179,730 research outputs found

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    Towards Simulating Humans in Augmented Multi-party Interaction

    Get PDF
    Human-computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in the European AMI research project

    No Grice: Computers that Lie, Deceive and Conceal

    Get PDF
    In the future our daily life interactions with other people, with computers, robots and smart environments will be recorded and interpreted by computers or embedded intelligence in environments, furniture, robots, displays, and wearables. These sensors record our activities, our behavior, and our interactions. Fusion of such information and reasoning about such information makes it possible, using computational models of human behavior and activities, to provide context- and person-aware interpretations of human behavior and activities, including determination of attitudes, moods, and emotions. Sensors include cameras, microphones, eye trackers, position and proximity sensors, tactile or smell sensors, et cetera. Sensors can be embedded in an environment, but they can also move around, for example, if they are part of a mobile social robot or if they are part of devices we carry around or are embedded in our clothes or body. \ud \ud Our daily life behavior and daily life interactions are recorded and interpreted. How can we use such environments and how can such environments use us? Do we always want to cooperate with these environments; do these environments always want to cooperate with us? In this paper we argue that there are many reasons that users or rather human partners of these environments do want to keep information about their intentions and their emotions hidden from these smart environments. On the other hand, their artificial interaction partner may have similar reasons to not give away all information they have or to treat their human partner as an opponent rather than someone that has to be supported by smart technology.\ud \ud This will be elaborated in this paper. We will survey examples of human-computer interactions where there is not necessarily a goal to be explicit about intentions and feelings. In subsequent sections we will look at (1) the computer as a conversational partner, (2) the computer as a butler or diary companion, (3) the computer as a teacher or a trainer, acting in a virtual training environment (a serious game), (4) sports applications (that are not necessarily different from serious game or education environments), and games and entertainment applications

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas

    From Word Play to World Play: Introducing Humor in Human-Computer Interaction

    Get PDF
    Humor is important in our life, whether it is at home, at work, or in public spaces. Smart technology is increasingly becoming part of our daily life. Can smart technology, sensors and actuators, not only be used to introduce smartness in our environments, but also to introduce amusement? So far understanding of humor has escaped algorithmic approaches. Nevertheless, humor research knowledge is available and is increasing. First philosophers, then psychologists, then linguists and AI researchers made humor topic of their research. The aim of this paper is to introduce humor research to the human-computer interaction community. In particular we look at how our digitally enhanced physical worlds, or smart environments, can facilitate humor creation

    Introducing Neuroberry, a platform for pervasive EEG signaling in the IoT domain

    Get PDF
    The emergence of inexpensive off-the-shelf wireless EEG devices led researchers to explore novel paradigms in the field of Human Computer Interaction. In fact, the compliance of these devices with the IoT principles towards pervasive EEG signaling in smart home environments enables new models of interaction and a different perspective from traditional affective computing. In this paper, the implementation of wireless EEG (Emotiv EPOC and Mindawave) IoT connectivity of real time raw signals, through IoT hardware devices and through the Raspberry Pi 2, is presented

    An XRI Mixed-Reality Internet-of-Things Architectural Framework Toward Immersive and Adaptive Smart Environments

    Full text link
    The internet-of-things (IoT) refers to the growing number of embedded interconnected devices within everyday ubiquitous objects and environments, especially their networks, edge controllers, data gathering and management, sharing, and contextual analysis capabilities. However, the IoT suffers from inherent limitations in terms of human-computer interaction. In this landscape, there is a need for interfaces that have the potential to translate the IoT more solidly into the foreground of everyday smart environments, where its users are multimodal, multifaceted, and where new forms of presentation, adaptation, and immersion are essential. This work highlights the synergetic opportunities for both IoT and XR to converge toward hybrid XR objects with strong real-world connectivity, and IoT objects with rich XR interfaces. The paper contributes i) an understanding of this multi-disciplinary domain XR-IoT (XRI); ii) a theoretical perspective on how to design XRI agents based on the literature; iii) a system design architectural framework for XRI smart environment development; and iv) an early discussion of this process. It is hoped that this research enables future researchers in both communities to better understand and deploy hybrid smart XRI environments

