632 research outputs found

    Novel Feature Extraction Methodology with Evaluation in Artificial Neural Networks Based Fingerprint Recognition System

    Get PDF
    Fingerprint recognition is one of the most common biometric recognition systems that includes feature extraction and decision modules. In this work, these modules are achieved via artificial neural networks and image processing operations. The aim of the work is to define a new method that requires less computational load and storage capacity, can be an alternative to existing methods, has high fault tolerance, convenient for fraud measures, and is suitable for development. In order to extract the feature points called minutia points of each fingerprint sample, Multilayer Perceptron algorithm is used. Furthermore, the center of the fingerprint is also determined using an improved orientation map. The proposed method gives approximate position information of minutiae points with respect to the core point using a fairly simple, orientation map-based method that provides ease of operation, but with the use of artificial neurons with high fault tolerance, this method has been turned to an advantage. After feature extraction, General Regression Neural Network is used for identification. The system algorithm is evaluated in UPEK and FVC2000 database. The accuracies without rejection of bad images for the database are 95.57% and 91.38% for UPEK and FVC2000 respectively

    Metaheuristic-Based Neural Network Training And Feature Selector For Intrusion Detection

    Get PDF
    Intrusion Detection (ID) in the context of computer networks is an essential technique in modern defense-in-depth security strategies. As such, Intrusion Detection Systems (IDSs) have received tremendous attention from security researchers and professionals. An important concept in ID is anomaly detection, which amounts to the isolation of normal behavior of network traffic from abnormal (anomaly) events. This isolation is essentially a classification task, which led researchers to attempt the application of well-known classifiers from the area of machine learning to intrusion detection. Neural Networks (NNs) are one of the most popular techniques to perform non-linear classification, and have been extensively used in the literature to perform intrusion detection. However, the training datasets usually compose feature sets of irrelevant or redundant information, which impacts the performance of classification, and traditional learning algorithms such as backpropagation suffer from known issues, including slow convergence and the trap of local minimum. Those problems lend themselves to the realm of optimization. Considering the wide success of swarm intelligence methods in optimization problems, the main objective of this thesis is to contribute to the improvement of intrusion detection technology through the application of swarm-based optimization techniques to the basic problems of selecting optimal packet features, and optimal training of neural networks on classifying those features into normal and attack instances. To realize these objectives, the research in this thesis follows three basic stages, succeeded by extensive evaluations

    Swarm-based Algorithms for Neural Network Training

    Get PDF
    The main focus of this thesis is to compare the ability of various swarm intelligence algorithms when applied to the training of artificial neural networks. In order to compare the performance of the selected swarm intelligence algorithms both classification and regression datasets were chosen from the UCI Machine Learning repository. Swarm intelligence algorithms are compared in terms of training loss, training accuracy, testing loss, testing accuracy, hidden unit saturation, and overfitting. Our observations showed that Particle Swarm Optimization (PSO) was the best performing algorithm in terms of Training loss and Training accuracy. However, it was also found that the performance of PSO dropped considerably when examining the testing loss and testing accuracy results. For the classification problems, it was found that firefly algorithm, ant colony optimization, and fish school search outperformed PSO for testing loss and testing accuracy. It was also observed that ant colony optimization was the algorithm that performed the best in terms of hidden unit saturation

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers

    An efficient robust hyperheuristic clustering algorithm

    Get PDF
    Observations on recent research of clustering problems illustrate that most of the approaches used to deal with these problems are based on meta-heuristic and hybrid meta-heuristic to improve the solutions. Hyperheuristic is a set of heuristics, meta- heuristics and high-level search strategies that work on the heuristic search space instead of solution search space. Hyperheuristics techniques have been employed to develop approaches that are more general than optimization search methods and traditional techniques. In the last few years, most studies have focused considerably on the hyperheuristic algorithms to find generalized solutions but highly required robust and efficient solutions. The main idea in this research is to develop techniques that are able to provide an appropriate level of efficiency and high performance to find a class of basic level heuristic over different type of combinatorial optimization problems. Clustering is an unsupervised method in the data mining and pattern recognition. Nevertheless, most of the clustering algorithms are unstable and very sensitive to their input parameters. This study, proposes an efficient and robust hyperheuristic clustering algorithm to find approximate solutions and attempts to generalize the algorithm for different cluster problem domains. Our proposed clustering algorithm has managed to minimize the dissimilarity of all points of a cluster using hyperheuristic method, from the gravity center of the cluster with respect to capacity constraints in each cluster. The algorithm of hyperheuristic has emerged from pool of heuristic techniques. Mapping between solution spaces is one of the powerful and prevalent techniques in optimization domains. Most of the existing algorithms work directly with solution spaces where in some cases is very difficult and is sometime impossible due to the dynamic behavior of data and algorithm. By mapping the heuristic space into solution spaces, it would be possible to make easy decision to solve clustering problems. The proposed hyperheuristic clustering algorithm performs four major components including selection, decision, admission and hybrid metaheuristic algorithm. The intensive experiments have proven that the proposed algorithm has successfully produced robust and efficient clustering results

