reports as many true optimizations as
possible, while keeping the number of false positives and false negatives as low
as possible.

• C3: Exercising code transformations with enough input. Once the actionable
analysis suggests an optimization opportunity, the next step is to ensure the
performance benefit of a code transformation by exercising the program with
a wide range of inputs. One approach is to use manually written tests to
check whether a code change brings a statistically significant improvement.
However, manual tests may miss some of the important cases, which can lead to
invalid conclusions. An alternative approach is to use automatically generated
tests. Despite being effective in detecting various programming errors, test
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generation approaches have limited capabilities in generating complex inputs.
For example, the map method in Figure 1.1 expects three arguments: an
object, an iterator function, and an optional context object. Unfortunately,
generating effective tests for higher-order functions (e.g., functions that receive
callbacks), such as map, is a largely unsolved problem.

Thesis Statement This dissertation supports the thesis that it is possible to
create actionable program analyses that help developers significantly improve the
performance of their software by applying effective, exploitable, recurring, and out-
of-reach for compilers optimization opportunities.

We propose novel automated approaches to support developers in optimizing
their programs. The key idea is to not only pinpoint where and why time is spent, but
also to provide actionable advice on how to improve the application’s performance.

1.3 Contributions and Outline
In this section, we highlight individual contributions of the proposed approaches
and how they correlate with each other. Furthermore, Figure 1.2 illustrates the
connection between approaches and research challenges they address.

Study of Performance Issues and Optimizations As JavaScript is becoming
increasingly popular, the performance of JavaScript programs is crucial to ensure the
responsiveness and energy-efficiency of thousands of programs. Yet, little is known
about performance issues that developers face in practice and how they address these
issues. Chapter 2 presents the first empirical study on real-world performance issues
and optimizations in JavaScript code. We identify eight root causes of issues and
show that inefficient usage of APIs is the most prevalent root cause. Furthermore,
we find that most issues are addressed by optimizations that modify only a few lines
of code, without significantly affecting the complexity of the source code. Finally,
we observe that many optimizations are instances of patterns applicable across
multiple projects. Based on these results, we discuss the challenges of applying
recurring optimizations in a fully automatic way and advocate for approaches that
help developers optimize their code.

Contributions. This work addresses the first challenge (C1) and contributes
in understanding real-world JavaScript performance issues and optimizations that
developers apply to fix them. Furthermore, it provides a documented set of 98
reproduced issues1 that may serve as a reference point for work on finding and fixing
performance bottlenecks in JavaScript applications. Finally, we show evidence that
developers could benefit from tools and techniques to apply recurring optimization
patterns and to reliably measure performance improvements.

An Actionable Performance Profiler for Optimizing Orders of Evalua-
tions As presented in Chapter 2, many performance optimizations are simple code

1https://github.com/marijaselakovic/JavaScriptIssuesStudy
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changes that do not affect program complexity but provide significant performance
improvements. In Chapter 3, we present DecisionProf , the first dynamic analysis
that finds optimization opportunities in inefficient orders of evaluations. Decision-
Prof computes all possible orders in logical expressions and switch statements, finds
the optimal order, and suggests a reordering opportunity to the developer only if it
yields a statistically significant performance improvement. The approach provides
actionable advice: it suggests a code transformation to exploit an optimization
opportunity.

Contributions. DecisionProf addresses the second challenge (C2), and to the best
of our knowledge, it is the first profiler that detects inefficiently ordered subexpres-
sions in logical expressions and switch statements. Furthermore, it suggests simple
refactorings to optimize the code. We implement the approach in a practical tool
for JavaScript and show that applying suggested optimizations leads to performance
improvements in widely used JavaScript projects and popular benchmarks.

Cross-Language Optimizations in Big Data Systems Building scalable big
data programs currently requires programmers to combine relational code (SQL)
with non-relational code (Java, C# or Scala). This programming model greatly
simplifies the distribution and fault-tolerance of big data processing. However,
the presence of cross-language interaction poses additional challenges for profiling
and optimizing big data jobs. In Chapter 4, we present a profiling infrastructure
to understand key performance bottlenecks in SCOPE, a modern data-processing
system developed at Microsoft. We find that programs with non-relational code
take between 45-70% of the data center’s CPU time. To reduce cross-language
interaction, we propose a static analysis to find optimization opportunities based on
method inlining. Method inlining is a simple code transformation that replaces the
function call in a predicate with a function body. By doing this, the logic of the
function becomes visible to the compiler, resulting in more compiler optimizations.
The output of the static analysis is actionable: it suggests only inlining opportunities
that trigger additional compiler optimizations.

Contributions. This work addresses the second challenge (C2), and it is the
first approach that demonstrates the potential of cross-language optimizations in
big-data jobs. We present a profiling infrastructure that enables analyzing millions
of jobs without introducing any additional overhead. Furthermore, we show the
effectiveness of a relatively simple code transformation, based on method inlining, in
improving the performance of a big-data system.

Test Generation for Higher-Order Functions To reliably measure the per-
formance impact of applied optimizations, the optimized program must be executed
with sufficient test inputs. Unfortunately, current test generation techniques are
challenged by higher-order functions in dynamic languages, such as JavaScript
functions that receive callbacks. In particular, existing test generators suffer from
the unavailability of statically known type signatures, do not provide functions
or provide only trivial functions as inputs, and ignore callbacks triggered by the
code under test. Chapter 5 presents LambdaTester , a test generation technique for
higher-order functions in dynamic languages. The approach automatically infers
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Empirical study (Chapter 2)

DecisionProf (Chapter 3)
Cross-language optimizations
(Chapter 4)

LambdaTester (Chapter 5)

C1

C2

C3

Figure 1.2: Connections between individual contributions and research challenges.

at what argument position a method under test expects a callback, generates and
iteratively improves callback functions given as input to this method, and uses novel
test oracles that check whether and how callback functions are invoked. We illustrate
the effectiveness of the approach by finding correctness problems in many polyfill
implementations.

Contributions. LambdaTester addresses the third challenge (C3) and contributes
to state-of-the-art test generation approaches in at least two ways: it generates
effective tests for higher-order functions written in dynamic languages and improves
the generation of callbacks that modify program state in non-trivial ways.

The remaining chapters of this dissertation present related work (Chapter 6) and
discusses future work and conclusions (Chapter 7).

1.4 List of Publications
This dissertation is based on several peer-reviewed publications as listed below:
• [SP16] Marija Selakovic and Michael Pradel. “Performance issues and opti-

mizations in JavaScript: An empirical study.” In International Conference on
Software Engineering (ICSE). 2016.

• [SGP17] Marija Selakovic, Thomas Glaser and Michael Pradel. “An actionable
performance profiler for optimizing the order of evaluations.” In International
Symposium on Software Testing and Analysis (ISSTA). 2017

• [SBMM18] Marija Selakovic, Michael Barnett, Madan Musuvathi, Todd Mytkow-
icz. “Cross-language optimizations in Big data systems: A case study of
SCOPE.”In International Conference on Software Engineering (ICSE-SEIP).
2018.

• [MS18] Marija Selakovic, Michael Pradel, Rezwana Karim, Frank Tipp. “Test
generation for higher-order functions in dynamic languages.” In Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA). 2018.

• [AGM+17] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel,
Marija Selakovic, Koushik Sen, and Cristian-Alexandru Staicu. “A survey
of dynamic analysis and test generation for JavaScript.” ACM Computing
Surveys. 2017.
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Performance Issues and
Optimizations in JavaScript

The first step in developing actionable performance analyses is to understand real-
world performance issues that developers face in practice and how they address
those issues. In this chapter, we introduce an empirical study on performance issues
and optimizations in real-world JavaScript projects. We choose JavaScript because
it has become one of the most popular programming languages. It is used not
only for client-side web applications, but also for server-side applications, mobile
applications, and even desktop applications. The development of the language has
been enabled by significant improvements of JavaScript engines in recent years,
e.g., due to highly optimizing just-in-time (JIT) compilers [GES+09, LV10, HG12,
CASP13, ACS+14]. Despite the effectiveness of JIT compilation, developers still
manually apply optimizations to address performance issues in their code, and future
improvements of JavaScript engines are unlikely to completely erase the need for
manual performance optimizations.

However, little is currently known about performance issues and optimizations
in real-world JavaScript projects. This chapter addresses this problem and asks the
following research questions:

• RQ 1: What are the main root causes of performance issues in JavaScript?

• RQ 2: How complex are the changes that developers apply to optimize their
programs?

• RQ 3: What is the performance impact of such optimizations?

• RQ 4: Are optimizations valid across JavaScript engines, and how does the
performance impact of optimizations evolve over time?

• RQ 5: Are there recurring optimization patterns, and can they be applied
automatically?

Answers to these questions help improve JavaScript’s performance by providing
at least three kinds of insights. First, application developers benefit by learning
from mistakes made by others. Second, developers of performance-related program
analyses and profiling tools benefit from better understanding what kinds of problems
exist in practice and how developers address them. Third, developers of JavaScript
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engines benefit from learning about recurring bottlenecks that an engine may want
to address and by better understanding how performance issues evolve over time.

We address these question by studying 98 fixed issues that developers have
documented in bug tracking systems. The issues come from 16 JavaScript projects,
including both client-side and server-side code, popular libraries, and widely used
application frameworks.

Our main findings are the following:

• The most prevalent root cause of performance issues (52%) is that JavaScript
provides APIs that are functionally equivalent but have different performance,
and that developers often use these APIs in a suboptimal way. This finding
suggests that developers need guidance in choosing among such APIs, and
that future language and API designs may want to reduce the amount of
redundancy in APIs.

• Many optimizations affect a small number of source code lines: 28% and 73%
of all optimizations affect less than 5 and 20 lines, respectively.

• Many optimizations do not significantly affect the complexity of the source
code: 37.11% of all optimizations do not change the number of statements and
47.42% of all optimizations do not change the cyclomatic complexity [McC76]
of the program. This finding challenges the common belief that improving the
performance of a program often implies reducing its understandability and
maintainability [Knu74, DRSS01].

• Only 42.68% of all “optimizations” provide consistent performance improve-
ments across all studied JavaScript engines. A non-negligible part (15.85%) of
changes even degrades performance on some engines. These findings reveal
a need for techniques to reliably measure performance and to monitor the
performance effect of changes across multiple execution environments.

• Many optimizations are instances of recurring patterns that can be re-applied
within the same project and even across projects: 29 of the 98 studied issues
are instances of patterns that reoccur within the study. Furthermore, we find
139 previously unreported instances of optimization patterns in the studied
projects.

• Most optimizations cannot be easily applied in a fully automatic way, primarily
due to the dynamism of JavaScript. We identify five kinds of preconditions for
safely applying recurring optimization patterns. Statically checking whether
these preconditions are met is a challenge. Our results suggest a need for tools
that help developers apply recurring optimizations.

2.1 Methodology
This section summarizes the subject projects we use in the empirical study, our
criteria for selecting performance issues, and our methodology for evaluating the
performance impact of the optimizations applied to address these issues.
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Table 2.1: Projects used for the study and the number of reproduced issues per
project.

Project Description Kind of platform LoC # Issues

Angular.js MVC framework Client 7,608 27
jQuery Client-side library Client 6,348 9
Ember.js MVC framework Client 21,108 11
React Library for reactive user interfaces Client 10,552 5
Underscore Utility library Client and server 1,110 12
Underscore.string String manipulation Client and server 901 3
Backbone MVC framework Client and server 1,131 5
EJS Embedded templates Client and server 354 3
Moment Date manipulation library Client and server 2,359 3
NodeLruCache Caching support library Client and server 221 1
Q Library for asynchronous promises Client and server 1,223 1
Cheerio jQuery implementation for server-side Server 1,268 9
Chalk Terminal string styling library Server 78 3
Mocha Testing framework Server 7,843 2
Request HTTP request client Server 1,144 2
Socket.io Real-time application framework Server 703 2

Total 63,951 98

2.1.1 Subject Projects
We study performance issues from widely used JavaScript projects that match the
following criteria:

• Project type. We consider both node.js projects and client-side frameworks
and libraries.

• Open source. We consider only open source projects to enable us and others
to study the source code involved in the performance issues.

• Popularity. For node.js projects, we select modules that are the most depended-
on modules in the npm repository.1 For client-side projects, we select from
the most popular JavaScript projects on GitHub.

• Number of reported bugs. We focus on projects with a high number of pull
requests (≥ 100) to increase the chance to find performance-related issues.

Table 1 lists the studied projects, their target platforms, and the number of lines
of JavaScript code. Overall, we consider 16 projects with a total of 63,951 lines of
code.

2.1.2 Selection of Performance Issues
We select performance issues from bug trackers as follows:

1https://www.npmjs.com/browse/depended
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1. Keyword-based search or explicit labels. One of the studied projects, Angular.js,
explicitly labels performance issues, so we focus on them. For all other projects,
we search the title, description, and comments of issues for performance-related
keywords, such as “performance”, “optimization”, “responsive”, “fast”, and
“slow”.

2. Random selection or inspection of all issues. For the project with explicit
performance labels, we inspect all such issues. For all other projects, we
randomly sample at least 15 issues that match the keyword-based search, or
we inspect all issues if there are less than 15 matching issues.

3. Confirmed and accepted optimizations. We consider an optimization only if it
has been accepted by the developers of the project and if it has been integrated
into the code repository.

4. Reproducibility. We study a performance issue only if we succeed in executing
a test case that exercises the code location l reported to suffer from the
performance problem. We use of the following kinds of tests:

• A test provided in the issue report that reproduces the performance
problem.
• A unit test published in the project’s repository that exercises l.
• A newly created unit test that calls an API function that triggers l.
• A newly created microbenchmark that contains the code at l, possibly

prefixed by setup code required to exercise the location.

5. Split changes into individual optimizations. Some issues, such as complaints
about the inefficiency of a particular function, are fixed by applying multiple
independent optimizations. Because our study is about individual perfor-
mance optimizations, we consider such issues as multiple issues, one for each
independent optimization.

6. Statistically significant improvement. We apply the test that triggers the
performance-critical code location to the versions of the project before and
after applying the optimization. We measure the execution times and keep only
issues where the optimization leads to a statistically significant performance
improvement.

We create a new unit test or microbenchmark for the code location l only if
the test is not provided or published in the project’s repository. The rationale for
focusing on unit tests and microbenchmarks is twofold. First, JavaScript developers
extensively use microbenchmarks when deciding between different ways to implement
some functionality.2 Second, most projects we study are libraries or frameworks, and
any measurement of application-level performance would be strongly influenced by
our choice of the application that uses the library or framework. Instead, focusing

2For example, jsperf.com is a popular microbenchmarking web site.
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on unit tests and microbenchmarks allows us to assess the performance impact of
the changed code while minimizing other confounding factors.

In total, we select and study 98 performance issues, as listed in the last column
of Table 2.1.

2.1.3 Performance Measurement
Reliably measuring the performance of JavaScript code is a challenge, e.g., due to the
influence of JIT compilation, garbage collection, and the underlying operating system.
To evaluate to what extent an applied optimization affects the program’s performance
we adopt a methodology that was previously proposed for Java programs [GBE07].
In essence, we repeatedly execute each test in NVM newly launched VM instances.
At first, we perform NwarmUp test executions in each VM instance to warm up
the JIT compiler. Then, we repeat the test Nmeasure more times and measure its
execution times. To determine whether there is a statistically significant difference
in execution time between the original and the optimized program we compare the
sets of measurements Mbefore and Mafter from before and after the optimization. If
and only if the confidence intervals of Mbefore and Mafter do not overlap, we consider
the difference to be statistically significant. Based on preliminary experiments we
use NwarmUp = 5, Nmeasure = 10, and NVM = 5, because these parameters repeat
measurements sufficiently often to provide stable performance results. We set the
confidence level to 95%. Because very short execution times cannot be measured
accurately, we wrap each test in a loop so that it executes for at least 5ms. All
experiments are performed on an Intel Core i7-4600U CPU (2.10GHz) machine with
16GB of memory running Ubuntu 14.04 (64-bit).

2.1.4 JavaScript Engines
JavaScript engines evolve quickly, e.g., by adding novel JIT optimizations [GES+09,
LV10, HG12, CASP13, ACS+14] or by adapting to trends in JavaScript development3.
To understand how the performance impact of an optimization evolves over time,
we measure the performance of tests on multiple engines and versions of engines.
Table 2.2 lists the engines we consider. We focus on the two most popular engines:
V8, which is used, e.g., in the Chrome browser and the node.js platform, and
SpiderMonkey, which is used, e.g., in the Firefox browser and the GNOME desktop
environment. For each engine, we use at least three different versions, taking into
account only versions that are published after introducing JIT compilation, and
including the most recent published version. All considered versions are published in
different years and we take engines for which their version number indicates that the
engine potentially introduces significant changes compared to the previous selected
version. Table 2.2 lists for each engine which types of projects it supports. We
execute the tests of a project on all engines that match the kind of platform (client
or server), as listed in column three of Table 2.1.

3http://asmjs.org
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Table 2.2: JavaScript engines used to test performance impact of optimizations (SM
= SpiderMonkey).

Engine version Platform Project type

24 Firefox Client
31 Firefox Client

SM 39 Firefox Client

3.14 Node.js Server
3.19 Chrome Client

V
8

3.6 Chrome and node.js Client and server
4.2 Chrome and io.js Client and server

2.2 Root Causes of Performance Issues
This section addresses the question which root causes real-world performance issues
have. To address this question, we identify eight root causes that are common among
the 98 studied issues, and we assign each issue to one or more root cause. Figure 2.1
summarizes our findings, which we detail in the following.

2.2.1 API-related Root Causes
The root cause of 65 performance issues is related to whether and how the program
uses an API. We identify three specific root causes related to API usage.

Inefficient API Usage The most common root cause (52% of all issues), is that
an API provides multiple functionally equivalent ways to achieve the same goal, but
the API client does not use the most efficient way to achieve its goal. For example,
the following code aims at replacing all quotes in a string with escaped quotes,
by first splitting the string into an array of substrings and then joining the array
elements with the quote character:4

.. = str.split("’").join("\\’");

The optimization is to use a more efficient API. For the example, the developers
modify the code as follows:
.. = str.replace(/’/g, "\\’");

Inefficient API usage is the most prevalent root cause, with a total of 50 issues.
Figure 2.1b further classifies these issues by the API that is used inefficiently. The
most commonly misused APIs are reflection APIs, such as runtime type checks,
invocations of function objects, and checks whether an object has a particular
property. The second most common root cause is inefficient use of string operations,
such as the above example.

4Issue 39 of Underscore.js.
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(a) Most prevalent root causes.
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Figure 2.1: Root causes of performance issues.

Inefficient Reimplementation The root cause of 8% of all issues is that the
program implements some functionality that is already implemented in a more
efficient way, e.g., as part of the built-in API. The optimization applied to avoid
such performance issues is to use the existing, more efficient implementation. For
example, Angular.js had implemented a map() function that applies a given function
to each element of an array. Later, the developers optimize the code by using the
built-in Array.prototype.map() function, which implements the same functionality.5

Generic API is Inefficient Another recurring root cause (7% of all issues) is
to use an existing API that provides a more generic, and therefore less efficient,
functionality than required by the program. For example, given a negative number
n, the following code accesses the |n|th-to-last element of the array arr:6

arr.slice(n)[0]

5Issue 9067 of Angular.js.
6Issue 102 of jQuery.
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The code is correct but inefficient because slice() copies parts of the array into
another array, of which only the first element is used. The optimization applied to
avoid such performance issues is to implement the required functionality without
using the existing API. For the example, the developers improve performance by
directly accessing the required element:
arr[arr.length + n]

2.2.2 Other Root Causes
Besides API-related problems, we identify six other common causes of performance
issues.

Inefficient Iteration JavaScript provides various ways to iterate over data collec-
tions, such as traditional for loops, for-in loops, and the Array.prototype.forEach()
method. A common root cause of poor performance (18% of all issues) is that a
program iterates over some data in an inefficient way. The optimization applied to
avoid such performance issues is to iterate in a more efficient way. For example, the
following code iterates through all properties of arg using a for-in loop:7

for (var prop in arg) {
if (arg.hasOwnProperty(prop)) {

// use prop
}

}

This iteration is inefficient because it requires to check whether the property is
indeed defined in arg and not inherited from arg’s prototype. To avoid checking each
property, the developers optimize the code by using Object.keys(), which excludes
inherited properties:
var updates = Object.keys(arg);
for (var i = 0, l = updates.length; i < l; i++) {

var prop = updates[i];
// use prop

}

Repeated Execution of the Same Operations 13% of all issues are caused
by a program that repeatedly performs the same operations, e.g., during different
calls of the same function. For example, the following code repeatedly creates a
regular expression and uses it to split a string:8

function on(events, ...) {
events = events.split(/\s+/);
...

}

To create a regular expression, the developer may use the RegExp constructor or
a regular expression literal, like in this example. The code is inefficient because
creating the regular expression is an expensive operation that is repeatedly executed.

7Issue 11338 of Ember.js.
8Issue 1097 of Backbone.
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The optimization applied to avoid such performance issues is to store the results of
the computation for later reuse, e.g., through memoization [TPG15]. For the above
example, the developers compute the regular expression once and store it into a
variable:
var eventSplitter = /\s+/;
function on(events, ...) {

events = events.split(eventSplitter);
...

}

Unnecessary or Inefficient Copying of Data Another recurrent root cause
(12% of all issues) is to copy data from one data structure into another in an
inefficient or redundant way. The optimization applied to avoid such performance
issues is to avoid the copying or to implement it more efficiently. For example, a
function in Angular.js used to copy an array by explicitly iterating through it and
by appending each element to a new array.9 The developers optimized this code by
using the built-in Array.prototype.slice() method, which is a more efficient way
to obtain a shallow copy of an array.

A Computation Can Be Simplified or Avoided in Special Cases 10% of
all issues are due to code that performs a computation that is unnecessarily complex
in some special case. The optimization applied to avoid such performance issues
is to check for the special case and to avoid or to simplify the computation. For
example, the developers of Angular.js used JSON.stringify(value) to obtain a
string representation of a value. However, the value often is a number and calling
stringify() is unnecessarily complex in this case.10 The developers optimized the
code by checking the runtime type of the value and by using the much cheaper
implicit conversion into a string, ""+value, when the value is a number.

Repeated Checks of the Same Condition Several issues (8%) are because
the program repeatedly checks the same condition, even though some of the checks
could be avoided. For example, the following code repeatedly checks whether a given
object is a function, which is inefficient because the object cannot change between
the checks.11

function invoke(obj, method) {
_.map(obj, function(value) {

isFunc = _.isFunction(method)
...

});
}

The optimization applied to avoid such performance issues is to refactor the control
flow in such a way that the check is performed only once. For the above example, the
developers hoist the isFunction() check out of the map() call. Similar expressions

9Issue 9942 of Angular.js.
10Issue 7501 of Angular.js.
11Issue 928 of Underscore.js.
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Figure 2.2: Number of source code lines that are affected by optimizations.

would be addressed by the common-subexpression elimination optimization that is
performed in many compilers. However, non-local changes that require moving an
expression outside the function call are outside the scope for existing compilers.