    Customizing smart environments: a tabletop approach

    Full text link
    Smart environments are becoming a reality in our society and the number of intelligent devices integrated in these spaces is in-creasing very rapidly. As the combination of intelligent elements will open a wide range of new opportunities to make our lives easier, final users should be provided with a simplified method of handling complex intelligent features. Specifying behavior in these environments can be difficult for non-experts, so that more efforts should be directed towards easing the customization tasks. This work presents an entirely visual rule editor based on dataflow expressions for interactive tabletops which allows be-havior to be specified in smart environments. An experiment was carried out aimed at evaluating the usability of the editor in terms of non-programmers understanding of the abstractions and concepts involved in the rule model, ease of use of the pro-posed visual interface and the suitability of the interaction mechanisms implemented in the editing tool. The study revealed that users with no previous programming experience were able to master the proposed rule model and editing tool for specifying be-havior in the context of a smart home, even though some minor usability issues were detected.We would like to thank all the volunteers that participated in the empirical study. Our thanks are also due to the ASIC/Polimedia team for their computer hardware support. This work was partially funded by the Spanish Ministry of Science and Innovation under the National R&D&I Program within the project CreateWorlds (TIN2010-20488). It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d'Educacio, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catala (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat Politecnica de Valencia under the "Beca de Excelencia" program, and currently by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU13/03831).Pons Tomás, P.; Catalá Bolós, A.; Jaén Martínez, FJ. (2015). Customizing smart environments: a tabletop approach. Journal of Ambient Intelligence and Smart Environments. 7(4):511-533. https://doi.org/10.3233/AIS-150328S51153374[1]C. Becker, M. Handte, G. Schiele and K. Rothermel, PCOM – a component system for pervasive computing, in: Proc. of the Second IEEE International Conference on Pervasive Computing and Communications (PerCom’04), IEEE Computer Society, Washington, DC, USA, 2004, pp. 67–76.Bhatti, Z. W., Naqvi, N. Z., Ramakrishnan, A., Preuveneers, D., & Berbers, Y. (2014). Learning distributed deployment and configuration trade-offs for context-aware applications in Intelligent Environments. Journal of Ambient Intelligence and Smart Environments, 6(5), 541-559. doi:10.3233/ais-140274Bonino, D., & Corno, F. (2011). What would you ask to your home if it were intelligent? Exploring user expectations about next-generation homes. Journal of Ambient Intelligence and Smart Environments, 3(2), 111-126. doi:10.3233/ais-2011-0099[4]D. Bonino, F. Corno and L. Russis, A user-friendly interface for rules composition in intelligent environments, in: Ambient Intelligence – Software and Applications, Advances in Intelligent and Soft Computing, Vol. 92, Springer, Berlin, Heidelberg, 2011, pp. 213–217.[5]X. Carandang and J. Campbell, The design of a tangible user interface for a real-time strategy game, in: Proc. of the 34th International Conference on Information Systems (ICIS 2013), Association for Information Systems (AIS), 2013, pp. 3781–3790.Catalá, A., Garcia-Sanjuan, F., Jaen, J., & Mocholi, J. A. (2012). TangiWheel: A Widget for Manipulating Collections on Tabletop Displays Supporting Hybrid Input Modality. Journal of Computer Science and Technology, 27(4), 811-829. doi:10.1007/s11390-012-1266-4Catala, A., Pons, P., Jaen, J., Mocholi, J. A., & Navarro, E. (2013). A meta-model for dataflow-based rules in smart environments: Evaluating user comprehension and performance. Science of Computer Programming, 78(10), 1930-1950. doi:10.1016/j.scico.2012.06.010[8]C. Chen, Y. Xu, K. Li and S. Helal, Reactive programming optimizations in pervasive computing, in: Proc. of the 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT’10), IEEE Computer Society, Washington, DC, USA, 2010, pp. 96–104.Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: Technologies, applications, and opportunities. Pervasive and Mobile Computing, 5(4), 277-298. doi:10.1016/j.pmcj.2009.04.001Dey, A. K. (2009). Modeling and intelligibility in ambient environments. Journal of Ambient Intelligence and Smart Environments, 1(1), 57-62. doi:10.3233/ais-2009-0008[11]A.K. Dey, T. Sohn, S. Streng and J. Kodama, iCAP: Interactive prototyping of context-aware applications, in: Proc. of Pervasive Computing, Lecture Notes in Computer Science, Vol. 3968, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 254–271.