5 research outputs found

    DTCWTASODCNN: DTCWT based Weighted Fusion Model for Multimodal Medical Image Quality Improvement with ASO Technique & DCNN

    Get PDF
    Medical image fusion approaches are sub-categorized as single-mode as well as multimodal fusion strategies. The limitations of single-mode fusion approaches can be resolved by introducing a multimodal fusion approach. Multimodal medical image fusion approach is formed by integrating two or more medical images of similar or dissimilar modalities aims to enhance the image quality and to preserve the image information. Hence, this paper introduced a new way to meld multimodal medical images via utilizing developed weighted fusion model relied on Dual Tree Complex Wavelet Transform (DTCWT) for fusing the multimodal medical image. Here, the two medical images are considered for image fusion process and we have implied DTCWT to the medical images for generating four sub-bands partition of the source medical images. The Renyientropy-based weighted fusion model is used to combine the weighted coefficient of DTCWT of images. The final fusion process is carried out using Atom Search Sine Cosine Algorithm (ASSCA)-based Deep Convolutional Neural Network (DCNN). Moreover, the simulation work output demonstrated for developed fusion model gained the superior outcomes relied on key indicators named as Mutual Information i.e. MI, Peak Signal to Noise Ratio abbreviated as PSNR as well as Root Mean Square Error, in short RMSE with the values of 1.554, 40.45 dB as well as 5.554, correspondingly

    Joint University Program for Air Transportation Research, 1991-1992

    Get PDF
    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented

    Bionano-Interfaces through Peptide Design

    Get PDF
    The clinical success of restoring bone and tooth function through implants critically depends on the maintenance of an infection-free, integrated interface between the host tissue and the biomaterial surface. The surgical site infections, which are the infections within one year of surgery, occur in approximately 160,000-300,000 cases in the US annually. Antibiotics are the conventional treatment for the prevention of infections. They are becoming ineffective due to bacterial antibiotic-resistance from their wide-spread use. There is an urgent need both to combat bacterial drug resistance through new antimicrobial agents and to limit the spread of drug resistance by limiting their delivery to the implant site. This work aims to reduce surgical site infections from implants by designing of chimeric antimicrobial peptides to integrate a novel and effective delivery method. In recent years, antimicrobial peptides (AMPs) have attracted interest as natural sources for new antimicrobial agents. By being part of the immune system in all life forms, they are examples of antibacterial agents with successfully maintained efficacy across evolutionary time. Both natural and synthetic AMPs show significant promise for solving the antibiotic resistance problems. In this work, AMP1 and AMP2 was shown to be active against three different strains of pathogens in Chapter 4. In the literature, these peptides have been shown to be effective against multi-drug resistant bacteria. However, their effective delivery to the implantation site limits their clinical use. In recent years, different groups adapted covalent chemistry-based or non-specific physical adsorption methods for antimicrobial peptide coatings on implant surfaces. Many of these procedures use harsh chemical conditions requiring multiple reaction steps. Furthermore, none of these methods allow the orientation control of these molecules on the surfaces, which is an essential consideration for biomolecules. In the last few decades, solid binding peptides attracted high interest due to their material specificity and self-assembly properties. These peptides offer robust surface adsorption and assembly in diverse applications. In this work, a design method for chimeric antimicrobial peptides that can self-assemble and self-orient onto biomaterial surfaces was demonstrated. Three specific aims used to address this two-fold strategy of self-assembly and self-orientation are: 1) Develop classification and design methods using rough set theory and genetic algorithm search to customize antibacterial peptides; 2) Develop chimeric peptides by designing spacer sequences to improve the activity of antimicrobial peptides on titanium surfaces; 3) Verify the approach as an enabling technology by expanding the chimeric design approach to other biomaterials. In Aim 1, a peptide classification tool was developed because the selection of an antimicrobial peptide for an application was difficult among the thousands of peptide sequences available. A rule-based rough-set theory classification algorithm was developed to group antimicrobial peptides by chemical properties. This work is the first time that rough set theory has been applied to peptide activity analysis. The classification method on benchmark data sets resulted in low false discovery rates. The novel rough set theory method was combined with a novel genetic algorithm search, resulting in a method for customizing active antibacterial peptides using sequence-based relationships. Inspired by the fact that spacer sequences play critical roles between functional protein domains, in Aim 2, chimeric peptides were designed to combine solid binding functionality with antimicrobial functionality. To improve how these functions worked together in the same peptide sequence, new spacer sequences were engineered. The rough set theory method from Aim 1 was used to find structure-based relationships to discover new spacer sequences which improved the antimicrobial activity of the chimeric peptides. In Aim 3, the proposed approach is demonstrated as an enabling technology. In this work, calcium phosphate was tested and verified the modularity of the chimeric antimicrobial self-assembling peptide approach. Other chimeric peptides were designed for common biomaterials zirconia and urethane polymer. Finally, an antimicrobial peptide was engineered for a dental adhesive system toward applying spacer design concepts to optimize the antimicrobial activity

    Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics

    Get PDF
    Effective environmental decision-making is often challenging and complex, where final solutions frequently possess inherently subjective political and socio-economic components. Consequently, complex sustainability applications in the “real world” frequently employ computational decision-making approaches to construct solutions to problems containing numerous quantitative dimensions and considerable sources of uncertainty. This volume includes a number of such applied computational analytics papers that either create new decision-making methods or provide innovative implementations of existing methods for addressing a wide spectrum of sustainability applications, broadly defined. The disparate contributions all emphasize novel approaches of computational analytics as applied to environmental decision-making and sustainability analysis – be this on the side of optimization, simulation, modelling, computational solution procedures, visual analytics, and/or information technologies

    2009 Annual Progress Report: DOE Hydrogen Program

    Full text link
    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis
    corecore