Our analysis shows that various performance issues can be mapped to a relatively
small number of recurring root causes. Some but not all of these root causes
have been addressed by existing approaches for automatically finding performance
problems [GPS15, TPG15, XMA+10]. However, our results suggest that there is
a need for additional techniques to help developers find and fix instances of other
common performance issues.

2.3 Complexity of Optimizations
This section addresses the question how complex the source code changes are that
developers apply to optimize their programs. To address this question, we analyze
the project’s code before and after each optimization. We study both the complexity
of the changes themselves (Section 2.3.1) and to what degree applying these changes
affects the complexity of the program’s source code (Section 2.3.2).

2.3.1 Complexity of Changes
To assess the complexity of changes applied as optimizations, we measure for each
change the number of affected lines of source code, i.e., the sum of the number of
removed lines and the number of added lines. To avoid biasing these measurements
towards particular code formatting styles, we apply them on a normalized represen-
tation of the source code. We obtain this representation by parsing the code and
pretty-printing it in a normalized format that does not include comments.

We find that optimizations affect between 2 and 145 lines of JavaScript source
code, with a median value of 10. Figure 2.2 shows the cumulative sum of the number
of affected lines per change, i.e., how many optimizations are achieved with less than
a particular number of affected lines. The graphs shows that 73% of all optimizations
affect less than 20 lines of code, and that 28% of all optimizations affect even less
than 5 lines of code. We conclude from these results that a significant portion of
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(a) Effect on the number of statements.
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(b) Effect on cyclomatic complexity.
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Figure 2.3: Effect of applying an optimization on the cyclomatic complexity.

optimizations are possible with relatively simple changes, which empirically confirms
an assumption made by prior research on performance bug detection [JSS+12,
NSML13, NCRL15].

2.3.2 Change in Complexity of Program
To understand to what degree optimizations influence the complexity of the source
code of the optimized program, we measure the number of statements in the program
and the cyclomatic complexity [McC76] of the program before and after each change.
These metrics approximate the understandability and maintainability of the code.
For each change, we obtain the metric before and after the change, nbefore and
nafter, and we summarize the effect of the change as nafter − nbefore. A positive
number indicates that the change increases the complexity of the program because
the changed program contains additional statements or increases the cyclomatic
complexity, whereas a negative number indicates that the program becomes less
complex due to the change.

Figures 2.3a and 2.3b summarize our results. The graphs show what percentage
of optimizations affect the number of statements and the cyclomatic complexity in a
particular range. For example, Figure 2.3a shows that 24% of all optimizations add
between one and three statements to the program. We find that a large portion of all
optimizations do not affect the number of statements and the cyclomatic complexity
at all: 37.11% do not modify the number of statements, and 47.42% do not modify
the cyclomatic complexity. A manual inspection of these optimizations shows that
they modify the code in minor ways, e.g., by moving a statement out of a loop, by
adding an additional subexpression, or by replacing one function call with another. It
is also interesting to note that a non-negligible percentage of optimizations decreases
the number of statements (19.59%) and the cyclomatic complexity (14.43%). These
results challenge the common belief that optimizations come at the cost of reduced
code understandability and maintainability [Knu74, DRSS01]. We conclude from
these results that many optimizations are possible without increasing the complexity
of the optimized program.
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Figure 2.4: Performance improvements obtained by optimizations per root cause.
(The bottom and the top of the box indicate the first 25% and 75% of the data, and
the middle line indicates the median value. Vertical lines extend the bottom and
the top of the box to indicate the minimum and the maximum values.)

2.4 Performance Impact of Optimizations
The following addresses the question of how performance is affected by applying
JavaScript optimizations. To address this question, we execute the tests of all 98
optimizations on all considered JavaScript engines where the respective code can be
executed (Section 2.1). In total, we obtain 568 performance improvement results.

Figure 2.4 shows the performance results obtained by optimizations for each root
cause. The figure illustrates that optimizations lead to a wide range of improvements,
with the majority of optimizations saving between 25% and 70% of the execution
time. Perhaps surprisingly, the figure shows that some optimizations cause a
performance degradation. We further analyze these cases in Section 2.5. In general,
the performance results depend on the tests we use, and we can not generalize
the results for a specific root cause. For example, the optimizations tested with
microbenchmarks usually yield large improvements, because they run small snippets
of code.

Given these results and the results from Section 2.3, one may wonder whether
there is any correlation between the “pain” and the “gain” of optimizations, i.e.,
between the number of lines affected by a change and the performance improvement
that the change yields. To address this question, Figure 2.5 shows the relation
between these two metrics for all issues. The figure does not show any correlation
(Pearson’s correlation coefficient: 5.85%).

We draw three conclusions from our results. First, developers apply some
optimizations even though the achieved performance impact is relatively small.
This strategy seems reasonable, e.g., when the modified code is in a heavily used
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Figure 2.5: Relation between the number of lines affected by a change and the
achieved performance improvement.

library function, but may also be a sign for “premature optimizations” [Knu74].
Second, developers apply some optimizations even though these optimizations
cause a performance degradation on some JavaScript engines, either consciously
or without knowing what impact a change has. Third, some optimizations lead to
significant savings in execution time and future work on profiling should pinpoint
such optimization opportunities to developers.

2.5 Consistency Across Engines and Versions
Since different JavaScript engines apply different optimizations, changing code to
improve performance in one engine risks degrading it in another engine. Furthermore,
since engines evolve quickly, an optimization applied to speed up the program in
one version of an engine may have the opposite effect in another version of the same
engine. To assess to what degree developers struggle with these risks, this section
addresses the question how consistent performance improvements are across different
JavaScript engines and across multiple versions of the same engine.

Similar to RQ 3, we address this question by measuring the performance impact
of the performance issues in all considered JavaScript engines. Since we want to
compare performance impacts across engines, we include only issues that we can
execute in both V8 and SpiderMonkey, i.e., we exclude non-browser optimizations.
In total, we consider 82 issues for this research question.

2.5.1 Consistency Across Engines
Table 2.3 compares the performance impact of changes in the V8 and SpiderMonkey
engines. For each engine, the table distinguishes five cases: + means that a change
improves performance in all versions of the engine, +0 means that the change
improves performance or does not affect performance, +- means that the change
improves performance in some version but degrades it in another version, 0- means
no performance change or a performance degradation, and finally, - means a negative
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Table 2.3: Percentage of optimizations that result in positive (+), positive or no
(+0), positive or negative (+-), no or negative (0-), and negative (-) speedup in V8
and SpiderMonkey.

SpiderMonkey

+ +0 +- 0- -

V8

+ 42.68 8.5 0 0 0
+0 13.4 19.5 1.2 3.7 0
+- 4.9 0 3.7 1.2 0
0- 1.2 0 0 – –
- 0 0 0 – –

performance impact in all versions. For each combination of these five cases, the
table shows the percentage of changes that fall into the respective category. Because
the study includes only issues that provide an improvement in at least one engine
(Section 2.1.2), the four cases in the bottom right corner of the table cannot occur.

We find that only 42.68% of all changes speed up the program in all versions
of both engines, which is what developers hope for when applying an optimization.
Even worse, 15.85% of all changes degrade the performance in at least one engine,
i.e., a change supposed to speed up the program may have the opposite effect.
Interestingly, a non-negligible percentage of changes speed up the program in one
engine but cause slowdown in another. For example, 4.9% of all changes that increase
performance in all versions of SpiderMonkey cause a slowdown in at least one version
of V8. Some changes even degrade performance in some versions of both engines.
For example, 3.7% of all changes may have a positive effect in V8 but will either
decrease or do not affect performance in SpiderMonkey.

2.5.2 Consistency Across Versions of an Engine
To better understand how the performance impact of a change evolves across different
versions of a particular engine, Figure 2.6 shows the speedups of individual changes
in the V8 (top) and SpiderMonkey (bottom) engines. For readability, the figure
includes only those 15.85% of all changes that cause a slowdown in at least one
version of some engine. The graphs show that performance can differ significantly
across different versions. For example, a change that provides an almost 80%-speedup
in version 3.6 of the V8 engine causes a non-negligible slowdown in version 4.2 of
the same engine. The graphs also show that the performance impact of a change
sometimes evolves in a non-monotonic way. That is, a beneficial optimization may
turn into a performance degradation and then again into a beneficial optimization.

In summary, our results show that performance is a moving target. This finding
motivates future work that supports developers in achieving satisfactory performance
despite the heterogeneity of JavaScript engines, such as techniques to decide when to
apply an optimization, to reliably and automatically measure the performance effect
of a change, to track the effect of an optimization over time, to undo an optimization
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Figure 2.6: Performance improvement of changes in different versions of engines.
Each line represents one performance optimization (same line style in both figures
means the same optimization).

that turns out to be counterproductive in a new engine, and to specialize JavaScript
code for particular engines.

2.6 Recurring Optimization Patterns
The following addresses the question whether there are recurring optimization
patterns and whether they can be applied automatically. To address the first part of
the question, we manually identify a set of optimizations that can be re-applied across
several projects and semi-automatically search for instances of these optimization
patterns beyond the 98 studied issues (Section 2.6.1). To address the second part
of the question, we identify pre-conditions for applying the recurring optimization
patterns in a fully automated way (Section 2.6.2).

2.6.1 Prevalence of Recurring Optimization Patterns
To identify performance optimizations that may apply in more than a single situation
we inspect all 98 issues. First, we identify optimizations that occur repeatedly within
the study (Table 2.4, Patterns 1–5). Second, since the 98 studied issues may not
expose multiple instances of a pattern that would occur repeatedly in a larger set
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of issues, we also identify patterns that may occur repeatedly (Table 2.4, Patterns
6–10). For each optimization pattern in Table 2.4, we provide a short description,
as well as an example of code before and after the optimization.

In Table 2.5, the numbers before the vertical lines show how often each opti-
mization pattern occurs within the 98 issues considered in the study. For instance,
there are two instances of Pattern 1 (avoid for-in loops) in the Angular.js project.
The last column shows that the studied issues contain eight optimizations that
match Pattern 1. In total, 29 of the 98 studied optimizations match one of the 10
optimization patterns.

To study whether there are occurrences of the optimization patterns beyond the
98 studied optimizations, we develop a simple, AST-based, static analysis for each
pattern in Table 2.4. Each such analysis performs an AST traversal of a JavaScript
program to find matches of the patterns. Due to the well-known difficulties of
statically analyzing JavaScript in a sound way (Section 2.6.2), the analyses cannot
guarantee that the optimization patterns can indeed be applied at the identified
code locations without changing the program’s semantics. To enable us to manually
check whether a match is a valid optimization opportunity, the analyses also rewrite
the program by applying the respective optimization pattern. We then manually
inspect the rewritten program and prune changes that would modify the program’s
semantics.

We apply the ten analyses to the current version of each of project. In total, the
analyses suggest 142 optimizations, of which we manually prune 3 changes because
they break the semantics of the program. In Table 2.5, the numbers after the vertical
lines show how many previously unreported optimization opportunities the analyses
find for each project. We omit four projects for which we do not find any match.

In total, we find 139 instances of recurring optimization patterns. The most
common patterns are Pattern 1 (avoid for-in loop), Pattern 3 (use implicit string
conversion), and Pattern 7 (use instanceof). For two patterns (4 and 6), the analyses
do not find any previously unreported instances. The results show that patterns are
recurring within a project. For example, Pattern 1 has been applied only once in the
Ember project by the developers, but we find 21 additional code locations that offer
the same optimization opportunity. Furthermore, the results show that recurring
patterns can be applied across projects. For example, the only instance of Pattern 7
within the 98 studied issues is in the Mocha project, but there are 17 additional
instances in other projects. We have been reporting optimization opportunities to
the developers and some of them have already been applied incorporated into the
projects.12

We conclude from these results that there is a need for tools and techniques that
help developers apply an already performed optimization at other code locations,
both within the same project and across projects, possibly along the lines of existing
work [MKM11, MKM13, BGH07].

12See https://github.com/marijaselakovic/JavaScriptIssuesStudy for an updated list of
reported issues.
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Table 2.4: Recurring optimization patterns.

Id Description Before After

1 Prefer Object.keys() over
computing the properties of
an object with a for-in loop.

for (var k in obj) {
if (obj.hasOwnProperty(k))
{ ... }

}

var keys = Object.keys(obj);
for (var i=0; l=keys.length;

i<l; i++)){
var key = keys[i];
...

}

2 To extract a substring of
length one, access the char-
acter directly instead of call-
ing substr().

str.substr(i, 1) str[i]

3 To convert a value into a
string, use implicit type con-
version instead of String().

starts = String(starts); starts = ’’ + starts;

4 Use jQuery’s empty() instead
of html(’’).

body.html(’’); body.empty();

5 Use two calls of charAt() in-
stead of substr().

key.substr(0, 2) !== ’$$’ key.charAt(0) !== ’$’ &&
key.charAt(1) !== ’$’

6 To replace parts of a string
with another string, use
replace() instead of split()
and join().

str.split("’").join("\\’") str.replace(/’/g, "\\’")

7 Instead of checking an ob-
ject’s type with toString(),
prefer the instanceof opera-
tor.

if (toString.call(err)
=== "[object Error]")

if (err instanceof Error ||
toString.call(err)
=== "[object Error]")

8 For even/odd checks of a
number use &1 instead of
%2.

index % 2 == 0 index & 1 == 0

9 Prefer for loops over
functional-style processing
of arrays.

arr.reduce(
function (str, name) {

return ...;
}, str);

for (var i=0; l=arr.length;
i<l; i++){

var name = arr[i];
str = ...;

}
return str;

10 When joining an array
of strings, handle single-
element arrays efficiently.

[].slice.call(arguments)
.join(’ ’);

arguments.length === 1 ?
arguments[0] + ’’ :
[].slice.call(arguments)

.join(’ ’);
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Table 2.5: Instances of recurring optimization patterns (a|b, a = number of pattern
instances in the 98 studied issues, b = number of previously unreported pattern
instances found with static analysis).

Id Projects

Em
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S
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ha
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Σ

1 1|20 0|21 0|12 1|0 2|2 0|0 0|0 0|1 0|0 0|0 4|0 0|0 0|0 8|56
2 0|0 0|0 0|1 0|0 0|1 0|0 6|1 0|0 0|0 0|0 4|0 0|0 0|0 6|3
3 0|6 0|1 0|3 0|6 0|2 2|7 0|7 0|1 0|0 0|1 0|0 0|0 0|1 2|35
4 0|0 0|0 0|0 0|0 6|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 6|0
5 0|2 0|0 0|0 0|0 2|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 2|2
6 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0 1|0
7 0|9 0|0 0|1 1|4 0|0 0|0 0|0 0|0 0|3 0|2 0|2 0|0 0|0 1|21
8 0|2 0|0 0|0 0|0 1|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|3
9 0|0 0|0 0|1 1|0 0|0 0|0 0|0 0|0 0|0 0|2 0|0 0|2 0|0 1|5
10 0|1 0|0 0|2 0|0 0|3 0|1 0|0 0|5 0|2 0|0 0|0 0|0 1|0 1|14

Σ 1|40 0|22 0|20 3|10 11|9 2|8 6|8 0|7 0|5 2|5 5|2 0|2 1|1 29|139

2.6.2 Preconditions For Automatic Transformation
The second part of the RQ 5 is whether recurring optimization patterns can be applied
automatically. Answering this question is an important first step for developing
techniques that help developers find optimization opportunities based on recurring
patterns, and for developers of JIT engines who may want to address some of these
patterns in the engine. To address the question, we identify for each optimization
pattern the preconditions that must be satisfied to safely apply the optimization in
an automatic way. We find the following kinds of preconditions:

• Type check. Check the type of an identifier or expression. For example, the
obj identifier in Pattern 1 must have type Object.

• Native function is not overridden. Check that a built-in JavaScript function is
not overridden. For example, in Pattern 1, both hasOwnProperty() and keys()
must be the built-in JavaScript functions.

• Prototype is not overridden. Check that particular properties of the prototype
are not overridden. For example, for Pattern 2, the substr property of
String.prototype must not be overridden. The code in Figure 2.7 illustrates
the situation where the Pattern 2 can not be automatically applied because
the overridden substr method does not extract the characters in the same way
as the native substr method does.
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String.prototype.substr = function(a,b){
return this[a] + this[b];

}
str.substr(i,1)

Figure 2.7: Example of prototype overriding

• Function from third-party library is not overridden. Check that a function
from a third-party library is not overridden. For example, the html() and
empty() functions in Pattern 4 must be functions from the jQuery library.

• Check the value of an expression. Check whether an expression has a particular
value. For example, to apply Pattern 6, the split variable must refer to the
String.prototype.split() method.

Table 2.6 shows which conditions need to be satisfied to apply each of optimization
pattern in fully automatic way.

Due to the dynamic features of the JavaScript language, it is challenging to
statically analyze whether these preconditions are met. Possible solutions include a
more sophisticated static analyses or dynamic checks that ensure that the conditions
are met at runtime. We conclude from the fact that each pattern is subject to
several kinds of preconditions that applying optimizations in JavaScript in a fully
automatic way is not trivial, and that finding techniques that address this challenge
is subject to future work.

Table 2.6: Pre-conditions for applying recurring optimization patterns.

Id Type check Native function Prototype Third-party function Expression

1 l l l m m

2 l m l m m

3 m l m l m

4 l m m l m

5 l l l m m

6 l l l m m

7 m l l m l

8 l m m m m

9 l l l m m

10 l m l m m

2.7 Threats to Validity
Subject Projects. Our study focuses on 16 open source projects and the results
may not be representative for closed source projects or other open source projects.
Furthermore, as we consider projects written in JavaScript, our conclusions are valid
for this language only.

Performance Tests. We measure the performance impact of optimizations with
unit tests and microbenchmarks; the application-level impact of the optimizations
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may differ. We believe that our measurements are worthwhile because JavaScript
developers heavily use unit tests and microbenchmarks to make performance-related
decisions.

JavaScript Engines and Platforms. We measure performance with several versions
of two JavaScript engines that implement JIT compilation. Our results may not
generalize to other JIT engines, such as Chakra, which is used in Internet Explorer,
or interpreter-based engines. Since the most popular server-side platform, node.js,
and popular browsers build upon the V8 or SpiderMonkey engines, we expect that
our measurement are relevant for developers.

Underapproximation of Recurring Optimization Patterns. Our methodology
for findings instances of recurring optimization patterns may miss instances, e.g.,
because the static analyses rely on naming heuristics. As a result, the number of
previously unreported instances of optimization pattern is an underapproximation.
Since our goal is not to precisely quantify the prevalence of recurring patterns but
to answer the question whether such patterns exist at all, this limitation does not
invalidate our conclusions.

2.8 Summary
This chapter presented the first systematic study of real-world JavaScript perfor-
mance issues. We collect, reproduce, and make available 98 issues and optimizations
collected from 16 popular JavaScript projects. Our results provide insights about
the most prevalent root causes of performance issues, the complexity of changes that
developers apply to optimize programs, the performance impact of optimizations
and its evolution over time. Furthermore, our work provides evidence that many
optimizations are instances of recurring optimization patterns. By finding 139
previously unreported optimization opportunities based on optimization patterns ap-
plicable across projects, we show a great potential for techniques to further optimize
existing programs. Our results and observations provide an excellent starting point
on developing actionable analyses that help developers improve the application’s
performance by applying relatively simple code optimizations.

26



Performance Profiling for
Optimizing Orders of Evaluation

Chapter 2 discussed the most common performance problems and optimizations in
JavaScript projects. It shows that many optimizations are instances of relatively
simple, recurring patterns that significantly improve the performance of a program
without increasing code complexity. However, automatically detecting and applying
such optimizations opportunities is challenging due to dynamic features of the
JavaScript language.

In this chapter, we focus on a recurring and easy to exploit optimization op-
portunity called reordering opportunity. A reordering opportunity optimizes the
orders of subexpressions that are part of a decision made by the program. As an
example, Figure 3.1 shows two instances of reported reordering optimizations in
two popular JavaScript projects. The code in Figure 3.1a checks three conditions:
whether a regular expression matches a given string, whether the value stored in
match[3] is defined and whether the value of arg is greater than or equal to zero.
This code can be optimized by swapping the first two checks (Figure 3.1b) because
checking the first condition is more expensive than checking the second condition.
After this change, when match[3] evaluates to false, the overall execution time
of evaluating the logical expression is reduced by the time needed to perform the
regular expression matching. The second example, Figures 3.1c, shows a performance
issue found in Socket.io, a real-time application framework. The routine encodes a
packet and checks its metadata. The order of checks in the original code did not
reflect the likelihood of the cases to be true, leading to suboptimal performance.
The developers refactored the code into Figure 3.1d, where the most common case
is checked first, which avoids executing unnecessary comparisons.

A commonality of these examples is that the program takes a decision and
that the decision process can be optimized by changing the order of evaluating
subexpressions. Once detected, such opportunities are easy to exploit by reordering
the checks so that the decision is taken with the least possible cost. At the same
time, such a change often does not sacrifice readability or maintainability of the code.
Beyond the examples in Figure 3.1, we found various other reordering optimizations
in real-world code1, including several reported by us to the respective developers.2

1E.g., see jQuery pull request #1560.
2E.g., see Underscore pull request #2496 and Moment pull request #3112.
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arg = (/[def]/.test(match[8]) && match[3] && arg >= 0 ? ’+’+ arg : arg);

(a) Optimization opportunity.

arg = (match[3] && /[def]/.test(match[8]) && arg >= 0 ? ’+’+ arg : arg);

(b) Optimized code.

switch (packet.type) {
case ’error’:

...
break;

case ’message’:
...
break;

case ’event’:
...
break;

case ’connect’:
...
break;

case ’ack’:
...
break;

}

(c) Optimization opportunity.

switch (packet.type) {
case ’message’:

...
break;

case ’event’:
...
break;

case ’ack’:
...
break;

case ’connect’:
...
break;

case ’error’:
...
break;

}

(d) Optimized code.

Figure 3.1: Performance issues from Underscore.string (pull request 471) and
Socket.io (pull request 573).

To support developers in detecting and exploiting such optimization opportunities
we propose DecisionProf , a performance profiler for finding optimal orders of
evaluations. The key idea is to compare the computational costs of all possible
orders of checks in logical expressions and switch statements, to find the optimal
order of these checks, and to suggest a refactoring to the developer that reduces the
overall execution time. DecisionProf dynamically analyzes the cost of each check
and the value it evaluates to. An order of evaluations is optimal for the profiled
executions if it minimizes the overall cost of making a decision by first evaluating
those checks that determine the overall result most of the time.

