229,005 research outputs found

    Experimental study and numerical modelling of woven fabric kenaf fiber composites hybrid adhesively bonded-bolted joints

    Get PDF
    Couple with natural fiber composite parts, hybrid joints provide better joint strength than using separate joints. There are limited studies on structures response and strength prediction work on hybrid joints that limits its applicability. The aim of present study is to conduct experimental datasets on woven fabric kenaf fiber reinforced polymer (KFRP) and carbon fiber reinforced polymer (CFRP) composite hybrid joints under quasi-static testing and to carry out the strength prediction works subsequently by implementing physically-based traction-separation constitutive law. Testing series investigated includes variation of joint types, normalized W/d = 2 to 5, reinforcing fiber composites, lay-up types, plate thickness and bolt loads. Experimental observations and bearing stress at failures were conducted, the datasets were then used as validation works in FEA modelling. All KFRP hybrid joint series demonstrated net-tension failure mode associated to stress concentration at the vicinity of notch tip. Initially, strength prediction works were attempted by implementing various numerical approaches and fully XFEM techniques was adopted to all series as it provides promising results with better physically representation and less computational time. Good agreements between experimental datasets and predicted bearing stress at failure were found in KFRP hybrid joints with average discrepancy of less than 23%. It was found that combinations of thicker and cross-ply lay-up gives the best prediction of less than 2 % (where experimental datasets and FEA output were given as 201 N/mm2 and 198 N/mm2 respectively) due to better repetitive lay-up with implementation of smeared-out properties. Less significant effects from bolt loads and reinforcing fibers were found for both joint types. It can be concluded that fully XFEM technique able to provide as a unified prediction tools in hybrid joints of most composite materials with reasonable agreements

    Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting

    Full text link
    Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature

    Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics.</p> <p>Results</p> <p>The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems.</p> <p>Conclusions</p> <p>Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.</p

    A Hybrid Neural Network for Stock Price Direction Forecasting

    Get PDF
    The volatility of stock markets makes them notoriously difficult to predict and is the reason that many investors sell out at the wrong time. Contrary to the efficient market hypothesis (EMH) and the random walk theory, contribution to the study of machine learning models for stock price forecasting has shown evidence of stock markets predictability with varying degrees of success. Contemporary approaches have sought to use a hybrid of convolutional neural network (CNN) for its feature extraction capabilities and long short-term memory (LSTM) neural network for its time series prediction. This comparative study aims to determine the predictability of stock price movements by using a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) neural network, a standalone LSTM neural network, a random forest model, and support vectors machines (SVM) model. Specifically, the study seeks to explore the predictive ability using stock price data, technical indicators, and foreignexchange (FX) rates transformed into deterministic trend signals as features for a hybrid CNN-LSTM neural network. This paper additionally considered including news article sentiment scores relating to stocks as part of the training dataset, but significant correlation was not found. In this study, the predictive ability is the accuracy of predicting the direction a stock price moves not the actual price. The experiment results suggest that a hybrid CNN-LSTM model can achieve around 60% accuracy trained with deterministic trend signals for stock trend prediction. This accuracy has higher than the accuracy of LSTM, random forest, and SVM. On this basis, one can conclude that the hybrid neural network model is superior to standalone LSTM, random forest, and SVM for stock price trend prediction

    Agrupamiento, predicción y clasificación ordinal para series temporales utilizando técnicas de machine learning: aplicaciones

