1,610 research outputs found

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF

    Novel approaches to container loading: from heuristics to hybrid tabu search

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy of the University ofBedford shireThis work investigates new approaches to the container loading problem which address the issue of how to load three-dimensional, rectangular items (e.g. boxes) into the container in such a way that maximum utilisation is made of the container space. This problem occurs in several industry sectors where the loading approach places cargo effectively into aeroplanes, ships, trailers or trucks in order to save considerable cost. In carrying out this work, the investigation starts by developing a new heuristic approach to the two-dimensional bin packing problem, which has lower complexity than container loading in the aspects of constraints and geometry. A novel approach, including the heuristic strategies and handling method for remaining areas, is developed that can produce good results when testing with benchmark and real world data. Based on the research for two-dimensional bin packing, a novel heuristic approach is developed to deal with the container loading problem with some practical constraints. The heuristic approach to container loading also includes heuristic strategies and the handling of remaining spaces. The heuristic strategies construct effective loading arrangements where combinations of identical or different box types are loaded in blocks. The handling method for remaining spaces further improves the loading arrangements through the representation, partitioning and merging of remaining spaces. The heuristic approach obtains better volume utilisation and the highest stability compared with other published heuristic approaches. However, it does not achieve as high a volume utilisation as metaheuristic approaches, e.g. genetic algorithms and tabu search.To improve volume utilisation, a new hybrid heuristic approach to the container loading problem is further developed based on the tabu search technique which covers the encoding, evaluation criterion and configuration of neighbourhood and candidate solutions. The heuristic strategies as well as the handling method for remaining spaces developed in the heuristic approach are used in this new hybrid tabu search approach. It is shown that the hybrid approach has better volume utilisation than the published approaches under the condition that all loaded boxes with one hundred per cent support from below. In addition, the experimental results show that both the heuristic and hybrid tabu search approaches can also be applied to the multiple container loading problem

    Two-dimensional placement compaction using an evolutionary approach: a study

    Get PDF
    The placement problem of two-dimensional objects over planar surfaces optimizing given utility functions is a combinatorial optimization problem. Our main drive is that of surveying genetic algorithms and hybrid metaheuristics in terms of final positioning area compaction of the solution. Furthermore, a new hybrid evolutionary approach, combining a genetic algorithm merged with a non-linear compaction method is introduced and compared with referenced literature heuristics using both randomly generated instances and benchmark problems. A wide variety of experiments is made, and the respective results and discussions are presented. Finally, conclusions are drawn, and future research is defined

    2D multi-objective placement algorithm for free-form components

    Get PDF
    This article presents a generic method to solve 2D multi-objective placement problem for free-form components. The proposed method is a relaxed placement technique combined with an hybrid algorithm based on a genetic algorithm and a separation algorithm. The genetic algorithm is used as a global optimizer and is in charge of efficiently exploring the search space. The separation algorithm is used to legalize solutions proposed by the global optimizer, so that placement constraints are satisfied. A test case illustrates the application of the proposed method. Extensions for solving the 3D problem are given at the end of the article.Comment: ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego : United States (2009

    Meta-heuristic Algorithms for Nesting Problem of Rectangular Pieces

    Get PDF
    Nesting problems consist of placing multiple items onto larger shapes finding a good arrangement. The goal of the nesting process is to minimize the waste of material. It is common to assume, as in the present work, that the stock sheet has fixed width and infinite height, since in the real world a company may have to cut pieces from a roll of material. The complexity of such problems is often faced with a two-stage approach, so-called \u201chybrid algorithm\u201d, combining a placement routine and a meta-heuristic algorithm. Starting from a given positioning sequence, the placement routine generates a non-overlapping configuration. The encoded solution is manipulated and modified by the meta-heuristic algorithm to generate a new sequence that brings to a better value of the objective function (in this case the height of the strip). The proposed method consists in placing the rectangles inside a strip and in combining the meta-heuristic algorithms with the No Fit Polygon algorithm. The software has been developed in Python language using proper libraries to solve the meta-heuristic techniques (Inspyred) and the geometric problems (Polygon). The results show the effectiveness of the proposed method; moreover, with regard to problems reported in literature employed as benchmark of the nesting algorithms, the degree of occupation values (Efficiency Ratio, ER) are shown to be higher than 90%
    • 

    corecore