DecisionProf has four important properties:

• Automatically suggested code transformations. Compared to existing profil-
ers, DecisionProf significantly increases the level of automation involved in
optimizing a program. The approach fully automatically detects optimization
opportunities and suggests code transformations to the developer, which dis-
tinguishes our approach from traditional profilers that focus on bottlenecks
instead of optimization opportunities.

• Guaranteed performance improvement. Before suggesting an optimization,
DecisionProf applies it and measures whether the modified code improves the
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execution time. Only if a change provides a statistically significant performance
improvement, the suggestion is reported to the developer.

• Soundness of proposed modifications. Because DecisionProf does not guarantee
that a suggested code transformation preserves the semantics, it may, in
principle, report misleading suggestions. However, our evaluation shows that
all suggested optimizations are semantics-preserving.

• Input-sensitivity. As every profiler, DecisionProf is input-sensitive, i.e., it
relies on inputs that trigger representative executions. In this work, we assume
that such inputs are available, which often is the case in practice, as evidenced
by the wide use of traditional profilers.

While the basic idea of our approach is simple, there are several interesting
challenges. One major challenge for finding the optimal order of evaluations is to
evaluate every subexpression that is relevant for a decision during profiling. A naive
approach that always executes all subexpressions is likely to change the semantics
of the program because of the side effects of these evaluations. We address this
challenge with a novel technique for side effect-free evaluation of expressions. During
such an evaluation, the approach tracks writes to variables and object properties.
Afterwards, the approach restores the values of all variables and properties to the
values they had before the evaluation started.

We evaluate DecisionProf by applying it to 43 real-world JavaScript projects,
including popular libraries and benchmarks. Across these projects, the profiler
finds 52 optimization opportunities that result in statistically significant speedups.
Optimizing the order of evaluations does not change the behavior of the program,
and reduces the execution time of individual functions between 2.5% and 59%
(median: 19%). Even though the optimizations are simple, they yield application-
level performance improvements, which range between 2.5% and 6.5%.

3.1 Problem Statement
This section characterizes the problem of inefficiently ordered evaluations and
describes challenges for identifying and optimizing them.

3.1.1 Terminology
Real-world programs compute various boolean values, e.g., to make a control flow
decision. Often, such decisions are the result of evaluating multiple boolean ex-
pressions that are combined in some way. We call each such an expression a check.
For example, Figure 3.1a shows a decision that consists of three checks that are
combined into a conjunction. Figure 3.1c shows a decision that depends on a se-
quence of checks, each of which is a comparison operation. A program specifies the
order of evaluation of the checks that contribute to a decision. This order may be
commutative, i.e., changing the order of checks does not change the semantics of
the program. For example, the refactorings in Figure 3.1 are possible because the
checks are commutative.
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For decisions where the order of evaluation is commutative, different orders
may have different performance. These differences exist because the semantics of
most programming languages does not require to evaluate all checks, e.g., due to
short-circuit evaluation of boolean expressions. The most efficient order depends on
the probability of the checks to yield true and on the cost of evaluating the checks.
For example, suppose that both checks in a() && b() have the same computational
costs. If in 80% of all executions the first check evaluates to true and the second
check evaluates to false, then the evaluation of a() is wasted 80% of the time. To
avoid such unnecessary computation, one can reorder the checks, which yields a
logically equivalent but more efficient decision. In logical expressions, each check is
composed of one or more leaf expressions, i.e., subexpressions that do not contain
another logical expressions. In this work we consider logical expressions where leaf
expressions are combined by both disjunctive and conjunctive operators.

3.1.2 Reordering Opportunities
The problem addressed in this chapter is finding inefficiently ordered evaluations,
called reordering opportunities, and suggesting a more efficient order to the developer.
We consider arbitrarily complex decisions, e.g., decisions that involve nested binary
logical expressions. The goal of DecisionProf is to find a optimal order of the checks
involved in a decision. Optimal here means that the total cost of making the decision
is minimal for the profiled executions. This total cost is the sum of the costs of
those individual checks that need to be evaluated according to the semantics of the
programming language. The two examples in Figure 3.1 are reordering opportunities.

3.1.3 Challenges for Detecting Reordering Opportunities
Even though the basic idea of reordering checks is simple, detecting reordering
opportunities in real-world programs turns out to be non-trivial. We identify three
challenges.

• Measuring the cost and likelihood of checks. To identify reorderings of checks
that reduce the overall cost of a decision, we must assess the cost of evaluating
individual checks and the likelihood that a check evaluates to true. The most
realistic way to assess computational cost is to measure the actual execution
time. However, short execution times cannot be measured accurately. To
compute the optimal evaluation order, we require an effective measure of
computational cost, which should be a good predictor of actual execution time
while being measurable with reasonable overhead.

• Analyze all checks involved in a decision. To reason about all possible ways to
reorder the checks of a decision, we must gather cost and likelihood information
for all checks involved in the decision. However, dynamically analyzing all
checks involved in a decision may not be necessary in a normal execution. For
example, consider that the first check in Figure 3.1a evaluates to false. In
this case, the overall value of the expression is determined as false, without
executing the other two checks.
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Dynamic analysis

Code transformation

Performance evaluation

Program + input

Optimization candidates

Program1, ..., ProgramN

Optimization opportunities

Figure 3.2: Overview of DecisionProf .

• Side effect-free evaluation of check. Evaluating checks may have side effects,
such as modifying a global variable or an object property. Therefore, naively
evaluating all checks, even though they would not be evaluated in the normal
program execution, may change the program’s semantics. To address this issue,
we need a technique for evaluating individual expressions without permanently
affecting the state of the program.

3.2 Analysis for Detecting Reordering
Opportunities

In this section, we describe DecisionProf , a profiling approach that automatically
finds reordering opportunities at runtime and proposes them to the developer.
Figure 5.4 gives an overview of the approach. The input to DecisionProf is an
executable program. First, the profiler executes the program while applying a
dynamic analysis that identifies optimization candidates. Second, for each candidate,
the approach applies the optimization via source-to-source transformation. Third, for
the modified version of the program, DecisionProf checks whether the optimization
reduces the execution time of a program. If and only if the changes lead to a
performance improvement, the approach suggests them as reordering opportunities
to the developer. The remainder of this section details each component of the
approach.

3.2.1 Gathering Runtime Data
The first step of DecisionProf is to analyze the execution of the program to identify
candidates for reordering opportunities. We gather two pieces of information about
every dynamic occurrence of a check involved in a decision: The computational
cost of evaluating the check and the value of the check, i.e., whether the boolean
expression evaluates to true or false. DecisionProf gathers these runtime data in

31



CHAPTER 3. OPTIMIZING ORDERS OF EVALUATION

startDecision;
startCheck; /[def]/.test(match[8])); endCheck;
startCheck; match[3]; endCheck;
startCheck; arg >= 0; endCheck;
undoSideEffects; endDecision;

arg = (/[def]/.test(match[8]) && match[3] && arg >= 0 ? ’+’+ arg : arg);

Figure 3.3: Preprocessed logical expression from Figure 3.1a.

startDecision;
switch (packet.type) {

startCheck; packet.type===’error’; endCheck;
case ’error’:

...
startCheck; packet.type===’message’; endCheck;
case ’message’:

...
startCheck; packet.type===’event’; endCheck;
case ’event’:

...
startCheck; packet.type===’connect’; endCheck;
case ’connect’:

...
startCheck; packet.type===’ack’; endCheck;
case ’ack’:

...
}
endDecision;

Figure 3.4: Preprocessed switch statement from Figure 3.1c.

two steps. At first, it statically pre-processes the source code of the analyzed program.
Then, it dynamically analyzes the pre-processed program to collect runtime data.

Pre-processing

DecisionProf pre-processes the program to ensure that each check involved in a
decision gets executed, even if it would not be executed in the normal execution,
and to introduce helper statements for measuring the cost of each check.

Logical expressions. To ensure that each checks gets evaluated even if it would
not be evaluated in the normal program execution, the pre-processor copies each
leaf expression of a logical expression in front of the statement that contains the
logical expression. Furthermore, the pre-processor annotates the beginning and
end of a decision, and the beginning and end of each leaf expression with helper
statements. Because always evaluating all checks may change the program’s seman-
tics, the pre-processor also annotates the end of a decision with a helper statement
undoSideEffects, which we explain in Section 3.3. Figure 3.3 shows the pre-processed
code for the logical expression of Figure 3.1a. The underlined helper statements are
interpreted by the dynamic analysis.
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Switch statements. The pre-processor annotates for each switch statement the
beginning and end of the decision, and the beginning and end of each check. Because
evaluating a check in a switch statement is a comparison without any side effects,
there is no need to undo any side effects. Figure 3.4 shows the pre-processed code
for the switch statement of Figure 3.1c.

Dynamic Analysis

DecisionProf executes the pre-processed program and dynamically collects the values
and the computational costs of each check involved in a decision. To this end, the
approach associates with each decision a cost-value history:

Definition 1 (Cost-value histories). The cost-value history h of a check involved in
a decision is a sequence of tuples (c, v), where v denotes the value of the check and
c represents the cost of evaluating the check. The cost-value histories of all checks
involved in a decision are summarized in a history map H that assigns a history to
each check.

To gather cost-value histories, the analysis reacts to particular runtime events:

• When the analysis observes a statement startDecision, it pushes the upcoming
decision onto a stack decisions of currently evaluated decisions.

• When the analysis observes a statement startCheck, it pushes the check that
is going to be evaluated onto a stack checks of currently evaluated checks.
Furthermore, the analysis initializes the cost c of the upcoming evaluation to
one.

• When reaching a branching point, the analysis increments the cost counter c
of each check in checks. We use the number of executed branching points as a
proxy measure for wallclock execution time, avoiding the challenges of reliably
measuring short-running code.3

• When the analysis observes endCheck, it pops the corresponding check from
checks. Furthermore, the analysis appends (c, v) to h, where h is the cost-value
history of the check as stored in the history map H of top(decisions), c is
the cost of the current check evaluation, and v is the boolean outcome of
evaluating the check.

• When reaching endDecision, the analysis pops the corresponding decision
from decisions.

• When the analysis observes undoSideEffects, it restores the state of the
program to the state before the corresponding startDecision statement (Sec-
tion 3.3).

3Section 3.5.4 evaluates the accuracy of the proxy metric.
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Table 3.1: Cost-value histories from executions of Figure 3.1a.

Check Execution

1st 2nd 3rd

/[def]/.test(match[8]) (3, true) (3, true) (3, false)
match[3] (1, true) (1, false) (1, false)
arg (1, true) (1, true) (1, true)

The reason for using stacks to represent the currently evaluated decisions and
checks is that they may be nested. For example, consider a logical expression a() ||
b (), where the implementation of a contains another complex logical expression.

Our implementation refines the described analysis in two ways. First, the analysis
monitors runtime exceptions that might occur during the evaluation of the decision.
If an exception is thrown, the analysis catches the error, restores the program state,
and excludes the decision from further analysis. Such exceptions typically occur
because the evaluation of one check depends on the evaluation of another check.
Second, the analysis considers switch statements with case blocks that are not
terminated with a break or return statement. For such case blocks, the analysis
merges the checks corresponding to the cases that are evaluated together into a
single check.

Table 3.1 shows a cost-value history gathered from three executions of the logical
expression in Figure 3.1a. For example, when the logical expression was executed
for the first time, the check /[def]/.test(match[8]) was evaluated to true and
obtaining this value imposed a runtime cost of 3.

3.2.2 Finding Optimization Candidates
Based on cost-value histories obtained through dynamic analysis, DecisionProf
computes a optimal order of checks for each executed decision in the program. The
computed order is optimal in the sense that it minimizes the overall cost of the
analyzed executions. DecisionProf uses two specialized algorithms for computing
the optimal orders of evaluations in logical expressions and switch statements,
respectively.

Optimally Ordered Logical Expressions

To find an optimal order of checks in logical expressions, we present a recursive
algorithm that optimizes all subexpressions of a given expression in a bottom-up
manner. Algorithm 1 summarizes the main steps. The algorithm uses the history
map H to keep track of the checks that have already been optimized. Initially, the
map contains histories for all leaf expressions, i.e., expressions that do not contain
any logical operator. For each such leaf expression, the history map contains a
cost-value history h gathered during the dynamic analysis.

Given a logical expression e, the algorithm checks whether its left and right
subexpressions have already been optimized by checking whether they have an entry
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Algorithm 1 Algorithm to find optimal order of logical expression.
Input: Logical expression e and history map H
Output: Optimized expression e′

function optimize(e)
if e.left is not in H then

e.left ← optimize(e.left)
if e.right is not in H then

e.right ← optimize(e.right)
e′ ← findOptimalOrder(e)
return e′

function findOptimalOrder(e)
corig ← computeCost(e.left, e.right, e.operator)
cswap ← computeCost(e.right, e.left, e.operator)
if corig ≤ cswap then

e′ ← e
else

e′ ← e with left and right swapped
he′ ← cost-value history of optimized expression e′

Add e 7→ he′ to H
return e′

function computeCost(eleft , eright , op)
hleft → H(eleft)
hright → H(eright)
c← 1
foreach i in 0 to length(hleft) do

cv left ← hleft [i]
cvright ← hright [i]
if op is && then

if cv left .value is true then
c← c + cv left .cost + cvright .cost

else
c← c + cv left .cost

else if op is || then
if cv left .value is false then

c← c + cv left .cost + cvright .cost
else

c← c + cv left .cost
return c
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Figure 3.5: Example of finding the optimal order of checks.

in H. If no such entry exists, the algorithm recursively calls optimize to optimize
these subexpressions before deciding on their optimal order. Once both the left and
the right subexpression are optimized, the algorithm calls findOptimalOrder . This
function computes the cost of both possible orders of the left and right subexpression
and swaps them if the cost of the swapped order is smaller than of the original
order. Afterwards, the function updates the history map H by computing a sequence
of cost-value entries for the optimized expression. Each cost-value entry of the
optimized expression is derived based on the cost-value histories of subexpressions
by applying the short-circuit rules.

Function computeCost summarizes how the algorithm computes the cost of a
particular order of two checks. The basic idea is to iterate through the value-cost
history and to apply the short-circuit rules of the programming language. For
example, if two checks are combined with the logical &&-operator, then the cost
includes the cost of the second check only if the first check is true.

For example, consider applying the algorithm to the logical expression in Fig-
ure 3.1a and the cost-value history in Table 3.1. Figure 3.5 illustrates the tree
of subexpressions for the example and the value-cost history associated with each
check. For space reasons, we abbreviate the logical expressions as a && b && c. The
leaf expressions each have an associated history (marked with 1). Based on these
histories, the algorithm computes the optimal cost of the first, innermost logical
expression, a && b. The costs in the three executions with the original order are 4,
4, and 3. In contrast, the costs when swapping the checks are 4, 1, and 1. That is,
swapping the subexpressions reduces the overall cost. Therefore, findOptimalOrder
sets e′ = b && a and computes the history of this optimized expression (marked
with 2). The cost-value history of b && a is derived from the cost-value histories
of b and a. Next, the algorithm moves up in the expression tree and optimizes the
order of eleft=b && a and eright =c. Comparing their costs shows that swapping
these subexpressions is not beneficial, so the algorithm computes the history of the
subexpression (marked with 3), and finally it returns b && a && c as the optimized
expression.
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Optimally Ordered Switch Statements

To optimize the order of checks in switch statements, DecisionProf sorts checks by
their likelihood to evaluate to true, starting with the most likely check. To achieve
this, DecisionProf instantiates a new order o with an empty set and sorts entries in
cv by their frequency of being evaluated to true. Then, for each element cases in cv,
the approach checks whether there is an element el in o, such that their intersection
is non-empty. In this case, el is replaced by the union of el and cases. Otherwise, it
adds cases from cv to o. The rationale is to preserve the order of cases that can
be executed together. For example, it is possible to have several cases that share
the same code block or blocks that do not contain break statements. After iterating
over all checks in cv, the approach returns the optimal order o of checks. If some
checks are not evaluated during the execution of a decision, they are added to the
end of o in their original order.

For example, reconsider the switch statement in Figure 3.1c. Suppose that the
switch statement is executed 10 times as follows: 5 times the “message” case, 2
times the “event” and “ack” cases and once the “connect” case. Starting from o = [],
DecisionProf sorts the cost-value history of the switch statement and computes
o = [message, event, ack, connect, error]. The case “error” is not evaluated in the
analyzed execution and therefore is added to the end of o.
Based on the results from the profiler, DecisionProf identifies as optimization
candidates all those decisions where the order of evaluations in the given program
is not optimal. The following two subsections describe how DecisionProf assesses
whether exploiting these candidates yields a statistically significant performance
improvement.

Transformation

Based on the list of optimization candidates found in the previous phase of Deci-
sionProf , the approach generates a variant of the program that adapts the order
of checks to the optimal order. To this end, DecisionProf traverses the AST of
the program and identifies the source code location that implements the decision.
Then, the approach rewrites the AST subtree that corresponds to the decision into
the optimal order of checks, and generates an optimized variant of the program
source code. For our running examples, DecisionProf automatically applies the two
optimizations illustrated in Figure 3.1.

Performance Evaluation

The final step of DecisionProf is to assess whether applying a reordering increases
the performance of the analyzed program. The rationale is to suggest optimizations
to the developer only if there is evidence that the change is beneficial. To measure
the performance impact of a change, DecisionProf runs both the original and
the optimized program in a several fresh instances of the JavaScript engine while
collecting the measurements of the actual execution time for each program (details
in Section 3.5.1). To determine whether there is a statistically significant difference,
the approach applies the t-test on the collected measurements with a confidence
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160 var a = 0;
161 function foo(){
162 a++;
163 var b=1;
164 if (a===1) return true;
165 else return false;
166 }
167 startDecision;
168 startCheck: foo();
169 startCheck: someExpression;
170 undoSideEffects;
171 if (foo() && someExpression) ...

Figure 3.6: Changes in program behavior due to side effects.

level of 90%. Finally, DecisionProf suggests a change as a reordering opportunity if
the change improves the execution time of a program.

3.3 Safe Check Evaluation
The profiling part of DecisionProf (Section 3.2.1) evaluates all checks of a decision,
even though they may not be evaluated during the normal program execution. If
evaluating a normally not evaluated check has side effects, our profiling might cause
the program to behave differently than it would without profiling. To avoid such
a divergence of behavior, the profiling part of DecisionProf evaluates checks in
such way that side effects are undone after the evaluation, which we call safe check
evaluation.

As a motivating example, consider Figure 3.6. The profiler evaluates foo() before
executing the if statement (line 168), which causes a write to the global variable a.
Using a naive approach that continues the execution after this side effect, the if
statement at line 171 would evaluate to false, because a gets incremented again at
line 162.

To avoid changing the program behavior during profiling, we use a dynamic
analysis that tracks writes to object properties and variables, and undoes these side
effects when reaching an undoSideEffects statement.

3.3.1 Tracking Side Effects
To track side effects, the analysis records writes into the following two data structures:

Definition 2 (Log of property writes). A log of property writes propLog is a
sequence of tuples (obj, prop, value), where obj is an object, prop is a property name,
and value is the value that prop holds before the evaluation.

Definition 3 (Log of variable writes). A log of variable writes varLog is a sequence
of pairs (var, value), where var is a variable name and value is the value var holds
before the evaluation.
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While evaluating checks for profiling, the analysis records all property writes
and variable writes into these logs. For variable writes, the analysis only considers
variables that may affect code executed after the check. For this purpose, the
analysis checks whether the variable is defined in the same or a parent scope of the
currently evaluated decision, and only in this case records the write into the log.

To find the scope of a variable, DecisionProf computes the scope for every variable
declaration and function definition in a program as follows (inspired by [SKBG13]):

• When the execution of a program starts, DecisionProf creates an empty object
that represents the global scope and an array stack, representing the stack of
scopes. Initially, stack contains only one element, the global scope.

• Before the execution of a function body starts, the analysis creates a new scope
and pushes it onto stack. Before the execution of a function body finishes, the
analysis pops the top element from stack. The current scope of a program’s
execution is always the top element of stack.

• When the analysis identifies a function definition or a variable declaration in
a program, it expands the current scope by adding new properties with the
name of the variable or the declared function.

For Figure 3.6, consider the evaluation of foo() at line 168. The analysis records
the write to variable a, along with its original value 0. In contrast, since the write
to variable b is local to foo(), the analysis does not record it.

3.3.2 Undoing Side Effects
When the evaluation of a decision finishes, the undoSideEffects statement triggers
the analysis to undo all recorded side effects. The analysis undoes variable writes
by dynamically creating and executing code that writes the original values into
each variable. Specifically, for every entry in varLog, the analysis creates a variable
assignment statement where the left-hand side of the assignment is the variable
name and the right-hand side is the original value. Then, the analysis passes the
sequence of assignments to the eval() function, which evaluates the string as code.
For the example in Figure 3.6, the analysis creates and executes the following code:
var a = 0; To undo property writes, the analysis iterates over all entries in propLog
and restores the original value of each modified property.

3.4 Implementation
We implement DecisionProf into a profiling tool for JavaScript programs. Static
pre-processing and applying optimizations are implemented as AST-based trans-
formations built on top of an existing parser4 and code generator5. The dynamic
analysis builds on top of the dynamic analysis framework Jalangi [SKBG13]. We
believe that our approach is applicable to other languages than JavaScript, e.g.,

4http://esprima.org/
5https://github.com/estools/escodegen

39



CHAPTER 3. OPTIMIZING ORDERS OF EVALUATION

based on existing dynamic analysis tools, such as Valgrind or PIN for x86 programs,
and ASM or Soot for Java.

3.5 Evaluation
We evaluate the effectiveness and efficiency of DecisionProf by applying it to 43
JavaScript projects: 9 widely used libraries and 34 benchmark programs from the
JetStream suite, which is commonly used to assess JavaScript performance. In
summary, our experiments show the following:

• Does DecisionProf find reordering opportunities? The approach identifies 52
previously unknown reordering opportunities (Section 3.5.2)

• What is the performance benefit of optimizing the order of evaluations? Ap-
plying the optimizations suggested by DecisionProf yields performance im-
provements between 2.5% and 59%. (Section 3.5.2)

• How efficient is the approach? Compared to normal program execution,
DecisionProf imposes a profiling overhead between 3x and 1,210x (median:
116). (Section 3.5.3)

• Is counting the number of branching points an accurate approximation of
execution time? We find that the measure DecisionProf uses to approximate
execution time is strongly correlated with actual execution time. (Section 3.5.4)

• How effective would DecisionProf be if it conservatively pruned all non-
commutative checks via static analysis? For 28 of 52 optimizations it is
non-trivial to statically show that they are semantics preserving, i.e., a conser-
vative variant of DecisionProf would miss many optimizations. (Section 3.5.5)

3.5.1 Experimental Setup
Subject Programs and Inputs We use 9 JavaScript libraries, listed in the upper
part of Table 3.2. They are widely used both in client-side web applications and in
Node.js applications. In addition to the libraries, we also use 34 programs from the
JetStream benchmark suite. We choose JetStream because it is, to the best of our
knowledge, the most comprehensive performance benchmark suite for JavaScript. It
includes Octane, Sunspider, benchmarks from LLVM compiled to JavaScript, and a
hand-translated benchmark based on the Apache Harmony project. The lower part
of Table 3.2 lists the subset of benchmark programs where DecisionProf detects
beneficial reordering opportunities.

