1,150 research outputs found

    Combined Deep and Shallow Knowledge in a Unified Model for Diagnosis by Abduction

    Get PDF
    Fault Diagnosis in real systems usually involves human expert’s shallow knowledge (as pattern causes-effects) but also deep knowledge (as structural / functional modularization and models on behavior). The paper proposes a unified approach on diagnosis by abduction based on plausibility and relevance criteria multiple applied, in a connectionist implementation. Then, it focuses elicitation of deep knowledge on target conductive flow systems – most encountered in industry and not only, in the aim of fault diagnosis. Finally, the paper gives hints on design and building of diagnosis system by abduction, embedding deep and shallow knowledge (according to case) and performing hierarchical fault isolation, along with a case study on a hydraulic installation in a rolling mill plant.Faulty Diagnosis, abduction, plausibility criteria, relevant criterion

    COMBINED DEEP AND SHALLOW KNOWLEDGE IN A UNIFIED MODEL FOR DIAGNOSIS BY ABDUCTION

    Get PDF
    Fault Diagnosis in real systems usually involves human expert’s shallow knowledge (as pattern causes-effects) but also deep knowledge (as structural / functional modularization and models on behavior). The paper proposes a unified approach on diagnosis by abduction based on plausibility and relevance criteria multiple applied, in a connectionist implementation. Then, it focuses elicitation of deep knowledge on target conductive flow systems – most encountered in industry and not only, in the aim of fault diagnosis. Finally, the paper gives hints on design and building of diagnosis system by abduction, embedding deep and shallow knowledge (according to case) and performing hierarchical fault isolation, along with a case study on a hydraulic installation in a rolling mill plant.shallow knowledge, diagnosis, flow systems

    The Diagnosis by Abduction using Human Expert Knowledge

    Get PDF
    Fault Diagnosis in real systems usually involves human expert’s shallow knowledge (as pattern causes-effects) but also deep knowledge (as structural / functional modularization and models on behavior). The paper proposes a unified approach on diagnosis by abduction based on plausibility and relevance criteria multiple applied, in a connectionist implementation. Then, it focuses elicitation of deep knowledge on target conductive flow systems – most encountered in industry and not only, in the aim of fault diagnosis. Finally, the paper gives hints on design and building of diagnosis system by abduction, embedding deep and shallow knowledge (according to case) and performing hierarchical fault isolation, along with a case study on a hydraulic installation in a rolling mill plant

    Combined deep and shallow knowledge in a unified model for diagnosis by abduction

    Get PDF
    Fault Diagnosis in real systems usually involves human expert’s shallow knowledge (as pattern causes-effects) but also deep knowledge (as structural / functional modularization and models on behavior). The paper proposes a unified approach on diagnosis by abduction based on plausibility and relevance criteria multiple applied, in a connectionist implementation. Then, it focuses elicitation of deep knowledge on target conductive flow systems – most encountered in industry and not only, in the aim of fault diagnosis. Finally, the paper gives hints on design and building of diagnosis system by abduction, embedding deep and shallow knowledge (according to case) and performing hierarchical fault isolation, along with a case study on a hydraulic installation in a rolling mill plant

    Artificial Intelligence Application in Machine Condition Monitoring and Fault Diagnosis

    Get PDF
    The subject of machine condition monitoring and fault diagnosis as a part of system maintenance has gained a lot of interest due to the potential benefits to be learned from reduced maintenance budgets, enhanced productivity and improved machine availability. Artificial intelligence (AI) is a successful method of machine condition monitoring and fault diagnosis since these techniques are used as tools for routine maintenance. This chapter attempts to summarize and review the recent research and developments in the field of signal analysis through artificial intelligence in machine condition monitoring and fault diagnosis. Intelligent systems such as artificial neural network (ANN), fuzzy logic system (FLS), genetic algorithms (GA) and support vector machine (SVM) have previously developed many different methods. However, the use of acoustic emission (AE) signal analysis and AI techniques for machine condition monitoring and fault diagnosis is still rare. In the future, the applications of AI in machine condition monitoring and fault diagnosis still need more encouragement and attention due to the gap in the literature

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Combination of Evidence in Dempster-Shafer Theory

    Full text link

    Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation

    Get PDF
    To enable the benets of a truly condition-based maintenance philosophy to be realised, robust, accurate and reliable algorithms, which provide maintenance personnel with the necessary information to make informed maintenance decisions, will be key. This thesis focuses on the development of such algorithms, with a focus on semiconductor manufacturing and wind turbines. An introduction to condition-based maintenance is presented which reviews dierent types of maintenance philosophies and describes the potential benets which a condition- based maintenance philosophy will deliver to operators of critical plant and machinery. The issues and challenges involved in developing condition-based maintenance solutions are discussed and a review of previous approaches and techniques in fault diagnostics and prognostics is presented. The development of a condition monitoring system for dry vacuum pumps used in semi- conductor manufacturing is presented. A notable feature is that upstream process mea- surements from the wafer processing chamber were incorporated in the development of a solution. In general, semiconductor manufacturers do not make such information avail- able and this study identies the benets of information sharing in the development of condition monitoring solutions, within the semiconductor manufacturing domain. The developed solution provides maintenance personnel with the ability to identify, quantify, track and predict the remaining useful life of pumps suering from degradation caused by pumping large volumes of corrosive uorine gas. A comprehensive condition monitoring solution for thermal abatement systems is also presented. As part of this work, a multiple model particle ltering algorithm for prog- nostics is developed and tested. The capabilities of the proposed prognostic solution for addressing the uncertainty challenges in predicting the remaining useful life of abatement systems, subject to uncertain future operating loads and conditions, is demonstrated. Finally, a condition monitoring algorithm for the main bearing on large utility scale wind turbines is developed. The developed solution exploits data collected by onboard supervisory control and data acquisition (SCADA) systems in wind turbines. As a result, the developed solution can be integrated into existing monitoring systems, at no additional cost. The potential for the application of multiple model particle ltering algorithm to wind turbine prognostics is also demonstrated

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated
    • …
    corecore