    Get PDF
    In the last years, there has been an increase in the number of fields improving their standard processes by using machine learning (ML) techniques. The main reason for this is that the vast amount of data generated by these processes is difficult to be processed by humans. Therefore, the development of automatic methods to process and extract relevant information from these data processes is of great necessity, giving that these approaches could lead to an increase in the economic benefit of enterprises or to a reduction in the workload of some current employments. Concretely, in this Thesis, ML approaches are applied to problems concerning time series data. Time series is a special kind of data in which data points are collected chronologically. Time series are present in a wide variety of fields, such as atmospheric events or engineering applications. Besides, according to the main objective to be satisfied, there are different tasks in the literature applied to time series. Some of them are those on which this Thesis is mainly focused: clustering, classification, prediction and, in general, analysis. Generally, the amount of data to be processed is huge, arising the need of methods able to reduce the dimensionality of time series without decreasing the amount of information. In this sense, the application of time series segmentation procedures dividing the time series into different subsequences is a good option, given that each segment defines a specific behaviour. Once the different segments are obtained, the use of statistical features to characterise them is an excellent way to maximise the information of the time series and simultaneously reducing considerably their dimensionality. In the case of time series clustering, the objective is to find groups of similar time series with the idea of discovering interesting patterns in time series datasets. In this Thesis, we have developed a novel time series clustering technique. The aim of this proposal is twofold: to reduce as much as possible the dimensionality and to develop a time series clustering approach able to outperform current state-of-the-art techniques. In this sense, for the first objective, the time series are segmented in order to divide the them identifying different behaviours. Then, these segments are projected into a vector of statistical features aiming to reduce the dimensionality of the time series. Once this preprocessing step is done, the clustering of the time series is carried out, with a significantly lower computational load. This novel approach has been tested on all the time series datasets available in the University of East Anglia and University of California Riverside (UEA/UCR) time series classification (TSC) repository. Regarding time series classification, two main paths could be differentiated: firstly, nominal TSC, which is a well-known field involving a wide variety of proposals and transformations applied to time series. Concretely, one of the most popular transformation is the shapelet transform (ST), which has been widely used in this field. The original method extracts shapelets from the original time series and uses them for classification purposes. Nevertheless, the full enumeration of all possible shapelets is very time consuming. Therefore, in this Thesis, we have developed a hybrid method that starts with the best shapelets extracted by using the original approach with a time constraint and then tunes these shapelets by using a convolutional neural network (CNN) model. Secondly, time series ordinal classification (TSOC) is an unexplored field beginning with this Thesis. In this way, we have adapted the original ST to the ordinal classification (OC) paradigm by proposing several shapelet quality measures taking advantage of the ordinal information of the time series. This methodology leads to better results than the state-of-the-art TSC techniques for those ordinal time series datasets. All these proposals have been tested on all the time series datasets available in the UEA/UCR TSC repository. With respect to time series prediction, it is based on estimating the next value or values of the time series by considering the previous ones. In this Thesis, several different approaches have been considered depending on the problem to be solved. Firstly, the prediction of low-visibility events produced by fog conditions is carried out by means of hybrid autoregressive models (ARs) combining fixed-size and dynamic windows, adapting itself to the dynamics of the time series. Secondly, the prediction of convective cloud formation (which is a highly imbalance problem given that the number of convective cloud events is much lower than that of non-convective situations) is performed in two completely different ways: 1) tackling the problem as a multi-objective classification task by the use of multi-objective evolutionary artificial neural networks (MOEANNs), in which the two conflictive objectives are accuracy of the minority class and the global accuracy, and 2) tackling the problem from the OC point of view, in which, in order to reduce the imbalance degree, an oversampling approach is proposed along with the use of OC techniques. Thirdly, the prediction of solar radiation is carried out by means of evolutionary artificial neural networks (EANNs) with different combinations of basis functions in the hidden and output layers. Finally, the last challenging problem is the prediction of energy flux from waves and tides. For this, a multitask EANN has been proposed aiming to predict the energy flux at several prediction time horizons (from 6h to 48h). All these proposals and techniques have been corroborated and discussed according to physical and atmospheric models. The work developed in this Thesis is supported by 11 JCR-indexed papers in international journals (7 Q1, 3 Q2, 1 Q3), 11 papers in international conferences, and 4 papers in national conferences

    Combinational problem decomposition method for Cooperative Coevolution of Recurrent Networks for Time Series Prediction

    Get PDF
    The breaking down of a particular problem through problem decomposition has enabled complex problems to be solved efficiently. The two major problem decomposition methods used in cooperative coevolution are synapse and neuron level. The combination of both the problem decomposition as a hybrid problem decomposition has been seen applied in time series prediction. The different problem decomposition methods applied at particular area of a network can share its strengths to solve the problem better, which forms the major motivation. In this paper, we are proposing a combination utilization of two hybrid problem decomposition method for Elman recurrent neural networks and applied to time series prediction. The results reveal that the proposed method has got better results in some datasets when compared to its standalone methods. The results are better in selected cases for proposed method when compared to several other approaches from the literature

    Vital signs prediction and early warning score calculation based on continuous monitoring of hospitalised patients using wearable technology

    Get PDF
    In this prospective, interventional, international study, we investigate continuous monitoring of hospitalised patients’ vital signs using wearable technology as a basis for real-time early warning scores (EWS) estimation and vital signs time-series prediction. The collected continuous monitored vital signs are heart rate, blood pressure, respiration rate, and oxygen saturation of a heterogeneous patient population hospitalised in cardiology, postsurgical, and dialysis wards. Two aspects are elaborated in this study. The first is the high-rate (every minute) estimation of the statistical values (e.g., minimum and mean) of the vital signs components of the EWS for one-minute segments in contrast with the conventional routine of 2 to 3 times per day. The second aspect explores the use of a hybrid machine learning algorithm of kNN-LS-SVM for predicting future values of monitored vital signs. It is demonstrated that a real-time implementation of EWS in clinical practice is possible. Furthermore, we showed a promising prediction performance of vital signs compared to the most recent state of the art of a boosted approach of LSTM. The reported mean absolute percentage errors of predicting one-hour averaged heart rate are 4.1, 4.5, and 5% for the upcoming one, two, and three hours respectively for cardiology patients. The obtained results in this study show the potential of using wearable technology to continuously monitor the vital signs of hospitalised patients as the real-time estimation of EWS in addition to a reliable prediction of the future values of these vital signs is presented. Ultimately, both approaches of high-rate EWS computation and vital signs time-series prediction is promising to provide efficient cost-utility, ease of mobility and portability, streaming analytics, and early warning for vital signs deterioration
    corecore