To execute the libraries, we use their test suites, which consist mostly of unit-level
tests. We assume for the evaluation that these inputs are representative for the
profiled code base. The general problem of finding representative inputs to profile a
given program [GFX12, BJS09, DR16] is beyond the scope of this dissertation.
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Performance Measurements Reliably measuring the performance of executions
is non-trivial [MDHS09]. DecisionProf follows the methodology by Georges et
al. [GBE07], both as part of the approach (Section 3.2.2) and for the evaluation.
In essence, DecisionProf repeatedly starts a fresh JavaScript engine (NV M times),
repeats the execution NwarmUp times to warm up the JIT compiler, measures the
execution time of Nmeasure further repetitions, and applies statistical significance
tests to decide whether there is a speedup. We use NV M = 5, NwarmUp = 5,
Nmeasure = 10. Since very short execution times cannot be measured accurately,
we wrap inputs that are unit tests into a loop that makes sure to execute for at
least 5ms. To measure the performance of benchmarks, we apply the statistical
test on measurements collected from 50 executions of the original and the modified
benchmark. All experiments are done on a 48-core machine with a 2.2GHz Intel
Xeon CPU and an eight-core machine with a 3.60GHz Intel Core i7-4790 CPU, all
running 64-bit Ubuntu Linux 14.04 LTS. We use Node.js 4.4 and provide it with
the default of 1GB of memory for running the unit tests and 4GB of memory for
running the benchmarks.

Code Transformations When checking whether an optimization candidate im-
proves the performance, DecisionProf can either apply one candidate at a time or all
candidates at once. For the unit-level tests of libraries, we configure DecisionProf to
consider each candidate individually because we were interested in whether a single
change may cause a speedup. For the benchmarks programs, we configure Decision-
Prof to apply all candidates at once. The rationale is that achieving application-level
speedups is more likely when applying multiple optimizations than with a single
optimization. We bound the number of applied optimizations per program to at
most 20 optimized logical expressions and 20 optimized switch statements, enabling
us to manually inspect all optimizations in reasonable time.

3.5.2 Detected Reordering Opportunities
In total, DecisionProf detects 52 reordering opportunities. The column “Opportu-
nities” in Table 3.2 shows how many optimizations the approach suggests in each
project, and how many of them are in logical expressions and switch statements,
respectively. To the best of our knowledge, none of the optimizations detected by
DecisionProf have been previously reported.

Examples. Table 3.3 illustrates seven representative examples of reordering
opportunities. The columns “Original” and “Optimized” show for each opportunity
the original code and the optimized code, as suggested by DecisionProf . The
“Performance improvement” columns show for how many tests the optimization
improves and degrades performance, along with the respective improvements. For
example, the first opportunity provides performance improvements for three tests,
without degrading the performance of other tests. The logical expression checks
whether a given input is NaN (not a number). In most analyzed executions, the first
check is wasted because most inputs are numbers that are not NaN. We reported this
opportunity to the developers and they have accepted the optimization suggested
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CHAPTER 3. OPTIMIZING ORDERS OF EVALUATION

by DecisionProf .6 The second example illustrates a case where the optimization
degrades the performance of one test. Because it also improves the performance for
three other tests, DecisionProf reports it as a reordering opportunity.

Performance improvements. Overall, DecisionProf uncovers reordering opportu-
nities that yield speedups between 2.5% and 59% (median: 19%). The last column
of Table 3.2 summarizes the speedups. The improvement include both speedups
of library code, measured by unit tests, and application-level speedups, measured
by the benchmarks. For the libraries, the approach reports an opportunity if the
number of positively affected tests exceeds the number of negatively affected tests.
In total over all detected opportunities, 67% of all tests with a performance difference
are positively affected. For 11 of 23 opportunities, all tests are positively affected.
For opportunities with both positively and negatively affected tests, we expect
the developer to decide which test cases are more representative, and whether the
optimization should be applied.

Effect of pruning. To better understand the impact of pruning likely non-
commutative checks, Table 3.2 shows the number of statically pruned decisions
(“StaPru”), how many of the remaining decisions are executed by the test suites
(“Ev”), and how many of the executed decisions are pruned dynamically (“DynPru”).
The “Cand” column shows how many reordering candidates pass the testing-based
validation. Measuring the performance impact of these potential optimizations prunes
most candidates. This result shows the importance of the last phase of DecisionProf ,
which avoids suggesting code changes that do not improve performance.

False positives. We manually inspect all changes suggested by DecisionProf to
evaluate whether any of them may change the semantics of the program. We find
that all suggested optimization are semantics-preserving, i.e., the approach has no
false positives in our evaluation.

Reported optimizations. To validate our hypothesis that developers are interested
in optimizations related to the order of checks, we reported a small subset of all
detected reordering opportunities. Three out of seven reported optimizations got
confirmed and fixed within a very short time, confirming our hypothesis.

3.5.3 Profiling Overhead
The overall execution time of DecisionProf is dominated by the time to dynam-
ically analyze the program or the test executions, and by the time to measure
the performance impact of potential optimizations. To assess the overhead of the
dynamic analysis, the “Overhead” columns of Table 3.2 illustrate the execution
time of the test suites and benchmarks with and without profiling. The overhead
for test suites ranges between 3x and 65x, which is comparable to other profil-
ers [XAM+09, NSML13, TPG15, GPS15]. However, due to the complexity of some
benchmarks, the overhead for these programs ranges between 16x and 1,210x. The
time spent to measure the performance impact of optimizations ranges between 1
minute and several hours, depending on the number of affected tests and program’s
execution time. Since running DecisionProf does not any require manual interven-

6Pull request #2496 of Underscore.
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Figure 3.7: Correlation between estimated vs. actual cost.

tion and reports actionable suggestions, we consider the computational effort to be
acceptable for developers.

3.5.4 Estimated vs. Actual Cost
To assess whether our proxy measure for execution time, the number of executed
branching points, is an accurate estimate, we measure the correlation between
both values for benchmarks and individual tests. To measure the execution time
of benchmarks, we run each program ten times and keep the average value of
all executions. To estimate the actual execution time of individual tests, we run
each test ten times and keep all tests where the average execution time is above a
minimum measurable time (5ms), resulting in 120 tests.

Figure 3.7 illustrates the correlation between execution time in ms and the
estimated cost for individual tests. The correlation coefficient for unit tests and
benchmarks is 0.98 and 0.92, respectively, which indicates a strong positive linear
relationship between the number of evaluated branching points and execution time.
We conclude that our proxy metric is an accurate approximation of execution time.

3.5.5 Guaranteeing That Optimizations are
Semantics-Preserving

A conservative variant of our approach could report an optimization only if it can
statically show the optimization to be semantics-preserving. To assess how effective
this approach would be, we manually analyze whether the detected opportunities are
amenable to a sound static analysis. We identify three critical challenges for such an
analysis, which are at best partly solved in state of the art analyses for JavaScript.
First, several opportunities involve function calls, which are not easy to resolve in
JavaScript due to its dynamic features, such as dynamically overriding the methods
of objects. Second, several opportunities involve calls of native functions, which a
static analysis would have to model, including any variants of their implementation
that may exist across the various JavaScript engines. Third, several opportunities
involve property reads and writes, which might trigger arbitrary code via getter and
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setter functions. A sound static analysis would have to show that properties are not
implemented with getters and setters, or analyze the effects of them. Out of the 52
beneficial reordering opportunities, 28 involve at least one of these challenges, i.e., a
conservative variant of our approach would likely miss these opportunities. These
results confirm our design decision in favor of unsoundness, which turns out to be a
non-issue in practice [LSS+15, SPL18, AMN17].

3.6 Summary
In this chapter, we present DecisionProf , a profiler that identifies optimization
opportunities related to the order of evaluating subexpressions involved in a complex
decision. The core idea is to profile the computational cost and the value of each
check and to compute the optimal order of evaluating checks. We apply the approach
to 9 real-world JavaScript projects and 34 benchmarks where it finds 23 previously
unreported reordering opportunities that reduce the execution time in statistically
significant ways.

The opportunities reported by DecisionProf are effective and actionable. They are
effective because the approach assesses the performance impact of every optimization
before reporting it, instead of requiring a developer to manually experiment with
code changes. They are actionable because a developer must only decide whether
to use a suggested optimization, instead of manually identifying a bottleneck and
finding an optimization for it. As a result, our approach further increases the level
of automation in optimizing the performance of a program compared to state of the
art profilers.
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Cross Language Optimizations in
Big Data Systems

Chapters 2 and 3 illustrate how relatively small code changes can significantly
improve the execution time of JavaScript applications. While this is true for
JavaScript-based web applications, frameworks and libraries, the question is whether
similar findings hold for complex, distributed applications that run simultaneously
on multiple machines.

In this chapter, we demonstrate the potential of the method inlining code
optimization in a large-scale data processing system. Method inlining is a simple
program transformation that replaces a function call with the body of the function.
We search for method inlining opportunities in programs written in SCOPE [CJL+08],
a language for big-data processing queries that combines SQL-like declarative
language with C# expressions.

To demonstrate the effectiveness of method inlining, Figure 4.1 illustrates two
semantically equivalent SCOPE programs that interleave relational logic with C#

expressions. Figure 4.1a shows the situation where the user implements the predicate
in the WHERE clause as a separate C# method. Unfortunately, the presence of non-
relational code blocks the powerful relational optimizations in the SCOPE compiler.
As a result, the predicate is executed in a C# virtual machine. On the other hand,
Figure 4.1b shows a slight variation where the user inlines the method body in the
WHERE clause. Now, the predicate is amenable to two potential optimizations:

1. The optimizer may choose to promote one (or both) of the conjuncts to an
earlier part of the script, especially if either A or B are columns used for
partitioning the data. This can dramatically reduce the amount of data needed
to be transferred across the network.

2. The SCOPE compiler has a set of methods that it considers to be intrinsics.
An intrinsic is a .NET method for which the SCOPE runtime has a semantically
equivalent native function, i.e., implemented in C++. For instance, the method
String.isNullOrEmpty checks whether its argument is either null or else the
empty string. The corresponding native method is able to execute on the
native data encoding, which does not involve creating any .NET objects or
instantiating the CLR, i.e., the .NET virtual machine.

The resulting optimizations improve the throughput of the SCOPE program by
as much as 90% percent.
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data = SELECT *
FROM inputStream
WHERE M(A, B);

#CS
bool M(string x, string y) {

return !String.IsNullOrEmpty(x) && y == "Key1";
}
#ENDCS

(a) Predicate invisible to optimizer.
data = SELECT *

FROM inputStream
WHERE !String.IsNullOrEmpty(A) AND B == "Key1";

(b) Predicate visible to optimizer.

Figure 4.1: Examples of SCOPE programs.

The cross-language interaction in SCOPE, i.e., between the native and C#

runtimes, poses a significant cost in the overall system. The goal of this chapter is to
study and better understand the key performance bottlenecks in this modern data-
processing system and demonstrate the potential for cross-language optimization
based on method inlining. While this work is primarily about SCOPE, we believe
our results and optimizations generalize to other data-processing systems.

To motivate a need for reducing cross-runtime interactions, we first present
a new profiling infrastructure based on a combination of offline static analysis
of the executed code in addition to low-overhead online measurements captured
by SCOPE’s runtime. Then, we describe the results of our profiling of over 3
million SCOPE programs across five data centers within Microsoft. We find that
programs with non-relational code take between 45-70% of data center CPU time.
Furthermore, we propose a novel static analysis to find inlining opportunities. By
inlining a method call, the compiler/optimizer becomes aware of the logic contained
in the body of the method and can trigger additional optimizations. Finally, we
discuss the effectiveness of such optimizations in six case studies by optimizing jobs
from 5 different teams at Microsoft.

4.1 Background
SCOPE [CJL+08] is a big data query language and it combines a familiar SQL-like
declarative language with the extensibility and programmability provided by C#

types and the C# expression language. In addition to C# expressions, SCOPE
allows user-defined functions (UDFs) and user-defined operators (UDOs).

48



4.2. PROFILING INFRASTRUCTURE FOR DATA CENTERS

4.1.1 Execution of a Script
A SCOPE program is a script implemented as a directed acyclic graph (DAG)
where each vertex is a set of operators executed on the same physical (or virtual)
machine. We use the term node for the physical or virtual machine that a vertex
is executed on. The edges of the DAG are communication channels that use a
high-speed communication network between nodes. The operators within a vertex
are the end product of a very sophisticated optimizer; expressions written within a
certain construct in the script may end up being executed in vertices that do not
correspond to the construct in a simple manner. For instance, a sub-expression from
a WHERE clause, filter, may be promoted into a vertex that extracts an input table
from a data source, whereas the rest of the filter may be in a vertex that is many
edges distant from the input layer. An execution of a script is called a job.

4.1.2 Intrinsics
Much like Hadoop streaming [DQRJ+10], SCOPE jobs consist of multiple runtimes
and languages and while the details of this chapter are about SCOPE, the general
problem is shared among many big data systems. The SCOPE compiler attempts
to generate both C++ and C# operators for the same source-level construct. Each
operator, however, must execute either entirely in C# or C++: mixed code is not
provided for. Thus, when possible, the C++ operator is preferred because the data
layout in stored data uses C++ data structures. For example, a simple projection of
a subset of the columns can be done entirely without using the CLR. But when a
script contains a C# expression that cannot be converted to a C++ function, such
as in Figure 4.1a, the CLR must be started and each row in the input table must be
converted to a C# representation, i.e., a C# object representing the row must be
created, before the C# expression can be evaluated in the CLR.

Because this can be inefficient, the SCOPE runtime contains C++ functions that
are semantically equivalent to a subset of the .NET Framework methods that are
frequently used; these are called intrinsics. The SCOPE compiler then emits calls to
the (C++) intrinsics in the C++ generated operator, which is then used at runtime
in preference to the C# generated operator. (As opposed to using interop to execute
native code from within the CLR.)

4.1.3 Compiler/Optimizer Communication
In general, the C# code is compiled as a black box: no analysis or optimization is
peformed at this level. One consequence is that any calls to a UDF within a SCOPE
expression (filter predicate, projection function) require the operator containing the
call to be implemented in C#.

4.2 Profiling Infrastructure for Data Centers
SCOPE jobs run on a distributed computing platform, called Cosmos, designed for
storing and analyzing massive data sets. Cosmos runs on five clusters consisting of
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thousands of commodity servers [CJL+08]. Cosmos is highly scalable and performant:
it stores exabytes of data across hundreds of thousands of physical machines. Cosmos
runs millions of big-data jobs every week and almost half million jobs every day.

Finding optimization opportunities that are applicable to such a large number
of diverse jobs is a challenging problem. We can hope to find interesting conclusions
only if our profiling infrastructure is scalable. To achieve this, the important aspect
to consider is what type of information we should analyze. In the following sections,
we describe our major decisions when building infrastructure for profiling big data
jobs.

4.2.1 Job Artifacts
After execution of a SCOPE job, the runtime produces several artifacts that contain
code and runtime information for every job stage. Job artifacts are indefinitely
stored within Cosmos itself in a job repository. This provides two benefits: we can
derive data for a relatively large number of jobs since we do not require re-running
them, and we can also answer more complex, but interesting questions, such as
which job stages run as C++ vs. C#. We provide an overview of the subset of
artifacts which we use to profile the data center.

Job Algebra The job algebra is a graph representation of the job execution plan.
Job vertices are presented as outer-most nodes in a graph. Each job vertex contains
all operators that run inside that vertex and an operator can be either user-defined
or native. Optionally, if all operators are native, the vertex can be marked with the
nativeOnly flag, indicating that the entire vertex runs as native (C++). However, it
does not distinguish between native and user-defined operators.

Runtime Statistics The runtime statistics provides information on execution
time for every job vertex and every operator inside the vertex. Among other statistics
it includes CPU times, which we use as the primary metric of performance. Big data
systems process significant amounts of data but often are CPU-bound[ORR+15] due
to the large overheads behind serialization and de-serialization so we measure (in
addition to bytes read and written) CPU time.

Generated Code The SCOPE compiler generates both C# and C++ code for
every job. An artifact containing the C++ code has for every vertex a code region
containing a C++ implementation of the vertex and another code region that provides
class names for every operator that runs as C#. An operator in a vertex is translated
to either C++ code or to C# code depending on whether an operator contains sources
of C# code that are not intrinsics. An artifact containing the C# code includes
implementations of non-native operators and user-written classes and functions
defined inside the script. Both source and binary are available for the generated
code.
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ViV1 Vn

Analysis of C++ code

Analysis of C# code

Job Algebra

C++ code

Class names

C# code

Sources of C# code + Inlineable functions

Figure 4.2: Overview of the static analysis.

4.2.2 Static Analysis
After collecting the artifacts described in Section 4.2.1, we perform static analysis
to detect different sources of C# code in every vertex of a job. This is important
to understand the opportunities for optimizing job vertices through C# to C++

translation. For instance, an operator can run as managed code due to a call to a
method from .NET framework, or because of more complex C# code.

Figure 4.2 gives an overview of our analysis. It has two main components:
Analysis of C++ code and Analysis of C# code. Each analysis performs at the
granularity of a job vertex. The goal is to look for opportunities to run an entire
vertex as C++ code, which would remove all steps of data serialization between user
and native operators within the vertex.

The first step of the analysis is to extract the names of each job vertex, which
serves as a unique identifier for the vertex. Then for each vertex, the analysis
parses the generated C++ to find the class containing the vertex implementation.
As discussed in Section 4.2.1, for each vertex, the C++ implementation contains
two code regions: one that indicates which part of a vertex runs as C++ code and
another region listing class names of operators that run as C# code. If the list of C#

operators is empty, we conclude that the entire vertex runs as C++ code. Otherwise,
the analysis outputs class names that contain C# operators. Then, it parses C# code
to find definition and implementation for every class name. For a managed operator
there are two possible sources of C# code: generated code, which we whitelist and
skip in our analysis and the user-written code. After analyzing user code, the final
sources of C# code are:
• .NET framework calls

• User written functions

• User written operators
We are particularly interested in the first two categories. It is not unusual for an

operator to run as C# just because of a single call to a framework method. The idea
is to find what are the most important framework methods because we can optimize
large number of vertices by providing native implementations for those methods.
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Finding Sources of Managed Code To find .NET framework calls, it is enough
to check whether a method definition comes from one of a small set of the core
binaries in the .NET runtime. The analysis finds user-written functions by looking
for their definition inside the script or in third-party binaries. Because the job
repository keeps only binaries of third-party projects, we further analyze only user
functions for which the source code is available. It is easier to optimize these functions
through inlining (as described in Section 4.2.2), because we can manually confirm
the correctness of inlined code. Finally, in SCOPE, users can easily implement their
own operators: extractors (for parsing and constructing rows from a file), processors
and reducers (for row processing), and combiners (for processing rows from two
input tables). The analysis finds user operators by checking the interface the class
implements. We do not consider user operators for C++ translation: they generate
quite complex code which would be non-trivial to translate into C++.

Analysis of User-Written Code Inlining of a user-written function refers, per
the standard definition, to replacing the call to the function in the script with the
body of the function. We define inlineable methods as follows.

Definition 4 (Inlineable method). Method m is inlineable if it has the following
properties:

• It contains only .NET framework calls

• It does not contain loops and try-catch blocks

• It does not contain any assignment statements.

• It does not contain any references to the fields of an object.

• For all calls inside the method, arguments are passed by value (i.e., no out
parameters or call-by-reference parameters).

Furthermore, we distinguish among inlineable methods those that allow for C++

generation, because all called .NET framework methods are intrinsics. However, the
analysis of other inlineable functions is important, because it provides the intuition
on how many vertices are potentially optimizable in this way.

4.3 Evaluation
We analyze over 3,000,000 SCOPE jobs over a period of six days that run on five data
centers at Microsoft. In summary, our experiments answer the following questions:

• What is the proportion of time spent in native vs. non-native job vertices?
Between 43.70 % and 73.32 % of data center time is spent in job vertices that
run managed code (Section 4.3.2).
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Table 4.1: Analyzed jobs and their CPU time.

Data center Number of jobs CPU time (in hours)

cosmos8 375,974 28,559,063
cosmos9 171,203 40,714,052
cosmos11 851,222 23,312,271
cosmos14 474,911 21,299,039
cosmos15 1,200,026 31,324,407

Total: 3,073,336 145,208,834

• What proportion of time can be optimized by inlining UDFs using the current
list of intrinsics? Given the set of UDFs we found in our survey and the current
list of intrinsics we can optimize up to 0.16 % of data center time (Section 4.3.3).
Considering the size of data centers at Microsoft, this percentage translates to
almost 100,000 hours spent in big data jobs.

• What proportion of time can be optimized by extending the list of intrinsics?
Which methods should be the most important for C++ implementation? By
increasing the list of intrinsics and optimizing all inlineable methods we can
optimize up to 6.76 % of data center time. Furthermore, we conclude that
String methods are the most important .NET framework methods amenable
for C++ implementations (Section 4.3.4).

4.3.1 Experimental Setup
To understand performance bottlenecks in SCOPE jobs we analyze over 3,000,000
jobs across 5 data centers. Table 4.1 lists, for each data center, the number of
analyzed jobs along with their CPU time measured in hours. We observe that
number of jobs and CPU time significantly vary between data centers. This is
expected because different data centers are usually tailored for different types of
jobs. For example, data center cosmos9 runs big data machine learning jobs, which
are among the most expensive jobs. However, data center cosmos15 runs the highest
proportions of jobs we analyze because it is mostly used for running relatively simple,
short running jobs.

The table shows that the jobs take a significant amount of resources. While we
do not have access to the actual cost of these jobs, a very conservative estimate is
to use 0.6 cents an hour, the cost of the cheapest Amazon EC2 instance 1 at the
time of writing. Given that most of these jobs run recurrently every day (some
every hour), extrapolating these costs amounts to over 650 million dollars per year.
Thus, even a 1% performance improvement on these jobs will result in significant
performance savings.
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Figure 4.3: Time spent in native vs. non-native vertices.

4.3.2 Native vs. Non-Native Time
The first goal of our analysis is to determine the amount of time spent between native
vertices and vertices containing non-native code in SCOPE jobs. As mentioned
in Section 4.1.2, SCOPE runs all relational logic efficiently in native code, while
user-defined non-relational code is run in the CLR. Apart from avoiding the inherent
overheads of running in non-native mode, the relational logic has the additional
advantage of using all of the traditional optimizations modern databases typically
perform. From prior analyses, it was known that around 80% of the SCOPE jobs
use only relational constructs and thus run purely natively. Thus, at the outset, it
was not obvious that non-relational optimizations would provide overall datacenter
performance improvements.