    Classification of Adversarial Attacks Using Ensemble Clustering Approach

    Get PDF
    As more business transactions and information services have been implemented via communication networks, both personal and organization assets encounter a higher risk of attacks. To safeguard these, a perimeter defence like NIDS (network-based intrusion detection system) can be effective for known intrusions. There has been a great deal of attention within the joint community of security and data science to improve machine-learning based NIDS such that it becomes more accurate for adversarial attacks, where obfuscation techniques are applied to disguise patterns of intrusive traffics. The current research focuses on non-payload connections at the TCP (transmission control protocol) stack level that is applicable to different network applications. In contrary to the wrapper method introduced with the benchmark dataset, three new filter models are proposed to transform the feature space without knowledge of class labels. These ECT (ensemble clustering based transformation) techniques, i.e., ECT-Subspace, ECT-Noise and ECT-Combined, are developed using the concept of ensemble clustering and three different ensemble generation strategies, i.e., random feature subspace, feature noise injection and their combinations. Based on the empirical study with published dataset and four classification algorithms, new models usually outperform that original wrapper and other filter alternatives found in the literature. This is similarly summarized from the first experiment with basic classification of legitimate and direct attacks, and the second that focuses on recognizing obfuscated intrusions. In addition, analysis of algorithmic parameters, i.e., ensemble size and level of noise, is provided as a guideline for a practical use

    Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms

    Get PDF
    Almost all fields of life need Banknote. Even particular fields of life require banknotes in large quantities such as banks, transportation companies, and casinos. Therefore Banknotes are an essential component in carrying out all activities every day, especially those related to finance. Through technological advancements such as scanners and copy machine, it can provide the opportunity for anyone to commit a crime. The crime is like a counterfeit banknote. Many people still find it difficult to distinguish between a genuine banknote ad counterfeit Banknote, that is because counterfeit Banknote produced have a high degree of resemblance to the genuine Banknote. Based on that background, authors want to do a classification process to distinguish between genuine Banknote and counterfeit Banknote. The classification process use methods Supervised Learning and compares the level of accuracy based on the distribution of training data. The methods of supervised Learning used are Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Naïve Bayes. K-NN method is a method that has the highest specificity, sensitivity, and accuracy of the three methods used by the authors both in the training data of 30%, 50%, and 80%. Where in the training data 30% and 50% value specificity: 0.99, sensitivity: 1.00, accuracy: 0.99. While the 80% training data value specificity: 1.00, sensitivity: 1.00, accuracy: 1.00. This means that the distribution of training data influences the performance of the Supervised Machine Learning algorithm. In the KNN method, the greater the training data, the better the accuracy

    Automobile Insurance Fraud Detection Using Data Mining: A Systematic Literature Review

    Get PDF
    Insurance is a pivotal element in modern society, but insurers face a persistent challenge from fraudulent behaviour performed by policyholders. This behaviour could be detrimental to both insurance companies and their honest customers, but the intricate nature of insurance fraud severely complicates its efficient, automated detection. This study surveys fifty recent publications on automobile insurance fraud detection, published between January 2019 and March 2023, and presents both the most commonly used data sets and methods for resampling and detection, as well as interesting, novel approaches. The study adopts the highly-cited Systematic Literature Review (SLR) methodology for software engineering research proposed by Kitchenham and Charters and collected studies from four online databases. The findings indicate limited public availability of automobile insurance fraud data sets. In terms of detection methods, the prevailing approach involves supervised machine learning methods that utilise structured, intrinsic features of claims or policies and that lack consideration of an example-dependent cost of misclassification. However, alternative techniques are also explored, including the use of graph-based methods, unstructured textual data, and cost-sensitive classifiers. The most common resampling approach was found to be oversampling. This SLR has identified commonly used methods in recent automobile insurance fraud detection research, and interesting directions for future research. It adds value over a related review by also including studies published from 2021 onward, and by detailing the used methodology. Limitations of this SLR include its restriction to a small number of considered publication years and limited validation of choices made during the process

    A review of spam email detection: analysis of spammer strategies and the dataset shift problem

    Get PDF
    .Spam emails have been traditionally seen as just annoying and unsolicited emails containing advertisements, but they increasingly include scams, malware or phishing. In order to ensure the security and integrity for the users, organisations and researchers aim to develop robust filters for spam email detection. Recently, most spam filters based on machine learning algorithms published in academic journals report very high performance, but users are still reporting a rising number of frauds and attacks via spam emails. Two main challenges can be found in this field: (a) it is a very dynamic environment prone to the dataset shift problem and (b) it suffers from the presence of an adversarial figure, i.e. the spammer. Unlike classical spam email reviews, this one is particularly focused on the problems that this constantly changing environment poses. Moreover, we analyse the different spammer strategies used for contaminating the emails, and we review the state-of-the-art techniques to develop filters based on machine learning. Finally, we empirically evaluate and present the consequences of ignoring the matter of dataset shift in this practical field. Experimental results show that this shift may lead to severe degradation in the estimated generalisation performance, with error rates reaching values up to 48.81%.SIPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL
    corecore