Figure 4.3 shows for every data center the time spent executing native vertices
versus vertices with non-native code. For this analysis, we combined the time taken
by every job vertex from Runtime Statistics with the analysis of C++ code that
determines whether each operator within a vertex is run in native or non-native
mode. Our analysis of the C++ code is conservative and reports an operator as
running in non-native mode only if the analysis is able to detect the source of the
C# code. Due to this conservative analysis, we tag some vertices as undetermined
if the job metadata claims to include non-native operators but we are unable to
detect the source. Modulo bugs in the SCOPE job metadata, these undetermined
vertices are likely to be non-native vertices. But without improving our analysis we
are unable to confirm this.

Figure 4.3 shows that the time spent in vertices with non-native operators
represents a large fraction of data center time, ranging from 43.7% for cosmos15 to

1as of August 2017

54



4.3. EVALUATION

73.3% for cosmos9. We can derive many conclusions from these results. First, these
results could reflect the fact that the decades of work in optimizing relational code
has borne fruit — purely relational components account for a smaller percentage of
datacenter runtime. Second, it could very well be the case that jobs with inherently
expensive computations require logic that does not fit within the relational subset
of SCOPE, and thus requires the use of non-native code. Finally, these results could
reflect the inherent overheads of running non-native code in the context of big-data
processing.

We did preliminary experimentation on a small subset of the jobs locally to
study the performance bottlenecks of SCOPE jobs with managed operators. Our
profiles show that the presence of non-relational components reduce the throughput
of a job by a factor of 10× or more, with the performance bottleneck being the
serialization/deserialization overhead of converting data into and from C# objects.
Note that we are unable to run most of the jobs locally as accesses to the data they
process is severely restricted due to privacy concerns. Thus, it is quite possible that
the results from our preliminary experimentation might not be representative of
the jobs that run on the datacenters. Nevertheless, conversations with the SCOPE
team validated these experiments, and Figure 4.3 shows the potential performance
improvements possible by optimizing the interaction between native and non-native
parts of SCOPE.

4.3.3 Optimizable Job Vertices
We say a job vertex is optimizable if its only source of managed code comes from
inlineable methods that in turn have only calls to existing intrinsics. An example of
such a job is shown in Figure 4.1. This is an extremely conservative definition, but it
allows us to quantify how much data center time we can optimize given the current
list of intrinsics. Moreover, by inlining method calls, we expect an entire vertex to
run as native code, which should significantly improve the vertex execution time.

Figure 4.4 shows the proportion of CPU time of optimizable vertices relative to
data center time and to time spent in vertices with non-native code. We observe
that with the current list of intrinsics we can optimize a relatively small proportion
of data center time. For example, in cosmos9 that runs the most expensive jobs,
we can optimize at most 0.01% of data center time. The situation is slightly better
in cosmos14 and cosmos15, but in these data centers, the proportion of non-native
time is relatively lower compared to cosmos9.

The crucial observation is that given results illustrate only the time in data
centers that can be affected by inlining method calls in optimizable vertices. To
measure the actual performance improvement it is necessary to rerun every optimized
job. Further details on performance improvements for several jobs we optimize are
given in Section 4.4.

4.3.4 Potentially Optimizable Job Vertices
To motivate the importance of providing the C++ implementation for more framework
methods, we measure how much time is spent in the following type of vertices:
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Figure 4.4: Optimizable job vertices.

• Vertices with .NET framework calls as the only source of managed code

• Vertices with .NET framework calls or calls to inlineable methods as the only
source of managed code

We call these vertices potentially optimizable, because they can run as native by
increasing the list of intrinsics.

Figure 4.5 shows the proportion of time spent in potentially optimizable vertices
relative to data center time. We measure the proportions by assuming that all
.NET framework methods have C++ implementation. Results illustrate that we can
optimize between 1.01 and 6.76 % of data center time by just increasing the list
of intrinsics. Even though 1.01 % of time spent in cosmos9 looks relatively low, it
counts for almost 407,140 CPU hours for a period of several days. Knowing this
type of impact motivates the future work on enabling more C++ translation of
framework methods.

Most Relevant .NET Framework Methods Assuming that all .NET frame-
work methods have C++ implementation is unrealistic. To provide more insights on
the framework methods that actually matter, we perform two types of study: the
study of the most relevant methods considering the execution time of a vertex and
the study of the most important method types.

For the first study, we take all .NET framework methods called in potentially
optimizable vertices and rank them based on the vertex execution time. Table 4.2
shows for every data center ten most important framework methods. The last row
further illustrates how much data center time can be optimized if all methods in the
list become intrinsics. We further highlight methods that appear to be relevant across
many data centers. For example, System.String.ToLower and System.String.Concat
are among the most relevant methods across all data centers. Furthermore, if the
native implementation is provided for the first ten methods in cosmos14, it would
be enough to optimize more than 5% of data center time.
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Figure 4.6 illustrates the most important method types for data center cosmos11.
The results are comparable for other data centers. String methods dominate and
they count as the only source of non-native code in 1.49% of the time spent in
potentially optimizable vertices. Other method types are significantly less relevant,
but when combined they influence 1.85% of the data center time. These studies show
the potential for improving data center performance by providing more intrinsics
and thus enabling more C++ translation.

4.4 Case Studies
In order to quantify the effects of optimizing the SCOPE scripts through method
inlining, we performed several case studies. We reported jobs that have optimizable
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Table 4.3: Summary of case studies. The reported changes are percent improvements
in CPU time and throughput.

Job Name C++ translation Job Cost CPU time Throughput

Vertex Change Job Change

A yes medium 59.63% 23.00% 30%
B yes medium no change no change no change
C yes low 41.98% 25.00% 38%
D no - - - -
E yes high 7.22% 4.79% 5%
F yes low no change no change 115%

vertices, meaning that the job owner can optimize the script by inlining a method
that calls only intrinsics.

Because the input data for each job is not available, we had to contact the job
owners and ask them to re-run the job with a manually-inlined version of their script.
We were able to have 6 jobs re-run by their owners, categorized by their total CPU
time: short, medium and long.

4.4.1 Optimizations with Effects on Job Algebra
As illustrated by Figure 4.1, the optimizer may choose to modify the job algebra
given the new information available to it. For example, predicates might be pushed
deeper into the DAG which can result in dramatic data reduction. However, none
of the case studies ended up causing this kind of optimization.

4.4.2 Optimizations without Effects on Job Algebra
Even if the physical plan does not change, the resulting program might be more
efficient if it avoids the native to managed transition. For SCOPE, the set of intrinsics
means that by lifting more non-relational code into the parts of the program where
such things are visible to the optimizer, more code can be executed in C++ instead
of in C#.

In total, we looked at 6 re-run jobs, summarized in Table 4.3. For one job (D),
the optimization did not trigger C++ translation of an inlined operator because the
operator called to a non-intrinsicable method that we mistakenly thought was an
intrinsic. After detecting this problem, we fix the set of intrinsics and use the new
set to obtain data presented in Section 4.3.

For jobs A and B, we were able to perfom the historical study over a period
of 18 days. Both jobs are medium-expensive jobs, run daily and contain exactly
one optimizable vertex due to a user-written functions. In both cases, inlining the
function resulted in the entire vertex being executed in C++. Figure 4.7 shows the
improvements in CPU time and throughput for an optimized vertex in Job A over
an 18 day period, the last 5 of which were with the inlined method. The values
are normalized by the average of the unoptimized execution times; the optimized
version saves approximately 60% of the execution time. However, the normalized
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Figure 4.8: Case Study F .

vertex CPU time in Job B does not show any consistent improvement for the last
five jobs. Closer analysis of the vertex shows that the operator which had been in
C# accounted for a very tiny percentage of the execution time for the vertex. This
is consistent with our results for Job A, where the operator had essentially been
100% of the execution time of the vertex.

We also optimized Job F, a very low cost job. It only runs a few times a month,
so we were able to obtain timing information for only a few executions. The vertex
containing the optimized operator accounted for over 99% of the overall CPU time
for the entire job. We found the CPU time to be highly variable; perhaps this is
because the job runs so quickly so it is more sensitive to the batch environment in
which it runs. However, we found the throughput measurements to be consistent: the
optimized version provided twice the throughput for the entire job (again, compared
to the average of the unoptimized version).
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Finally, for jobs C and E we were not able to perform the same kind of historical
study: instead we have just one execution of the optimized scripts. For this execution
we found improvements in both vertex and job CPU times.

4.5 Threats to Validity
Underapproximation of Performance Impact The amount of time that can
be optimized by either increasing the list of intrinsics or method inlining is an
underapproximation of the total optimizable time. We do not consider effects of
inlining on another compiler optimizations. For example, if a method is inlined
on a column used to partition data, the inlining would not only trigger more C++

generation, it would also enable filter promotion [Dar78]. Understanding the impact
of inlining on other compiler optimizations is left for future work.

Assumptions for Static Analysis Our static analysis detects sources of C#

code based on several assumptions. For example, we use naming conventions when
pruning generated methods in C# implementation of non-native operators. A user
can potentially call some of these methods in the script, meaning that we would
skip a valuable source of user-written C# code. However, in practice, such methods
are not used in the context of big-data jobs and our manual exploration of many
SCOPE scripts illustrates that our assumptions hold.

Challenges for Implementing More Intrinsics We discuss the relevance of
providing C++ implementation for more .NET Framework methods. However,
providing C++ translation for some of these methods poses several challenges. For
example, memory management in C# is very different because it has a garbage
collector, while C++ does not. Another challenge is related to different string
encodings in C# and C++ runtimes, and for some corner cases, there is no clear
one-to-one mapping. However, increasing the list of intrinsics would certainly bring
significant performance benefits in SCOPE jobs, and there is a clear motivation for
future work to address this problem.

4.6 Summary
We believe having an expressive general-purpose language like C# or Java integrated
into a big data query language is a good thing: programmers should be able to
re-use existing components in languages that they are already comfortable with.
However, such multi-language paradigms break the barriers that current program
analysis and optimization tools are based on.

In this chapter, we propose a new profiling infrastructure for a large-scale data
processing system and an approach to find optimization opportunities based on
method inlining. The idea is to statically analyze job artifacts and to propose source
code optimizations only if they enable more compiler optimizations by removing
unnecessary cross-runtime interactions. By empirically studying over 3 million
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SCOPE programs across five data centers within Microsoft, we find that up to 0.3%
of data center time can be optimized by inlining method calls. Furthermore, we
present six case studies showing that triggering more generation of native code in
SCOPE programs yields significant performance improvement: inlining just one
method resulted in as much as 25% improvement for an entire program.
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Test Generation of Higher-Order
Functions in Dynamic Languages

In Chapter 3 we proposed DecisionProf , a dynamic analysis for optimizing inefficient
orders of evaluations. To find reordering opportunities, DecisionProf relies on inputs
provided by test suites. Similarly, other dynamic analyses are applied with manually
written tests or by manually exploring the program. However, such inputs are often
not sufficient to cover all possible program paths or to trigger behavior that is of
interest to the dynamic analysis.

To address the problem of insufficient test inputs, a possible solution is to
use test generation in combination with dynamic analysis. Automatically gener-
ated tests can either extend manual tests or serve as the sole driver to execute
applications during dynamic analysis. Existing test generation uses a wide range
of techniques, including feedback-directed random testing [PE07, PLB08a], sym-
bolic execution [Kin76, CDE08], concolic execution [GKS05a, SMA05], bounded
exhaustive testing [BKM02], evolutionary test generation [FA11], UI-level test gen-
eration [Mem07, MvD09, SGP17], and concurrency testing [PG12, SR14].

For dynamic analysis to be precise, test generation must provide high quality
test cases. This means that generated tests should exercise as many execution paths
as possible and achieve good code coverage. However, despite their effectiveness
in identifying programming errors, current test generation approaches have limited
capabilities in generating structurally complex inputs [ZZK16]. In particular, they do
not consider higher-order functions that are common in functional-style programming,
e.g., the popular map or reduce APIs, and in dynamic languages, e.g., methods that
compose behavior via synchronous or asynchronous callbacks.

Testing a higher-order function requires the construction of tests that invoke the
function with values that include callback functions. To be effective, these callback
functions must interact with the tested code, e.g., by manipulating the program’s
state. Existing test generators do not address the problem of higher-order functions
at all or pass very simple callback functions that do not implement any behavior or
return random values [CH11].

The problem of generating higher-order functions is further compounded for
dynamically typed languages, such as JavaScript, Python, and Ruby. For these
languages, in addition to the problem of creating an effective callback function, a
test generator faces the challenge of determining where to pass a function as an
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argument. Addressing this challenge is non-trivial in the absence of static type
signatures.

This chapter tackles the problem of automatically testing higher-order functions
in dynamic languages by presenting a novel test generation framework called Lambda-
Tester . In this framework, test generation proceeds in two phases. The discovery
phase is concerned with discovering, for a given method1 under test m, at which
argument position(s) the method expects a callback function. To this end, the
framework generates tests that invoke m with callback functions that report whether
or not they are invoked. Then, the test generation phase creates tests that consist of
a sequence of calls that invoke m with randomly selected values, including function
values at argument positions where the previous phase discovered that functions are
expected. Both phases take as input setup code that creates a set of initial values,
which are used as receivers and arguments in subsequently generated calls.

We present several instantiations of the LambdaTester framework that differ
in the way in which callback functions are constructed during the test generation
phase. These instantiations include the use of: (i) empty functions, (ii) functions
that return random values [CH11], (iii) callbacks mined from a corpus of existing
code, and (iv) a novel feedback-directed technique that generates callbacks using
guidance from a dynamic analysis. Technique (iv) observes memory locations that
are read during the execution of previously generated tests and generates function
bodies that write to those locations.

We implement our ideas in a test generation tool for JavaScript. In an empirical
evaluation, we use LambdaTester to generate tests for 43 higher-order functions
in 13 popular JavaScript libraries. These libraries provide so-called polyfills, i.e.,
JavaScript implementations of APIs that may not be provided natively by all
execution environments of the JavaScript language. We apply LambdaTester to
polyfills for array APIs, including the es5-shim, mozilla, and polyfill.io libraries,
and to polyfills of the promise APIs, including bluebird, Q, and when. To evaluate
the effectiveness of the generated tests, we execute the tests both with the library
implementation and the corresponding native implementation of the tested API,
and detect situations where their behaviors differ. Here, behavioral differences are
detected using an automated test oracle that compares execution behavior, e.g.,
the values being returned by the methods under test, the invocations of callback
functions passed as arguments, the output written by the tested code, and whether
the methods under test terminate.

Our experimental evaluation shows that LambdaTester reveals various behavioral
differences between polyfills and their corresponding native implementations, includ-
ing previously unknown bugs in popular polyfills. Overall, the approach detects
differences in 12 of 13 libraries. Comparing the different techniques for creating
callback functions shows that callbacks that modify program state in non-obvious
ways are more effective than simpler approaches. The most effective technique for
creating callbacks is our novel feedback-directed technique, exposing differences
missed by all other techniques.

1We use the terms “function” and “method” interchangeably in this work because our approach
tests methods while the term “higher-order function” is well established.
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198 Array.prototype.map = function map(callback) {
199 if (this === undefined || this === null) {
200 throw new TypeError(this + ’ is not an object’);
201 }
202 if (typeof callback !== ’function’) {
203 throw new TypeError(callback + ’ is not a function’);
204 }
205
206 var object = Object(this), scope = arguments[1],
207 arraylike = object instanceof String ? object.split(’’) : object,
208 length = Math.max(Math.min(arraylike.length, 9007199254740991), 0) || 0,
209 index = -1, result = [];
210
211 while (++index < length) {
212 if (index in arraylike) {
213 result[index] = callback.call(scope, arraylike[index], index, object);
214 }
215 }
216
217 return result;
218 };

Figure 5.1: Implementation of Array.prototype.map from polyfill.io.

5.1 Challenges and Motivating Examples
This section presents and illustrates challenges associated with generating effective
tests for programs with higher-order functions in the context of dynamically typed
languages. Given one or more methods under test m that expect a callback function
cb as an argument, we identify five challenges for testing m:

• C1: Determining where m expects a callback function as an argument.

• C2: Generating callback functions cb that modify memory locations in such a
way that it influences the behavior of m.

• C3: Generating callback functions cb that return values that influence the
behavior of m, or that modify properties of objects passed into m as the receiver
or as arguments.

• C4: Generating tests that chain multiple calls to higher-order functions.

• C5: Detecting callback-related behavioral differences during the execution of m.

The above challenges are relevant for any code that uses higher-order functions in a
dynamically typed language. We now illustrate these challenges using two examples.
Both examples are concerned with generating tests that expose bugs in polyfills for
JavaScript, i.e., code that implements a feature that is unavailable in cases where a
user is running an application using an outdated version of a browser or JavaScript
engine.
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219 p = ["a", "b", "c"];
220 q1 = p.map(function(v){ return v+v; }); //["aa","bb","cc"]
221 q2 = p.map(function(v){ p.length = false; return v+v; }); //["aa"]

Figure 5.2: Examples of map method.

5.1.1 Array.prototype.map
Figure 5.1 shows the implementation of Array.prototype.map from polyfill.io version
3.25.1. This code provides an implementation of the map method for use on platforms
that predate JavaScript 1.6, where the method was introduced. A brief review of
the code reveals that lines 199–201 check that the receiver is an object and throw a
TypeError otherwise, and that lines 202–204 check that the callback is a function
and throw a TypeError otherwise. On lines 206–209, several variables are initialized.
If the function is invoked on an array, the variables arraylike and length contain
the array and the array’s length, respectively. If the receiver object is a string value,
then variable arraylike is initialized to an array of which the elements contain the
string’s characters. Variable result is initialized to an empty array. The loop on
lines 211–215 visits each index in the original array, looks up the value at that index,
computes a new value by invoking the callback function, and stores the result at the
corresponding index in the result array.

The code in Figure 5.1 computes the expected results on most but not all inputs.
For example, consider the call to map on line 220 in Figure 5.2. The function in
Figure 5.1 assigns to q1 an array ["aa", "bb", "cc"] as expected. However, the
result of the second map call on line 221 is equal to ["aa"], whereas the native
implementation of Array.prototype.map assigns to q2 an array ["aa", undefined,
undefined].

Detecting this behavioral difference requires a test that passes a callback function
as the first argument (see C1) and this callback function should manipulate the
length property of the array p on which the map method is invoked (see C2). While
existing test generators for JavaScript are able to generate simple callback functions,
we are not aware of a previous technique that generates callback functions that
modify specific properties of objects passed in as arguments, which is necessary to
expose the bug in the map method in Figure 5.1. In this work, we explore a technique
that identifies object properties, such as arraylike.length, that are read in the
method under test, and that generates callbacks that deliberately manipulate these
properties.

5.1.2 Promises
Promises are a mechanism for asynchronous programming that was introduced in
the ECMAScript 6 specification. A promise represents the value of an asynchronous
computation, and it is in one of three states: pending, fulfilled, or rejected. Initially,
a promise is in the pending state, and it transitions to the fulfilled or rejected state
when functions resolve or reject are invoked, passing a value as an argument.
To enable programmers to associate reactions with a promise, promises define
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222 var p0 = new Promise(function(resolve,reject){ resolve(undefined) });
223 var p1 = p0.then(function(v){ return p1; });
224 var p2 = p1.then(function(v){ console.log("Value: " + v); });
225 var p3 = p2.catch(function(e){ console.log("Error: " + e); });

(a) Example of the circular promise chain.

226 var p0 = new Promise(function(resolve,reject){ resolve(7) });
227 var p1 = p0.then(undefined);
228 var p2 = p1.then(function(v){
229 console.log(v);
230 return v+1;
231 });

(b) Repeated calls to then.

232 var p = Promise.reject(17);
233 p.catch(function (){ console.log("hello"); },null,false);

(c) Call to catch with multiple arguments.

Figure 5.3: Examples of promise calls.

higher-order functions then and catch, which receive callback functions that execute
asynchronously when that promise is resolved or rejected. These operations enable
programmers to create a chain of asynchronous computations and propagate errors
from one asynchronously executed function to the next.

At the time of writing this chapter, a popular web site2 lists 76 polyfill imple-
mentations of JavaScript promises that aim at conforming to the Promises/A+
specification3 upon which the ECMAScript 6 specification is based. Testing these
implementations is a challenging task for several reasons:

• then and catch can be invoked with arguments that are functions but also
with non-function values,

• then and catch return another promise, thus enabling programmers to create
a chain of asynchronous computations, and

• then can be invoked with one argument to define a fulfill reaction, or with two
arguments, to define both a fulfill reaction and a reject reaction, and

• the behavior of reactions defined using then and catch depends on the fact
whether or not the returned value is a promise.

As we discuss in Section 5.4, our test generation technique finds numerous test
cases that expose situations where polyfill implementations behave differently from
the native implementation. For example, consider the example in Figure 5.3a. When
this test is executed using Node.js 8.5.0, i.e., the native implementation, then it
prints:

2https://promisesaplus.com/implementations
3http://wiki.commonjs.org/wiki/Promises/A
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Error: TypeError: Chaining cycle detected for promise #<Promise>

The bluebird promise polyfill4 prints a slightly different message:

Error: TypeError: circular promise resolution chain

These messages allude to the fact that the value being returned by the callback
function on line 223 is the same value that is being returned by the call to then
on the same line. However, the Q promise polyfill5 fails to perform a circularity
check and goes into an infinite loop that never terminates, which is clearly undesired
behavior. Exposing this bug in Q requires generating a function that returns the
same promise p1 that is returned by the first call to then at line 223 (see C3). We
are unaware of previous test generation techniques that are capable of generating
such tests.

The example in Figure 5.3b illustrates some of the other complexities that arise
in generating effective tests in the presence of higher-order functions. Here, a chain
of promises is constructed using repeated calls to then. Note that, on line 227, the
value undefined is passed to then instead of a function value. According to the
specification, this should be equivalent to passing the identity function function(v){
return v; }, and executing the code using the native promises implementation
prints “7”. However, the polyfills provided by Q and When6 print “[Function]”
instead. Note that, to expose these errors, it was necessary to generate a test that
contains a chain of function calls (see C4), and that it requires the test generator
to generate calls to then with arguments that are both functions and non-function
values.

As a final example, consider the test case in Figure 5.3c. In this example, the
native implementation of promises executes without any errors and prints “hello”.
However, bluebird throws an uncaught exception

Unhandled rejection TypeError: Cannot read property ’apply’ of null

without printing any output. Further investigation reveals that, in this case, the
callback is not invoked by bluebird (see C5).

5.2 Framework for Testing Higher-Order
Functions

This section presents our LambdaTester framework for testing higher-order functions.
Given a set of methods under test and, optionally, some setup code required to
test these methods, the framework generates tests that invoke the methods under
test. The key novelty of LambdaTester is to effectively test methods that receive
other functions, i.e., callbacks, as arguments. To support testing of such higher-
order functions, the framework consists of two phases. The first phase, called
discovery phase, infers for each method under test at what argument positions the

4https://github.com/petkaantonov/bluebird.
5See https://github.com/kriskowal/q.
6See https://github.com/cujojs/when.
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Infer callback
position

Generate
method call

Execute
generated test

Store test

Methods under test + Setup code

Feedback

Figure 5.4: Overview of LambdaTester .

method expects a callback argument (Section 5.2.1). The second phase, called test
generation phase, creates tests that pass callback functions and other argument
values to the methods under test (Section 5.2.2). The test generation phase uses
a form of feedback-directed, random testing [PE07] to incrementally extend and
execute tests. We augment feedback-directed, random testing with four techniques
to create callback arguments.

Before presenting the details of LambdaTester , we define our terminology. Each
tests begins with a piece of user-provided setup code:

Definition 5 (Setup code). Setup code setup is a sequence of pairs (var, exp), where
var is a variable name and exp is the expression assigned to var.

The purpose of the setup code is to create a set of values to be used as receivers
or arguments of method calls. For example, to test methods on promises, the user
needs to provide setup code that creates some initial promise objects. For the test
in Figure 5.3a, the first line shows the setup code of the test.

The basic ingredient of generated tests are method calls:

Definition 6 (Method call). A method call c is a tuple (m, varrec, vararg1 · · · varargn,
varreturn), where m is a method name, varrec is the name of the variable used as
the receiver object of the call, vararg1, ..., varargk are the names of variables used as
arguments and varreturn is the name of the variable to which the call’s return value
is assigned.

Finally, the overall goal of the approach is to generate tests:

Definition 7 (Test). A test test is a sequence (setup, ci, ..., cn) where setup is the
setup code and ci, ..., cn are generated method calls.

Figure 5.4 illustrates the process of test generation. For each method under test,
the approach attempts to infer the positions of callback arguments. Afterwards,
the approach repeatedly generates new method calls and executes the growing test.
During each test execution, the approach collects feedback that guides the generation
of the next method call. Finally, the approach stores the generated tests, which can
then be used for bug finding (Section 5.3).
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Algorithm 2 Algorithm to infer callback position
Input: Set M of names of methods under test, setup code setup
Output: Map C that maps each method name to a set of Pcb of callback positions

1: Initialize C[m] with an empty set for each m ∈M
2: V ← Vsetup ∪ Vrand

3: foreach each m ∈M do
4: while testing budget not exceeded do
5: test← new test starting with setup
6: foreach each poscb < max_params do
7: varrec ← selectReceiver(V, m)
8: args← empty sequence
9: foreach each pos < max_params do
10: if pos = poscb then
11: varcb ← callback function that logs calls to it
12: Append varcb to args
13: else
14: vararg ← randomChoice(V )
15: Append vararg to args

16: Append (m, varrec, args,_) to test
17: feedback ← execute(test)
18: if feedback has non-empty log then
19: Add poscb to C[m]
20: return C

5.2.1 Discovery Phase: Inferring Callback Positions
In dynamic languages, the expected number and types of method parameters are
generally unknown. In particular, our test generator cannot rely on static type
signatures to decide where to pass a callback argument. To find out at which
argument positions a method under test expects a callback, the discovery phase of
our approach explores all possible callback positions. To this end, the approach
creates tests that pass callbacks at each argument position, while leaving the number
and types of the other arguments unconstrained. The approach then collects feedback
from executing these tests to determine which callbacks are executed, allowing the
approach to infer the argument positions where callbacks are expected.

Algorithm 2 illustrates our technique for finding callback positions for a given set
M of methods and setup code setup. The output of the algorithm is a map C that
maps each method name to a set of possible callback positions. As receiver objects
and arguments of method calls the algorithm considers two sets of variables. First,
we use a set Vrand of variables that store randomly generated values. To initialize this
set, LambdaTester randomly generates values for primitive types, such as strings,
booleans, and numbers, as well as common object types, such as arrays and objects.
Moreover, we add null and undefined to the Vrand set. Second, we use the set Vsetup
of variables assigned to in the setup code. To obtain this set, the approach statically
analyzes the setup code and extracts all declared variables. For example, after
parsing the setup code in the first line of Figure 5.3a, Vsetup contains the variable p0.
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The main loop of the algorithm repeatedly invokes each method under test
until exceeding the testing budget, e.g., a fixed number of method invocations. For
each method call, the algorithm passes max_params arguments such that callback
functions are passed at different argument positions. In our experiments, we set
max_params to five because the higher-order functions we analyze do not expect
more than five arguments. In many dynamic languages, such as JavaScript, if a
method is called with more arguments than expected, the redundant arguments
are simply ignored. For every argument position poscb, the algorithm creates a new
method call that passes a callback function as the argument at position poscb and
randomly selected values from V at all other argument positions.

When creating a call to a method m, the algorithm selects the receiver object
from those elements in V that have a property named m. This selection, indicated
by selectReceiver in the algorithm, is based on feedback from executing the setup
code and the code that initializes the values in Vrand. During this initial execution,
the approach gathers type information about all variables in V , including which
properties the values stored in these variables provide.

For example, to generate a call to the catch method of promises based on the
setup code in the first line of Figure 5.3a, the algorithm may select p0 as the receiver
variable because it provides a method named catch. Likewise, to generate a call to
the reduce method, the algorithm may select a receiver from a randomly generated
array in Vrand because arrays provide a reduce property.

After preparing all variables involved in a method call, the algorithm creates and
then executes a test that contains the setup code followed by the call. During the
execution of the test, the algorithm gathers feedback on its execution. Specifically,
the algorithm keeps track of whether the callback function passed at position poscb

is invoked. If the callback function is invoked, the algorithm infers that a function
argument is expected at this position and updates the map C accordingly.

Finally, after calling the methods under test with various different arguments,
the algorithm returns the inferred callback positions.

5.2.2 Test Generation Phase
After inferring at what argument positions the methods under test expect a callback
argument, the second phase of LambdaTester creates tests that pass different kinds
of callbacks to the methods under test. The approach combines feedback-directed,
random test generation with different techniques for creating callback functions.
In the following, we first present how LambdaTester creates callback functions
(Section 5.2.2) and then describe the overall test generation algorithm (Section 5.2.2).

Generation of Callback Functions

Effectively testing higher-order functions requires callback functions to be passed
as arguments to the methods under test. The LambdaTester framework currently
supports four techniques for generating callback functions, which we present below.
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function callback() {
};

(a) Empty callback (“Cb-Empty”).

function callback() {
return 17;

};

(b) Callback generated by QuickCheck
(“Cb-QuickCheck”).

function callback() {
return Math.floor(10.8) +

Math.floor(20.4) +
Math.min(3, 5);

};

(c) Callback mined from existing code
(“Cb-Mined”).

function callback(a,b) {
receiver.foo = "abc"
b = null;
return {x: 23};

};

(d) Callback generated based on dynamically
analyzing the method under test
(“Cb-Writes”).

Figure 5.5: Examples of generated callbacks.

Empty Callbacks The most simple approach for creating callbacks is to simply
create an empty function that does not perform any computation and that does not
explicitly return any value. Figure 5.5a gives an example of an empty callback. We
consider this approach as a baseline for comparison with the following approaches.

Callbacks by QuickCheck QuickCheck [CH11] is a state-of-the-art test gener-
ator originally designed for functional languages. To test higher-order functions,
QuickCheck is capable of generating functions that return random values, but the
functions that it generates do not perform additional computations and do not
modify the program state. There are several re-implementations of QuickCheck for
dynamic languages. We integrated an implementation for JavaScript7 into Lambda-
Tester . Integrating other existing testing tools that generate callbacks into our
framework would be straightforward.

Figure 5.5b gives an example of a callback generated by QuickCheck.

Existing Callbacks Given the huge amount of existing code written in popular
languages, another way to obtain callback functions is to extract them from already
written code. To find existing callbacks for a method m, the approach statically
analyzes method calls in a corpus of code and extracts function expressions passed
to methods with a name equal to m. For example, to test the map function of
arrays in JavaScript, we search for callback functions given to map. The rationale for
extracting callbacks specifically for a each method m is that callbacks for a specific
API method may follow common usage patterns, which may be valuable for testing
these API methods.

To extract existing callbacks, we consider JavaScript code provided by a popular
code corpus [RBVK16]. We analyze this code with an AST-based analysis that
extracts all function expressions that are passed as an argument to a function. For

7The supported implementation of QuickCheck is available at https://quickcheckjs.readme.
io/
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each extracted function, the analysis stores the name of the called function along
with the callback function. During test generation, LambdaTester then randomly
selects from those extracted callbacks that match the current method under test.
Figure 5.5c gives an example of an existing callback.

Callbacks Generation Based on Dynamic Analysis The final and most so-
phisticated technique to create callbacks uses a dynamic analysis of the method
under test to guide the construction of a suitable callback function. The technique
is based on the observation that callbacks are more likely to be effective for testing
when they interact with the tested code. To illustrate this observation, consider the
following method under test:

function testMe(callbackFn, bar) {
// code before calling the callback

// calling the callback
var ret = callbackFn();

// code after calling the callback
if (this.foo) { ... }
if (bar) { ... }
if (ret) { ... }

}

To effectively test this method, the callback function should interact with the code
executed after invoking the callback. Specifically, the callback function should modify
the values stored in this.foo, ret, and bar. The challenge is how to determine the
memory locations that the callback should modify.

We address this challenge through a dynamic analysis of memory locations that
the method under test reads after invoking the callback. We apply the analysis
when executing tests, and feed the resulting set of memory locations back to the
test generator to direct the generation of future callbacks. The basic idea behind
the dynamic analysis is to collect all memory locations that (i) are read after the
first invocation of the callback function and that (ii) are reachable from the callback
body. The reachable memory locations include memory reachable from the receiver
object and the arguments of the call to the method under test, the return value
of the callback, and any globally reachable state. To gather the relevant memory
locations, the dynamic analysis performs the following actions during the execution
of the method under test:

• Store arguments and receiver object at method entry. When the execution of
the method under test starts, the analysis stores the method arguments and
the receiver object.

• Track calls to callback function. The analysis observes when the callback
function is invoked and then starts to track memory reads.

• Track callback-reachable variable reads. When the analysis observes a read to
a variable, it checks whether the variable is transitively reachable from the
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receiver object or the arguments of the call of the method under test, from
the return value of the callback, or from the global object. If the value is
reachable from one of these starting points, the analysis stores its access path
to retrieve the value, i.e., a sequence of property accesses applied to the receiver
or argument objects. For example, consider the reads of ret and bar in the
above example. Because both happen after the callback invocation and are
memory locations reachable from the callback body, the analysis reports the
access paths ret and arg2, where arg2 refers to the second argument passed
to the method under test.

• Track callback-reachable property reads. Similar to variable reads, the analysis
checks for each property read whether the read value is reachable from the
callback body. For example, consider the read of this.foo in the above
example. As this refers to the receiver object of the call to testMe, the value
can be reached via the foo property of the receiver object, i.e., the stored
access path is receiver.foo. The callback function could modify this value
before the read by writing to receiver.foo, where receiver is the variable in
the test that refers to the receiver object.

For the above example, the set of dynamically detected memory locations is:
{ receiver.foo, arg2, ret }.

Based on the dynamically detected memory locations, LambdaTester generates a
callback body that interacts with the function under test. To this end, the approach
infers how many arguments a callback function receives by first executing the method
under test with a callback that inspects arguments.length. Then, LambdaTester
generates callback functions that write to the locations read by the method under
test and that are reachable from the callback body. The approach randomly selects a
subset of the received arguments and of the detected memory locations, and assigns
a random value to each element in the subset.

Figure 5.5d shows a callback function generated for the above example, based
on the assumption that the callback function receives two arguments. As illustrated
by the example, the feedback from the dynamic analysis allows LambdaTester to
generate callbacks that interact with the tested code by writing to memory locations
that are relevant for the method under test.

Feedback-Directed Test Generation

The generation of callback functions according to one of the four techniques presented
in Section 5.2.2 are the core of LambdaTester . We now describe how the framework
uses these callbacks and other values to generate tests in a feedback-directed, random
manner. For methods under test that expect function arguments according to the
discovery phase of LambdaTester , the approach generates sequences of method calls
that probabilistically pass callback arguments. For methods that do not expect
callbacks, the approach generates sequences of calls with an unconstrained list of
arguments.

Algorithm 3 illustrates our test generation approach. For a given set M of
methods, the approach generates tests that contain sequences of calls to methods in
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Algorithm 3 Test generation algorithm
Input: Set M of names of methods under test, setup code setup, map C
Output: Generated tests T

1: T ← ∅
2: R← ∅
3: V ← Vsetup ∪ Vrand

4: while testing budget not exceeded do
5: test← New test starting with setup
6: while max_calls not reached do
7: m← randomChoice(M)
8: poscb ← randomChoice(C[m])
9: varrec ← selectReceiver(V, m)
10: n← randomChoiceInRange(poscb, max_args)
11: args← empty sequence
12: foreach each pos ≤ n do
13: if pos == poscb and random() ≤ use_callback_prob then
14: vararg ← generateCallback(R, V )
15: Append vararg to args
16: else
17: vararg ← randomChoice(V )
18: Append vararg to args

19: Create fresh variable varret and add it to V

20: Append (m, varrec, args, varret) to test
21: feedback ← execute(test)
22: if feedback indicates a crash then
23: Add test to T
24: break
25: Update R with feedback

26: Add test to T
27: return T

M . The inputs to the algorithm are: (i) the set of methods M , (ii) user-provided
setup code setup, and (iii) the map C, which maps each method name to a set of
callback positions. The output of the algorithm is the set T of generated tests.

During test generation, the algorithm maintains two sets of values. First, it
maintains the set V of variables, which – as for Algorithm 2 – comprises variables
initialized in the setup code and in the generated tests, as well as randomly initialized
variables. Second, the algorithm maintains a set R of memory locations, which are
the output of the dynamic analysis of memory reads in the method under test. These
locations serve as feedback that helps the test generator create effective callbacks
(Section 5.2.2).

The algorithm incrementally generates method calls until a maximum number
of calls max_calls per test is reached. To generate a method call, the algorithm
randomly picks a name from M and a callback position index from C. The approach
selects the receiver object from the variables V by randomly choosing only from
elements in V that provide a method called m. For the callback argument, the
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algorithm invokes generateCallback, which implements one of the four techniques
discussed in Section 5.2.2. Values of other non-function arguments are selected from
the pool V. The algorithm adds the variable varret, which stores the return value a
newly added calls, to the set of variables V. That is, the test generator considers
return values as a potential receiver objects or arguments in future calls.

After creating a method call, the algorithm adds the call to the current test,
executes the test and collects feedback from the test’s execution. The feedback
consists of two kinds of information. First, the algorithm observes whether the
generated test crashes by throwing an exception. In this case, further extending
this test is not useful and the algorithm breaks out of the inner loop that appends
further calls. Second, the algorithm receives feedback from the dynamic analysis
of the memory locations read during the test execution and updates the set R by
adding these locations to the set.

The main loop of the algorithm continues to create tests until the given testing
budget has been exceeded.

5.3 Test Oracle: Differential Testing of Polyfills
The primary goal of test generation techniques is to detect bugs. To assess the
effectiveness of our testing framework in finding bugs we generate tests for polyfills
that accept callback arguments.

In JavaScript parlance, a polyfill is a user-defined implementation of an API
that provides a method’s functionality in older execution environments that do not
natively support it. For example, before ECMAScript 6 added native support for
promises, the Promise object had been available in JavaScript through third-party
libraries such as bluebird and Q. However, polyfills are non-trivial to implement
because approximating all possible behaviors supported by the native implemen-
tation is sometimes very challenging. To find bugs in polyfills we use differential
testing [McK98] and consider the output of the native implementation as the ground
truth.

When testing higher-order functions, it is often insufficient to determine whether
the native implementation and the polyfill produce the same output state given the
same input state. For example, two implementations can produce the same output
for some inputs but invoke callback functions a different number of times, which
clearly indicates that these implementations are not equivalent. In this section,
we define test oracles relevant for testing higher-order functions, including novel
callback-related oracles.

To compare test executions of native and polyfill implementations and find
behavioral differences we define the notion of an execution summary.

Definition 8 (Execution summary). An execution summary captures the result of
a test execution. It contains the following information:

• The state of receiver objects and return values of calls.

• The state of arguments passed to callback functions.
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• The number of invocations of callback functions.

• Output written to the standard output stream.

• Output written to the standard error stream.

To record the state of an object in the execution summary, LambdaTester serializes
the object. LambdaTester also serializes the arguments passed to callback functions
for every callback invocation. For primitive types, serialization is straightforward: we
simply store the values. When serializing objects not created by a constructor, e.g.,
arrays, we rely on the JSON serialization API for converting an object to its string
representation. In contrast, if an object is created by a constructor (e.g., promises)
the internal object representation depends on the constructor implementation, and
this representation may vary across polyfills. In this case, we do not serialize the
object, but record only the constructor name. Hence, if two promise libraries have
the same behavior but use different representations for promise objects, then we
consider them equivalent.

To compare two implementations, LambdaTester also considers output written
to the standard output and standard error streams. Standard output contains the
output produced by the test’s execution, and standard error contains error messages
thrown during the test’s execution. A challenge when comparing output written
to these streams is that different implementations of a polyfill tend to produce
different warning messages and error messages. For example, bluebird and the
native implementation produce different error messages when an attempt is made
to construct a circular promise chain, as we discussed in Section 5.1.2. To avoid
false positives due to different warning messages, we consider two implementations
as different only if one implementation produces an empty message while the other
produces a non-empty message.

Based on the definition of execution summary, LambdaTester considers the
following eight oracles:

• Standard error - two implementations write different output to the standard
error stream. Here we distinguish two sub-categories:

– Error messages - indicates a situation when one implementation reports
an error message and the other does not.

– Warnings - similar to the previous sub-category but this compares warning
messages.

• Non-termination - a situation where one implementation terminates and the
other does not.

• Standard output - two implementations produce different standard output.

• State of receiver objects - differences in the state of receiver objects.

• State of return values - differences in the state of return values.

• Callback arguments - differences in the state of callback arguments.

77



CHAPTER 5. TEST GENERATION OF HIGHER-ORDER FUNCTIONS

• Callback invocations - differences exposed by the number of callback invoca-
tions.

The last two oracles are callback-related oracles. Our experimental evaluation
(Section 5.4) shows that many behavioral differences would be missed if callback-
related oracles were not considered.

5.4 Evaluation
We evaluate LambdaTester on 43 higher-order functions taken from 13 popular
libraries. This section reports on experiments that aim to answer the following
research questions:

• RQ1: How effective are the different variants of LambdaTester in finding
behavioral differences? LambdaTester finds behavior differences in 12 out of 13
libraries. When comparing the different techniques for creating callbacks, we
find that our novel Cb-Writes approach is the most effective (Section 5.4.2).

• RQ2: What kinds of behavioral differences are detected by LambdaTester?
LambdaTester detects a diverse set of differences, including clearly undesired
behavior, such as non-termination bugs and crashes in polyfills, as well as
differences in the number of times that a callback is invoked (Section 5.4.3).

• RQ3: How effective are different variants of LambdaTester in increasing code
coverage? The Cb-Writes is the most effective approach for increasing the
statement coverage of the array and promise polyfills.

• RQ4: How efficient is LambdaTester? The time required by LambdaTester to
generate a single test ranges between 0.4 and 12 seconds, making it a practical
tool for automatically testing higher-order functions.

5.4.1 Experimental Setup
Benchmarks We evaluate our approach on higher-order functions taken from 13
popular JavaScript libraries listed in Table 5.1. Polyfill.io, mozilla, and es5-shim
implement polyfills for eight array methods indicated in the table. The other ten
libraries implement JavaScript promises. For the promise libraries, we select the
most popular8 implementations of promises that aim to be compatible with the
ECMAScript 6 standard. To test promise polyfills, we consider two methods that
expect callbacks as arguments: then and catch.

Test Generation Approaches We compare the effectiveness of several variants
of our testing approach as summarized in Table 5.2. The Base approach generates
tests that call a single method with randomly selected arguments. It is unaware
of callback arguments and never generates callbacks as arguments. The following

8According to the star rating on github.com.

78



5.4. EVALUATION

Table 5.1: Benchmarks used for the evaluation.

Name Version LoC API methods

Polyfill.io 3.25.1 189 filter, find, every, some, forEach, map, reduce,
reduceRight

Mozilla polyfills - 199 filter, find, every, some, forEach, map, reduce,
reduceRight

es5-shim 4.5.10 2098 filter, find, every, some, forEach, map, reduce,
reduceRight

Q 1.5.1 1235 then, catch
bluebird 3.5.1 5188 then, catch
when 3.7.8 1844 then, catch
then/promise 8.0.1 567 then, catch
rsvp.js 4.8.2 963 then, catch
native-promise-only 0.8.1 292 then, catch
lie 3.3.0 309 then, catch
pacta 0.9.0 403 then, catch
es6-promises 1.0.10 274 then, catch
bloodhound-promises 1.4.14 652 then, catch

Table 5.2: Test generation approaches used for the evaluation.

Approach Description Feedback-
directed

Infer
callback
positions

Callback functions

Base Random test generator that
is unaware of callbacks. It
never passes any callback
function as an argument.

No No —

Cb-Empty A callback-aware test gener-
ator that infers arguments
that expect callbacks, and
that passes empty callback
functions as arguments.

Yes Yes Empty functions

Cb-Quick Like Cb-Empty but with
callback functions generated
by QuickCheck.

Yes Yes QuickCheck-
generated functions

Cb-Mined Like Cb-Empty but with
callback functions mined
from existing code.

Yes Yes Mined functions

Cb-Writes Like Cb-Empty but with
callback functions generated
based on a dynamic analysis
of memory reads.

Yes Yes Functions with tar-
geted writes
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four approaches correspond to the callback generation techniques introduced in
Section 5.2.2. The Cb-Empty approach infers which arguments expect callbacks,
generates tests as sequences of function calls and passes empty callbacks to functions
that expect them. Cb-Mined is like Cb-Empty, but with callback functions mined
from existing code. Cb-Quick is also like Cb-Empty, but with callback functions
generated by QuickCheck. Finally, Cb-Writes uses a dynamic analysis to determine
relevant memory locations that are read by the method under test, and attempts to
generate callbacks that write to those locations.

5.4.2 Effectiveness in Finding Behavioral Differences
Table 5.3 compares the different test generation approaches in terms of the number
of behavioral differences exposed by 1,000 generated tests. The table includes the
differences detected with test oracles listed in Section 5.3, except for differences in the
warning messages reported by libraries (as discussed in more detail in Section 5.4.3).

In total, we find behavioral differences in 12 out of 13 libraries. The Base
approach does not find any difference in any polyfill. Cb-Empty and Cb-Quick find
differences in 7 libraries, Cb-Mined in 11 libraries, and Cb-Writes in 12 libraries.
Overall, the Cb-Writes approach outperforms all other approaches. The average
number of differences found by Cb-Writes is the largest across all libraries. The
largest number of differences per single library is found in Bluebird, which is perhaps
surprising as it is the most popular promise implementation9. Furthermore, we
consider differences in warning messages as benign differences and exclude them as
errors in Table 5.3.

5.4.3 Classification of Behavioral Differences
We are aware that some of the behavioral differences we find are likely to be due
to the same root cause. To better understand the types of behavioral differences,
we classify each of them into one or more categories based on the oracles defined in
Section 5.3. In the following, we show a breakdown of differences based on the way
they manifest.

Tables 5.4 and 5.5 show how many behavioral differences are found in each
category for each feedback-directed testing approach. Based on these results we can
draw the following conclusions:

• Warnings, error messages, and differences in execution summaries are the
dominant kinds of behavioral differences. Because the exact warning messages
are not specified, these differences can likely be considered as false positives.

• For the promise libraries, several differences arise from different states of
callback arguments, showing that considering callback-related oracles helps
identify more behavioral differences. Whether a callback is called or not is
an important behavioral property and polyfills should agree with the native
implementation.

9According to the star rating on github.com.
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Table 5.3: Comparison of different test generation approaches in terms of the number
of behavioral differences exposed by 1,000 generated tests. We show results only for
those mozilla.js and polyfill.io polyfills where at least one of the testing approaches
finds a behavioral difference.

Benchmark Base Cb-Empty Cb-Quick Cb-Mined Cb-Writes

Polyfill.io (map) 0 0 0 0 28
Polyfill.io (find) 0 0 0 0 19
Mozilla (filter) 0 0 0 7 36
es5-shim 0 0 0 0 0
Bluebird 0 475 423 264 409
Q 0 3 1 60 151
when 0 374 331 49 309
then/promise 0 0 0 57 122
rsvp.js 0 21 15 23 164
native-promise-only 0 41 30 100 184
lie 0 28 24 82 135
pacta 0 0 0 57 120
es6-promises 0 0 0 57 149
bloodhound-promises 0 63 51 153 183

• Many promise libraries show equivalent behavior regarding their standard
output and standard error. Because we test all libraries with the same generated
tests, this is the reason for several identical numbers in the “Err” and “Warn”
columns in Tables 5.4 and 5.5.

• Non-termination errors in promise libraries are detected by Cb-Writes only.
The reason is that Cb-Writes uses objects created by previous method calls as
possible return values for callbacks. This causes it to attempt to create circular
promise chains, thus triggering non-termination errors. Since non-termination
certainly is an undesirable property, the polyfills should not diverge from the
native implementations w.r.t. this behavioral property.

• The Cb-Writes approach detects significantly more differences in array polyfills
than other testing approaches. This result shows that using a more sophis-
ticated approach for creating callbacks that interact with the method under
test via shared state is worth the effort.

5.4.4 Array Polyfills Generated by Mimic
As another benchmark, in addition to the human-written libraries considered so far,
we also apply LambdaTester to array polyfills generated by Mimic [HSC15]. Mimic
is a tool for synthesizing models for a variety of array-manipulating functions. The
current implementation provides models for JavaScript’s built-in array methods,
including higher-order functions such as filter, find, every, some, forEach, map,
reduce and reduceRight.
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Table 5.4: Behavioral differences found by Cb-Empty and Cb-Quick approaches
in 1,000 generated tests per benchmark. Err = Error messages, Warn = Warning
messages, NT = Non-termination errors, Stout = Standard output, Rec = Receiver
objects, Ret = Return values, C.arg = Callback arguments, C.inv = Callback
invocations.

Benchmark Cb-Empty Cb-Quick

Err Warn NT Stout Rec Ret C.arg C.inv Err Warn NT Stout Rec Ret C.arg C.inv

Polyfill.io 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mozilla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
es5-shim 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bluebird 381 0 0 0 0 0 296 255 317 0 0 0 0 0 269 227

Q 0 394 0 0 0 0 3 0 0 377 0 0 0 0 1 0

when 297 69 0 0 0 0 177 141 245 67 0 0 0 0 171 137

then/promise 0 394 0 0 0 0 0 0 0 377 0 0 0 0 0 0

rsvp.js 0 394 0 0 0 0 21 0 0 377 0 0 0 0 15 0

native-
promise-
only

0 394 0 0 0 0 41 0 0 377 0 0 0 0 30 0

lie 0 394 0 0 0 0 28 0 0 377 0 0 0 0 24 0

pacta 0 394 0 0 0 0 0 0 0 377 0 0 0 0 0 0

es6-
promises

0 394 0 0 0 0 0 0 0 377 0 0 0 0 0 0

bloodhound-
promises

0 394 0 0 0 0 63 0 0 377 0 0 0 0 51 0

We evaluate the effectiveness of LambdaTester on all Mimic-synthesized array
polyfills. Table 5.6 shows the number of behavioral differences found by each testing
approach. Interestingly, all tests generated by Base approach show errors in mimic
polyfills. This is because Mimic’s polyfill implementations do not throw errors
when a non-function argument is passed at positions where a callback is expected.
Furthermore, all tests generated by Cb-Empty expose errors in Mimic’s every and
some polyfills. The reason is that these polyfills are supposed to return a boolean
value, but when receiving an empty callback, they always return undefined.

In general, the polyfills generated by Mimic have significantly more differences
from the native implementation than the human-written polyfill libraries. Since we
are not aware of any use of synthesized mimic models in real-world applications, we
exclude these polyfills as a point of comparison in Table 5.3.

Future work might combine a test generator for higher-order functions, such as
LambdaTester , with an approach for synthesizing polyfills, such as Mimic, so that
the behavioral differences found with generated tests provide feedback on weaknesses
of the synthesized code.
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Table 5.5: Behavioral differences found by Cb-Mined and Cb-Writes approaches
in 1,000 generated tests per benchmark. Err = Error messages, Warn = Warning
messages, NT = Non-termination errors, Stout = Standard output, Rec = Receiver
objects, Ret = Return values, C.arg = Callback arguments, C.inv = Callback
invocations.

Benchmark Cb-Mined Cb-Writes

Err Warn NT Stout Rec Ret C.arg C.inv Err Warn NT Stout Rec Ret C.arg C.inv

Polyfill.io
(map)

0 0 0 0 0 0 0 0 0 0 0 0 6 27 7 0

Polyfill.io
(find)

0 0 0 0 0 0 0 0 0 0 0 0 0 9 19 19

Mozilla (fil-
ter)

0 0 0 0 5 7 5 0 0 0 0 0 17 35 16 0

es5-shim 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bluebird 7 0 0 1 1 1 262 252 211 0 0 0 0 0 316 276

Q 57 870 0 0 0 0 3 0 149 504 68 0 0 0 2 0

when 5 2 0 1 1 1 45 17 207 123 0 0 0 0 165 112

then/promise 57 870 0 0 0 0 0 0 149 504 0 0 0 0 1 0

rsvp.js 57 870 0 0 0 0 23 0 149 504 0 0 0 0 21 0

native-
promise-
only

57 870 0 0 0 0 47 0 149 504 0 0 0 0 48 0

lie 57 870 0 0 0 0 27 0 149 504 0 0 0 0 22 0

pacta 57 870 0 0 0 0 0 0 149 504 0 0 0 0 0 0

es6-
promises

57 870 0 0 0 0 0 0 149 504 0 0 0 0 0 0

bloodhound-
promises

57 870 0 0 0 0 106 1 149 504 0 0 0 0 51 0

Table 5.6: Behavioral differences in array polyfills generated by Mimic [HSC15].

Polyfill Base Cb-Empty Cb-Quick Cb-Mined Cb-Writes

Every 1,000 1,000 999 437 992
Some 1,000 1,000 993 195 974
ForEach 1,000 0 0 0 0
Filter 1,000 0 0 0 7
Map 1,000 0 0 0 28
Reduce 1,000 797 794 758 526
ReduceRight 1,000 797 794 783 809

5.4.5 Examples of Bugs and Other Inconsistencies
To illustrate the behavioral differences detected by LambdaTester , we discuss a few
representative examples. For space reasons, we only include the relevant fragments
of the generated tests that expose errors.
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265 var p1 = Promise.resolve(18);
266 var p2 = Promise.reject(17);
267 p2.catch(function(){
268 return p1;
269 }, p1);

(a) LambdaTester-generated test.

270 Promise.prototype[’catch’] = function(onRejected) {
271 if (arguments.length < 2) {
272 return origCatch.call(this, onRejected);
273 }
274 if (typeof onRejected !== ’function’) {
275 return this.ensure(rejectInvalidPredicate);
276 }
277 return origCatch.call(this,
278 createCatchFilter(arguments[1],onRejected));
279 }
280
281 function createCatchFilter(handler, predicate) {
282 return function(e) {
283 return evaluatePredicate(e, predicate) ?
284 handler.call(this, e) : reject(e);
285 }
286 }

(b) Implementation of catch from when library.

Figure 5.6: Example of behavioral difference found in the when library.

Unexpected Types and Number of Arguments Figure 5.6a illustrates a test
case that exposes a behavioral difference found in the when library caused by passing
a non-function value as the second argument to the catch method. The buggy
polyfill implementation is given in Figure 5.6b.

The library throws a TypeError because it tries to execute the call method on
a non-function object at line 284. In contrast, the native implementation ignores
the second argument and executes the method call without errors. This example
illustrates a situation where a different output is written to the standard error
stream.

Order of Executed Function Calls The example in Figure 5.7 illustrates a
behavioral difference found in the Q library. The native implementation first executes
calls to the then function at lines 289, 290, and 292 and then a call to catch at
line 291. However, the Q library executes the method calls in the same order as
presented in Figure 5.7. LambdaTester discovers this difference by inspecting the
state of the callback arguments.

The cause of this bug appears to be in the library’s queuing mechanism used for
tracking unhandled rejections. Due to the complexity of the code, we were not able
to fully diagnose the problem. In general, the complexity of callback-based code is a
good reason for extensive testing, e.g., using our LambdaTester approach.
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287 var p1 = Promise.resolve(18);
288 var p2 = Promise.reject(17);
289 var r1 = p1.then(function(){ return null; }, null);
290 var r2 = p2.then(function(){ return r1; });
291 var r3 = r2.catch(function(){ return p2; });
292 var r4 = r1.then(function(){ return p2; });

Figure 5.7: Example of LambdaTester-generated test that exposes a behavioral
difference in the Q library.

Changing Receiver Object Inside a Callback Many of the behavioral differ-
ences found in the array polyfills are caused by changes made by the callback to
properties of the receiver object or of other arguments. Figure 5.8a illustrates a test
case that expose this type of problem, with the corresponding polyfill implementation
in Figure 5.8b. In the test, when the method under test invokes the callback for the
first time, the callback sets the length property of the receiver object to false. At
line 307 in Figure 5.8b, the method under test performs a check to find whether the
receiver object has a property named index. After changing the length property, the
check always evaluates to false, which prevents further executions of the callback
argument. As a result, the polyfill and the native implementation return the same
value, undefined, but the native implementation executes the callback three times,
whereas the polyfill executes it only once. This example illustrates a situation where
a callback-related oracle helps detect behavioral differences that would be missed
otherwise.

Despite the effectiveness of LambdaTester in detecting inconsistencies, we are
aware that the developers of the tested libraries may find some of the generated
tests more useful than others. The reason is that not every generated test represents
a realistic usage scenario of the tested libraries. For example, method invocations
with callbacks that change the state of the receiver or of the argument objects are
unlikely to be a common use case. However, testing uncommon behavior helps with
finding more bugs that would be missed otherwise.

5.4.6 Effectiveness in Covering Code Under Test
To assess the effectiveness of LambdaTester in covering code under test we measure
statement coverage. For the array polyfills, we collect coverage data for each method
implementation. However, since it is not straightforward to extract individual
method implementations from the promise libraries, we chose to measure coverage
of the entire promise libraries.

Table 5.7 lists the results for coverage measurements for each benchmark. The
statement coverage of polyfills differs significantly between Base and the feedback-
directed approaches, e.g., increasing from 20% to up to 100% for the filter method
from the Mozilla library. Overall, Cb-Writes is the most effective approach in
increasing statement coverage. For all benchmarks, feedback-directed approaches
achieve better statement coverage compared to the baseline approach.
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293 var base = ["w", "I", 126];
294 base.find(function(a,b,c){
295 base[’length’] = false;
296 return a;
297 });

(a) LambdaTester-generated test

298 function find(callback) {
299 ...
300 var object = Object(this),
301 scope = arguments[1],
302 arraylike = object instanceof String ?
303 object.split(’’) : object,
304 index = -1;
305
306 while (++index < length) {
307 if (index in arraylike) {
308 element = arraylike[index];
309 if (callback.call(scope, element, index, object) {
310 return element;
311 }
312 }
313 }
314 }

(b) Implementation of Array.prototype.find from polyfill.io.

Figure 5.8: Example of a behavioral difference found in the polyfill.io library.

The statement coverage for promise libraries is relatively low, and the reason
is that the tested methods comprise only a subset of the entire library code: In
addition to the then and catch methods, the promise libraries define other functions
not targeted by our generated tests.

5.4.7 Efficiency
To assess the performance of the test generation techniques, Table 5.8 shows, for
each approach, the time needed to generate and execute 1,000 tests. All experiments
are conducted on a 48-core machine with a 2.2GHz Intel Xeon CPU and 64GB of
RAM. We use Node.js 8.5 and provide it with the default of 1GB of memory. The
implementation of LambdaTester is single-threaded and while running the tool we
effectively use a single core.

The execution time of the Base approach is dominated by the time needed to
generate tests and collect their execution summaries. The execution time of the
feedback-directed approaches is higher as they also include the time to generate
multiple calls and to collect feedback. In particular, for the Cb-Writes approach,
the time needed for dynamically analyzing each test’s execution dominates the
total execution time. The time spent to generate tests with Cb-Writes takes less
than 1 hour on average, except for the generation of the promise tests, which
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Table 5.7: Statement coverage for 1,000 generated tests.

Benchmark Base Cb-Empty Cb-Quick Cb-Mined Cb-
Writes

Polyfill.io (every) 40.0% 70.0% 80.0% 80.0% 90.0%
Polyfill.io (some) 40.0% 70.0% 80.0% 80.0% 90.0%
Polyfill.io (forEach) 44.4% 77.7% 77.7% 77.7% 88.8%
Polyfill.io (filter) 36.3% 72.7% 81.8% 81.8% 90.9%
Polyfill.io (map) 40.0% 80.0% 80.0% 80.0% 90.0%
Polyfill.io (find) 36.3% 72.7% 81.8% 81.8% 90.9%
Polyfill.io (reduce) 25.0% 81.2% 87.5% 81.2% 87.5%
Polyfill.io (reduceRight) 25.0% 81.2% 87.5% 81.2% 87.5%
Mozilla (every) 35.0% 80.0% 90.0% 90.0% 95.0%
Mozilla (some) 33.3% 75.0% 83.3% 83.3% 91.6%
Mozilla (forEach) 41.1% 88.2% 88.2% 88.2% 94.1%
Mozilla(filter) 20.0% 80.0% 93.3% 93.3% 100%
Mozilla (map) 35.0% 90.0% 90.0% 90.0% 95.0%
Mozilla (find) 40.0% 80.0% 86.6% 86.6% 93.3%
Mozilla (reduce) 19.0% 80.9% 85.7% 80.9% 85.7%
Mozilla (reduceRight) 23.5% 76.4% 82.3% 76.4% 82.3%
es5-shim (every) 56.5% 58.9% 59.6% 59.6% 63.5%
es5-shim (some) 56.5% 58.9% 59.6% 59.6% 63.5%
es5-shim (forEach) 56.4% 60.3% 60.3% 60.3% 64.1%
es5-shim (filter) 56.3% 60.1% 60.9% 60.9% 64.6%
es5-shim (map) 56.0% 60.6% 60.6% 60.6% 64.3%
es5-shim (reduce) 48.8% 58.6% 59.4% 58.6% 62.4%
es5-shim (reduceRight) 48.1% 59.2% 60.0% 59.2% 62.9%
Q 42.2% 43.8% 43.8% 44.2% 43.8%
bluebird 37.2% 39.6% 39.9% 40.0% 41.0%
when 51.5% 52.5% 52.8% 52.8% 53.2%
then/promise 48.9% 59.0% 62.1% 63.6% 64.6%
rsvp.js 41.9% 45.3% 46.5% 47.2% 47.9%
native-promise-only 65.1% 67.4% 68.0% 68.6% 69.1%
lie 41.2% 55.5% 55.5% 57.1% 62.3%
pacta 39.3% 54.3% 55.9% 56.6% 59.0%
es6-promises 58.6% 67.2% 68.8% 68.8% 68.8%
bloodhound-promises 29.9% 33.0% 33.3% 35.3% 36.4%

takes approximately 3 hours. Overall, since running LambdaTester requires minimal
manual intervention and since the generated tests expose many behavioral differences,
we consider the computational effort to be acceptable.

5.5 Summary
This section presented a framework for testing higher-order functions in dynamic
programming languages. The approach consists of two phases: the discovery phase
is concerned with discovering at which argument positions a function is expected,
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Table 5.8: Time to generate 1,000 tests per API.

API Base Cb-Empty Cb-Quick Cb-Mined Cb-Writes

every 6m 50s 27m 6s 27m 5s 33m 35s 53m 35s
forEach 6m 48s 27m 6s 27m 5s 33m 37s 53m 46s
some 6m 48s 27m 6s 27m 6s 33m 37s 53m 26s
filter 6m 47s 27m 6s 27m 6s 33m 34s 53m 7s
map 6m 47s 27m 6s 27m 6s 32m 30s 53m 34s
reduce 6m 46s 27m 5s 27m 7s 33m 1s 54m
reduceRight 6m 46s 27m 5s 27m 7s 33m 39s 53m 54s

find 6m 46s 27m 6s 27m 7s 33m 33s 53m 34s
then,catch 6m 31s 27m 10s 27m 6s 33m 23s 190m

and the test generation phase automatically creates tests that perform a sequence of
method calls.

We have implemented the framework in a tool called LambdaTester , and evaluated
several instances of the framework in which the generated callback functions consist
of: (i) empty functions, (ii) functions that return random values [CH11], (iii) callbacks
mined from a corpus of existing code, and (iv) functions that write to locations
that are likely to be read, as determined using a feedback-directed dynamic analysis
technique.

We apply LambdaTester to polyfills for array-related and promise functions taken
from popular libraries. In our experimental evaluation we show that LambdaTester
reveals various behavioral differences between polyfills and their corresponding
native implementations, including previously unknown bugs in popular libraries.
Overall, the approach detects differences in 12 of 13 libraries. We conclude that
generating callbacks that modify program state in non-obvious ways is more effective
in triggering non-trivial executions that expose behavioral differences than previous
test generation techniques.
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6.1 Studies of Performance Issues
There has been extensive work on studying performance issues in real-world software.
Jin et al. [JSS+12] study performance bugs in programs written in C and C++.
They show that performance bugs occur frequently and that many of them can be
addressed by relatively simple efficiency rules. Furthermore, Zaman et al. [ZAH12]
suggest that performance bugs are more difficult to fix than correctness bugs and
they account for a non-negligible amount of developer time. Liu et al. [LXC14]
report on performance bugs in smartphone applications and propose specialized
program analyses that detect common patterns of bugs identified in the study.
By detecting 126 new instances of performance bug patterns, they support our
observation that many performance issues are instances of recurring patterns. A
study by Linares-Vasquez et al. [LBBC+14] illustrates how API usages on Android
influence energy consumption, which is closely related to performance.

In Chapter 2, we presented the first empirical study on performance issues and
optimizations in JavaScript, which differs from C, C++, and Java both on the
language and the language implementation level. Furthermore, our work differs
from the existing studies by investigating the root causes of issues, the complexity
of optimizations, the performance impact of the applied optimizations, and the
evolution of the performance impact over time.

6.2 Approaches to Detect Performance
Bottlenecks

Previous research has addressed various types of performance issues in real-world
software. We distinguish between approaches that improve the execution time of a
program and approaches that address memory-related issues.

Execution Time Table 6.1 gives an overview of relevant approaches proposed to
improve the execution time of a program. The most common way to identify perfor-
mance bottlenecks is CPU-time profiling [GKM82, CSL04]. CPU profiles usually
report the code locations that are responsible for excessive resource computation for a
particular run. Alternative approaches focus on algorithmic profiling [GAW07, ZH12],
which empirically estimates the computational complexity that holds for multiple
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Table 6.1: Approaches to detect performance issues.

Approach Problem Analysis

CPU-time profiling [GKM82, CSL04] Excessive resource computation Dynamic
Algorithmic profiling [GAW07, ZH12] Computational complexity Dynamic
Toddler [NSML13] Repetitive loop computation Dynamic
Maplesden et al. [MTHG15] Repetitive patterns of method calls Dynamic
Clarity [ODL15] Redundant traversal bugs Static
Caramel [NR14] Wasted loop computation Static
MemoizeIt [TPG15] Redundant computation Dynamic
JITProf[GPS15] JIT-unfriendly code Dynamic
JSweeter [XHZZ15] JIT-unfriendly code Dynamic
Optimization coaching [SAG15] Missed compiler optimization Dynamic
SyncProf [YP16] Synchronization bottlenecks Dynamic
DecisionProf [SGP17] Inefficient orders of evaluations Dynamic
Cross-language optimizations [SBMM18] Cross-runtime interactions Static

inputs. However, while traditional profiling techniques are effective when reporting
how resources are spent, they provide very limited help in finding the causes of
performance issues.

To overcome the limitations of traditional profilers, automated techniques have
been proposed to help developers identify causes of performance issues. Tod-
dler [NSML13] reports performance bugs caused by loops whose computation has
repetitive and partially similar memory-access patterns across loop iterations. Work
by Maplesden et al. [MTHG15] helps to better understand the performance char-
acteristics of large-scale software by detecting repeated patterns of method calls.
Such patterns are high potential candidates for optimizations that would lead to
performance improvements. Clarity [ODL15] is a static analysis to detect a prevalent
class of asymptotic performance bugs called redundant traversal bugs. A redundant
traversal bug arises if a program repeatedly iterates over a data structure that
has not been modified between successive traversals of the data structure. The
optimization involves memoization and reuse of such computation.

Several approaches that identify performance bottlenecks also give developers a
potential source-level fix for detected performance bugs. Caramel [NR14] is a static
analysis that suggests code transformation to avoid wasting loop iterations. The key
idea is to identify a condition under which the remainder of a loop can be skipped
without changing the program outcome. MemoizeIt [TPG15] is a dynamic analysis
to detect memoization opportunities in methods that repeatedly perform the same
computation. To find optimization opportunities, the approach compares the input
and output of method calls by repeatedly executing the program to increase the
degree of detail collected by the dynamic analysis. For every memoization opportu-
nity that MemoizeIt detects, it provides hints on how to implement memoization.
JITProf [GPS15] is a profiling approach that identifies code locations that prohibit
profitable JIT optimizations in JavaScript code. The approach simulates the execu-
tion of a JIT compiler by associating meta-information with JavaScript objects and
code locations that are updated whenever a particular runtime event occurs. This
information is then used to identify JIT-unfriendly code. JSweeter [XHZZ15] is an
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approach that also finds JIT-unfriendly code locations but focuses on performance
code smells related to type mutations. They use information on type update and
deoptimzations to infer the reasons and number of deoptimizations, eventually
reporting type-unstable code locations. JITProf and JSweeter both provide refac-
toring hints on how to optimize code, but they consider different JIT-unfriendly
patterns. Another approach to help developers find JIT-unfriendly code focuses on
optimizations that could almost be applied but that the compiler cannot apply due
to lack of information or potential unsoundness: optimization coaching by [SAG15]
searches for such missed optimizations and recommends program changes to trigger
additional optimizations. Lastly, SyncProf [YP16] is a concurrency-based profiling
approach that helps in detecting, localizing and optimizing synchronization bottle-
necks. It finds performance bugs due to unnecessary or inefficient synchronization
in concurrent programs. After detecing the root cause of a bottlenects, SyncProf
suggests optimization strategies to the developer.

Our work differs from existing approaches by considering different types of
performance issues: inefficient orders of evaluation and cross-runtime in-
teractions in big data systems. DecisionProf automatically assesses whether an
optimization opportunity improves performance and suggests concrete optimizations
to the developer. Furthermore, our static analysis to find cross-language optimization
opportunities suggests an optimization only if its application generates more native
code from a non-relational part.

Other relevant approaches for diagnosing performance bottlenecks include a
profiler for UI-related performance problems [JAH11], an analysis to diagnose idle
times [AAFM10], mining of stacktraces [HDG+12] and execution traces [YHZX14],
inefficient use of collections [GPC14], a systematic search for performance anti-
patterns [WHH13], and an analysis of performance regressions [PHG14]. However,
none of these approaches addresses the problem of inefficient orders of evaluations
nor the problem of cross-runtime interactions in big data systems.

Memory-Related Issues A number of approaches have been proposed to identify
various symptoms of memory-related issues. MemInsight [JSSC15] is a browser-
independent memory debugging tool for web applications that computes object
lifetimes. The approach generates a trace of memory operations during an execution,
capturing the uses of each object, variable declarations, and return calls. The
trace is then used to to find memory leaks, drags, churns, and opportunities for
stack allocation and object inlining. To detect unnecessary use of duplicate objects,
Marinov et al. [MO03] propose dynamic analysis that records all the objects created
during a particular program run. The analysis partitions the objects into equivalence
classes, and uses collected timing information to determine when elements of an
equivalence class could have been safely collapsed into a single representative object
without affecting the behavior of that program.

Several approaches address the problem of run-time bloat or excessive memory
usage. Xu et al. [XAM+09] introduce copy profiling, a technique that summarizes
runtime activity in terms of chains of data copies. Based on profiled information,
the approach builds a copy graph, an abstraction of chains of copies, which is used
as an input to analyses that detect various patterns of run-time bloat. Another
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approach by Xu et al. [XR10] addresses the problem of inefficiently-used containers
in Java programs. The approach checks, for each container, whether it has enough
data added and whether it is looked up sufficient number of times. The problems
are further detected if a container is underutilized: it holds a very small number of
elements during its lifetime or overpopulated: it holds many objects but is looked
up only a few times. Yan et al. [YXR12] introduce reference propagation profiling, a
dynamic analysis which tracks the propagation of object references, and produces a
reference propagation graph. Based on reference propagation graph, several analyses
are developed to detect problems such as never-used or excessive object allocations.
Finally, JSWhiz [PH13] is a static analysis for finding memory leaks in JavaScript
programs. The analysis identifies five common patterns that introduce memory leaks
in JavaScript applications reliably, without any false positive.

6.3 Efficiency of JavaScript Engines
Because JavaScript was initially implemented through interpretation, it has long been
perceived as a “slow” language. The increasing complexity of applications created a
need to execute JavaScript code more efficiently. Due to recent advances in just-
in-time (JIT) compilers, the performance of JavaScript has since been significantly
improved. This section focuses on the most relevant compiler approaches to improve
and assess the performance of JavaScript code.

6.3.1 JIT Compilation
Just-in-time (JIT) compilation has a long history of improving the execution time
of a program by compiling it to efficient machine code at runtime [Ayc03], and
most modern JavaScript engines use JIT compilation. For example, according
to St-Amour et al. [SAG15], the SpiderMonkey JavaScript engine first interprets
code without any compilation or optimization. Upon reaching a specific number of
executions of a function, the baseline JIT compiler translates the function to native
code. V8 engine skips the interpretation phase and instead compiles JavaScript code
directly to native code. Both engines further optimize hot functions at runtime.
Proposed optimizaiton techniques used in JavaScript JIT compilers include type
specialization [GES+09, KRH15, HG12], specializing functions based on previously
observed parameters [CASP13] and an improved object representation [ACS+14].

Type Specialization Due to the dynamically typed nature of JavaScript, JIT
compilers do not have access to static type information. This lack of information
makes the generation of efficient, type-specialized machine code difficult.

TraceMonkey [GES+09] was one of the first JIT compilers for JavaScript. Based
on the observation that programs spend most of the time in hot loops and that
most loops are type-stable, the compiler specializes the code for frequently executed
loops at runtime. At the core of TraceMonkey is a dynamic analysis that gathers
sequences of statements, called traces, along with their type information. The
analysis represents frequently executed traces in a tree structure that encodes the
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type conditions under which the code can be specialized. Despite the initial success
of trace-based JIT compilation, the approach has since been mostly abandoned,
e.g., in favor of hybrid (static and dynamic) type inference [HG12]. In this hybrid
approach, a static analysis computes for each expression or heap value, a possibly
incomplete set of types it may have at runtime. At runtime, the JIT engine checks
for unexpected types and other special cases, such as arrays containing undefined
values and integer overflows.

However, type specialization in JIT compilers is highly speculative, and when
unexpected types are encountered, the compiler deoptimizes type-specialized code.
To reduce the number of deoptimizations, Kedlaya et al. [KRH15] propose ahead-of-
time profiling on the server side. Their profiler tracks when a function becomes hot,
which types and shapes a function uses, and when it gets deoptimized. Based on
information about type-unstable functions, the client-side engine prevents optimizing
code that will likely be deoptimized later.

Function Specialization In contrast to the above approaches, which exploits
dynamically observed types, Costa et al. [CASP13] propose to specialize functions
based on dynamically observed values. Their approach is based on the empirical
observation that 60% of all JavaScript functions are called only once or always
with the same set of parameters. Based on this observation, they propose a JIT
optimization that replaces the arguments passed to a function by previously observed
runtime values.

Object Representation Ahn et al. [ACS+14] identify frequent changes to proto-
types and method bindings as the main source of performance issues for website
code. These issues make types very unpredictable, which hinders type specialization
by the compiler. They address the problem by proposing three enhancements to
the V8 compiler that effectively decouple prototypes and method bindings from the
type definition.

As already discussed in Chapter 2, despite the effectiveness of JIT compilation,
developers still apply optimizations to address performance issues in their code, and
future improvements of JavaScript engines are unlikely to completely erase the need
for manual optimizations. Furthermore, in Chapter 3, we proposed an analysis to
find optimization opportunities in JavaScript code not addressed by today’s JIT
compilers.

6.3.2 Performance Benchmarks
Due to the complexity of JavaScript language, production engines have complex
and different implementations and optimization strategies. This may cause dif-
ferent performance outputs when running the same code on multiple engines. To
demonstrate and compare the performance of engines, vendors use performance
benchmarks. The most commonly used JavaScript benchmark suites are SunSpider1,

1https://webkit.org/perf/sunspider/sunspider.html
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Octane2, and Kraken3. Unfortunately, many of these benchmarks turn out to not
be representative of real-world code, as shown by Ratanaworabhan et al. [RLZ10].
Therefore, focusing on benchmark behavior may result in overfitting and missing
optimization opportunities that are present in real applications.

Motivated by the lack of representativeness of existing benchmarks, Richards et
al. [RGEV11] propose JSBench to automate the creation of realistic and representa-
tive JavaScript benchmarks from existing web applications. JSBench instruments
the original web code to generate a trace of JavaScript operations. The trace is
used to generate a replayable JavaScript program which is then recombined with
HTML from the original web application. [RGEV11] show that JSBench-generated
benchmarks match the behavior of real web applications by using several metrics,
such as memory usage, GC time, and event loop behavior, collected on several
instrumented browsers.

6.4 Test Generation
To complement existing test generators, Chapter 5 presents a novel testing framework
for higher-order functions. In Table 6.2, we outline relevant approaches for automated
test generation and their underlying techniques.

Random testing has been shown to be very cost-effective [DN84, Nta01] and to
detect a predictable number of bugs despite its random nature [CPO+11]. Further-
more, past experience [GHJ07] indicates that during the early stages of development,
randomized testing with a high degree of automation offers much quicker paths to
finding many bugs compared to more rigorous bug detection techniques.

Random test generators include JCrasher [CS04], which creates random argu-
ments guided by test annotations, Randoop [PE07, PLB08b], which uses feedback
from executions of previously generated partial tests, and RecGen [ZZLX10] which
generates method calls by analyzing the object fields modified by the code under test.
JSCrasher creates instances of different types to test the behavior of public methods
under random data. It attempts to detect bugs by causing the program under test
to “crash”, that is, to throw an undeclared runtime exception. On the other hand,
Randoop uses feedback to generate method sequences, by randomly selecting a
method call to apply and selecting arguments from previously constructed sequences.
Unlike other random testing approaches, RecGen analyzes object fields accessed
by a method under test and recommends short method sequences that mutated
these fields. Furthermore, Chen et al. [CLM04, CKMT10] propose adaptive random
testing, an enhanced form of random testing. The idea is to increase the effectiveness
of testing by equally distributing test inputs across the input domain. However, this
approach appears to be less cost-effective than random testing [AB11, CLOM08].

Some test generators address the problem of testing higher-order functions.
QuickCheck [CH11] randomly generates functions that return a type-correct value.
However, the generated functions do not modify any other state beyond the return
value. Koopman et al. [KP06] propose to improve QuickCheck by systematically

2https://developers.google.com/octane/
3http://krakenbenchmark.mozilla.org/
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Table 6.2: Test generation approaches.

Approach Technique Callback Generation

JSCrasher [CS04] Random testing No

Randoop [PE07, PLB08b] Feedback-directed random
testing No

RecGen [ZZLX10] Random testing and static
analysis of object fields No

ARTGen [CLM04, CKMT10] Adaptive random testing No

QuickCheck [CH11] Random testing Functions with type-correct
return values

Koopman et al. [KP06] Systematic testing Functions generated by a
user-provided generator

Klein et al. [KFF10] Random testing Functions with random return
values

Nguyen et al [NH15] Symbolic execution Functions with arbitrary
computation

TStest [KM17] Feedback-directed random
testing

Functions with type-correct
return values

LambdaTester [MS18]

Feedback-directed
random testing and
dynamic analysis of
memory reads

Functions with targeted
writes and random return
values

generating functions based on the AST representation of a function argument.
The basic idea of their approach is to represent functions as a data type and to
systematically enumerate elements of this data type. However, their approach
does not generate callback bodies. Instead, the user of the approach needs to
provide a generator functions for callback bodies, which creates expressions to be
used in the body. Klein et al. [KFF10] present a new algorithm for randomly
testing Racket programs that use state and callbacks. The idea is to generate new
subclasses of existing classes, guided by the types of functions and the environment,
and guided by developer-provided contracts. Another line of work by Nguyen et
al. [NH15] adopts symbolic execution to generate higher-order inputs to functional
programs. The key insight of their work is that although the space of higher-order
values is huge, it is only necessary to search for counterexamples from a subset of
specific functions. Counterexamples are then used to reconstruct the potentially
higher-order inputs needed to crash the program. TStest [KM17] is a recent test
generator for JavaScript to check TypeScript interface declarations against the
corresponding JavaScript implementations. Their approach provides support for
higher-order functions by passing functions that return type-correct values. Finally,
LambdaTester is our feedback-directed random test generation approach for testing
higher-order functions. In contrast to other approaches, it analyzes reads in the
code under test to direct the generation of callback functions toward writing to
those locations. Another important difference is that all of the above test generators,
except TStest [KM17], are guided by static type signatures, which are not available
in the dynamic languages targeted by LambdaTester .
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Other forms of test generation include symbolic testing [Kin76, VPK04, XMSN05,
CDE08], combining symbolic testing with static analysis [TXT+11], concolic testing
[GKS05b, SMA05, GLM08], UI-level test generation [Mem07, MBvD08, MTR08,
ADJ+11, EP16, TLS+13], performance-guided test generation [BJS09, PSNS14] and
bounded exhaustive test generation guided by pre- and post-conditions [BKM02].
To the best of our knowledge, none of these approaches address the problem of
testing higher-order functions.

6.5 Other Program Analyses for JavaScript
As JavaScript has become one of the most popular programming languages, various
static and dynamic program analyses have been proposed to analyze JavaScript
applications.

Static Analyses JavaScript is a weakly typed programming languages and pre-
vious research has focused on improving the existing type system and finding
type-related errors. Thiemann [Thi05] defines a new type system for JavaScript that
tracks the possible traits of an object and flags suspicious type conversions. Jensen
et al. [JMT09] presents a static analysis infrastructure that infers sound type infor-
mation for JavaScript programs using abstract interpretation. The analysis can be
used to detect common programming errors or for producing type information. For
computing concrete types, the information from pointer analysis is especially useful.
Sridharan et al. [SDC+12] introduce correlation tracking, a technique for addressing
scalability problems in points-to-analysis for JavaScript, caused by dynamic property
accesses. A similar line of work by Madsen et al. [MLF13] proposes a technique
which combines pointer analysis with a novel use analysis to capture usages of objects
returned and passed into libraries without analyzing library code. The combination
of pointer analysis and use analysis is useful for variety of applications such as: code
completion, call graph discovery and discovery of concrete types.

TypeScript, a superset of JavaScript, has been developed to add optional static
typing to the language. Feldthaus et al [FM14] propose a new approach to check
correctness of TypeScript declaration files with respect to JavaScript library im-
plementations. It combines an analysis of the library initialization state with a
light-weight static analysis of the library code.

Dynamic Analyses The dynamic nature of the JavaScript language often makes
static analysis unscalable or impossible to apply. As an alternative, dynamic
analyses [SKBG13] have been proposed to find errors that are out of scope for
existing static analyses. DLint [GPSS15] is a dynamic analysis approach to check
code quality rules. It consists of a generic framework and an extensible set of
checkers that each address a particular rule. ConflictJS [PDP18] dynamically
analyzes individual libraries to find pairs of potentially conflicting libraries. The
approach validates potential conflicts by creating a client application that suffers from
a conflict. To find inconsistent types, TypeDevil [PSS15] employs a dynamic analysis
to gather type observations at runtime. The approach merges type observations into
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a graph and warns developers about variable, properties, and functions that have
multiple inconsistent types. The work by Mutlu et al. [MTL15] proposes a novel
lightweight runtime symbolic exploration algorithm for finding races in JavaScript
applications. The key advantages of the approach is that it requires only a single
execution and reports only harmful races. Dynamic determinacy analysis by Schaefer
et al. [SSDT13] analyzes more or one concrete executions to identify variables and
expressions that have the same value at a given program point in any execution.
This information can be exploited by other analyses and tools to, e.g., identify dead
code or specialize uses of dynamic language constructs.

Other dynamic analyses support developers in program comprehension tasks.
Clematis [ASMP14] is a technique for capturing low-level event-based interactions in
a web application and mapping those to a higher-level behavioral model. This model
is then visualized to illustrate episodes of triggered events, related JavaScript code
executions and their impact on DOM state. Tochal [AMP15] is a DOM-sensitive
event-aware change impact analysis technique for JavaScript. The approach creates
a novel hybrid model to identify the impact set of a change in a given application.

6.6 Optimizations of Big Data Jobs
The analysis in Chapter 4 leverages cross-language optimization to reduce cross-
runtime interactions in big data queries. Unfortunately, many powerful query
optimizations [CS94, YL95, MP94, SHP+96, Kim82, Mur92, CKPS95, PL08, Sel88,
BK89, FFN+08, HS93, CGK89] are not applicable in modern big-data processing
systems because the traditional query optimizer treats non-relational code as a
black-box.

To improve the performance of modern large-scale data processing systems,
several optimization strategies have been proposed. Quincy [IPC+09] is a frame-
work for scheduling concurrent distributed jobs with fine-grain resource sharing.
LATE [ZKJ+08] addresses scheduling problems in heterogeneous environments by es-
timating the time needed to speculatively execute the task that hurt the response time
the most. Hadoop++ [DQRJ+10] improves the query runtime of a Hadoop system
by changing the internal layout of a split, a large horizontal partition of the data, and
feeding Hadoop with appropriate user-written functions. Floratou et al. [FPST11]
propose an approach to speed up MapReduce jobs by using column-oriented binary
storage formats in Hadoop compatible with its replication and scheduling constraints.
MRShare [NPM+10] is a sharing framework tailored to MapReduce programs. It
merges jobs into groups and evaluates each group as a single query which enables
more efficient execution of different jobs that perform similar work. Although some
of the standard database optimizations, such as filter pushdown are implemented
in Pig [ORSS08], the recent work by Jahani et al. [JCR11] suggests that many
traditional query optimizations are not applicable to MapReduce [DG08] because of
user-written operators. It further proposes several optimizations of map() functions
by targeting data-centric programming idioms [JCR11]. These optimizations include
data compression and eliminating unnecessary fields from files and indexing. In
Chapter 4, we show that the time spent in non-relational code takes a large fraction
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of data center time. Furthermore, we propose a novel cross-language optimization
based on method inlining to improve the performance of MapReduce jobs.

Many MapReduce systems, such as Hadoop [DQRJ+10], provide facilities for
monitoring cluster performance. The collected metrics usually represent cluster-level
information from which the regular user does not benefit. Herodotou et al. [HB11]
introduce a new dynamic binary instrumentation of the MapReduce framework to
capture dataflows and costs during job execution at the task level or the phase level.
Obtained profiles help developers apply a new class of optimization opportunities
based on tuning of the configuration parameters. In contrast to the dynamic analysis,
our approach to profiling big data jobs is purely static and based on the analysis
of job artifacts. Doing this allows us to analyze a large number of jobs without
introducing any additional overhead.
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Conclusion

In this dissertation, we present actionable program analyses to improve software
performance. More concretely, we focus on an empirical study of the most common
performance issues in JavaScript programs (Chapter 2), analyses to find reordering
opportunities (Chapter 3) and method inlining opportunities(Chapter 4) and a
novel test generation technique for higher-order functions in dynamic languages
(Chapter 5). These approaches aim to reduce manual effort by suggesting only
beneficial optimization opportunities that are easy to understand and applicable
across multiple projects.

7.1 Summary of Contributions
Chapter 2 presents an empirical study of 98 performance issues and optimizations
in JavaScript projects. The results of the study show that many of the studied
optimizations have the following key properties: they are effective, exploitable,
recurring, and out-of-reach for compilers. To help developers find and exploit such
optimization opportunities, Chapters 3 and 4 propose two actionable program
analyses. The first analysis finds reordering opportunities in switch statements and
logical expressions by dynamically analyzing and computing the optimal orders of
evaluations. The second analysis statically analyzes programs for big data processing
to find opportunities for method inlining, i.e., replacing a call to a user-written
function with the logic of that function. Finally, Chapter 5 discusses how to improve
state-of-the-art test generation approaches to generate effective tests for higher-order
functions in dynamic languages such as JavaScript. Generated tests then can be
used to drive the program execution during dynamic analysis and to reliably measure
the performance impact of applied optimizations.

In this dissertation, we show that it is possible to automatically suggest effective,
exploitable, recurring and out-of-reach for compilers optimization opportunities. In
particular:

• By empirically studying performance issues and optimizations in real-world
software, we show that most issues are addressed by optimizations that modify
only a few lines of code, without significantly affecting the complexity of
the source code. By studying the performance impact of optimizations on
several JIT engines, we find that less than half of all optimizations improve
performance consistently across all engines. Furthermore, we observe that many
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optimizations are instances of patterns applicable across projects. These results
motivate the development of performance-related techniques that address
relevant performance problems.

• Applying these optimizations in a fully automatic way is a challenging task:
they are subject to preconditions that are hard to check or can be checked
only at runtime. We propose two program analyses that prove to be powerful
in finding optimization opportunities in complex programs. Even though
our approaches do not guarantee that code transformations are semantics-
preserving, the experimental results illustrate that suggested optimizations do
not change program behavior.

• Reliably finding optimization opportunities and measuring their performance
benefits require a program to be exercised with sufficient inputs. One possible
solution to this problem is to use automated test generation techniques. We
complement existing testing approaches by addressing the problem of test
generation for higher-order functions. Finally, we show that generating effective
tests for higher-order functions triggers behaviors that are usually not triggered
by state-of-the-art testing approaches.

7.2 Future Research Directions
Assessing Performance Impact Across Engines Reliably assessing the per-
formance benefits of applied optimizations is a challenging task, especially if a
program runs in multiple environments. As discussed in Chapter 2, some of the
manually applied optimizations can even cause performance degradation in some
versions of JavaScript engines. Optimization strategies greatly differ across different
engines and also across different versions of the same engine. To make sure that
optimizations lead to positive performance improvements in all engines, future work
should focus on techniques that monitor the performance effects of code changes
across multiple execution environments.

Automatically Identifying Optimization Patterns Existing approaches that
address performance bottlenecks either look for general performance properties, such
as hot functions, or specific patterns of performance issues. As already shown in
Chapters 3 and Chapter 4, finding and applying specific optimization opportunities
can lead to significant performance improvements. However, this requires manually
identifying optimization patterns and hard-coding them into the respective analysis.
Manually studying instances of inefficient code and finding recurring patterns is a
challenging task that often requires significant human effort. Even though we studied
a significant number of performance problems and drew interesting conclusions in
Chapter 2, the next interesting research question is: how to automatically find
optimization patterns that have significant performance benefits and are applicable
across multiple projects?
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Analyses to Find Other Optimization Opportunities In this dissertation,
we propose approaches that address two different types of optimizations: reordering
opportunities and method inlining. However, in Chapter 2 we identify many opti-
mization patterns that have the same properties as those we address. Therefore, it
is an important research direction to propose novel approaches that address other
kinds of performance issues and provide actionable advices to developers.
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