[12]N. Díaz, J. Lilius, M. Pegalajar and M. Delgado, Rapid prototyping of semantic applications in smart spaces with a visual rule language, in: Proc. of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, ACM, New York, NY, USA, 2013, pp. 1335–1338.Gámez, N., & Fuentes, L. (2011). FamiWare: a family of event-based middleware for ambient intelligence. Personal and Ubiquitous Computing, 15(4), 329-339. doi:10.1007/s00779-010-0354-0García-Herranz, M., Alamán, X., & Haya, P. A. (2010). Easing the Smart Home: A rule-based language and multi-agent structure for end user development in Intelligent Environments. Journal of Ambient Intelligence and Smart Environments, 2(4), 437-438. doi:10.3233/ais-2010-0085[17]J. Good, K. Howland and K. Nicholson, Young people’s descriptions of computational rules in role-playing games: An empirical study, in: Proc. of the 2010 IEEE Symposium on Visual Languages and Human-Centric Computing, IEEE, 2010, pp. 67–74.Gouin-Vallerand, C., Abdulrazak, B., Giroux, S., & Dey, A. K. (2013). A context-aware service provision system for smart environments based on the user interaction modalities. Journal of Ambient Intelligence and Smart Environments, 5(1), 47-64. doi:10.3233/ais-120190[19]S. Holloway and C. Julien, The case for end-user programming of ubiquitous computing environments, in: Proc. of the FSE/SDP Workshop on Future of Software Engineering Research (FoSER’10), ACM, New York, NY, USA, 2010, pp. 167–172.Horn, M. S., Crouser, R. J., & Bers, M. U. (2011). Tangible interaction and learning: the case for a hybrid approach. Personal and Ubiquitous Computing, 16(4), 379-389. doi:10.1007/s00779-011-0404-2[21]M.S. Horn, E.T. Solovey, R.J. Crouser and R.J.K. Jacob, Comparing the use of tangible and graphical programming languages for informal science education, in: Proc. of the SIGCHI Conference on Human Factors in Computing Systems (CHI’09), ACM, New York, NY, USA, 2009, pp. 975–984.Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming. ACM Computing Surveys, 37(2), 83-137. doi:10.1145/1089733.1089734[23]J. Lee, L. Garduño, E. Walker and W. Burleson, A tangible programming tool for creation of context-aware applications, in: Proc. of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’13), ACM, New York, NY, USA, 2013, pp. 391–400.Lézoray, J.-B., Segarra, M.-T., Phung-Khac, A., Thépaut, A., Gilliot, J.-M., & Beugnard, A. (2011). A design process enabling adaptation in pervasive heterogeneous contexts. Personal and Ubiquitous Computing, 15(4), 353-363. doi:10.1007/s00779-010-0356-y[25]B.Y. Lim and A.K. Dey, Assessing demand for intelligibility in context-aware applications, in: Proc. of the 11th International Conference on Ubiquitous Computing (Ubicomp’09), ACM, New York, NY, USA, 2009, pp. 195–204.[26]B.Y. Lim and A.K. Dey, Evaluating Intelligibility usage and usefulness in a context-aware application, in: Proc. of the 15th International Conference on Human-Computer, Lecture Notes in Computer Science, Vol. 8008, Springer, Berlin, Heidelberg, 2013, pp. 92–101.[28]P. Marshall, Do tangible interfaces enhance learning? in: Proc. of the 1st International Conference on Tangible and Embedded Interaction (TEI’07), ACM, New York, NY, USA, 2007, pp. 163–170.[30]C. Maternaghan and K.J. Turner, A configurable telecare system, in: Proc. of the 4th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA’11), ACM, New York, NY, USA, 2011, pp. 14:1–14:8.[31]D.A. Norman, The Invisible Computer, MITT Press, Cambridge, MA, USA, 1998.PANE, J. F., RATANAMAHATANA, C. «ANN», & MYERS, B. A. (2001). Studying the language and structure in non-programmers’ solutions to programming problems. International Journal of Human-Computer Studies, 54(2), 237-264. doi:10.1006/ijhc.2000.0410[33]P. Pons, A. Catala, J. Jaen and J.A. Mocholi, DafRule: Un modelo de reglas enriquecido mediante flujos de datos para la definición visual de comportamiento reactivo de entidades virtuales, in: Actas de las Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2011), 2011, 989–1002.Rasch, K. (2014). An unsupervised recommender system for smart homes. Journal of Ambient Intelligence and Smart Environments, 6(1), 21-37. doi:10.3233/ais-130242[35]K. Ryall, C. Forlines, C. Shen and M.R. Morris, Exploring the effects of group size and table size on interactions with tabletop shared-display groupware, in: Proc. of the 2004 ACM Conference on Computer Supported Cooperative Work, ACM, New York, NY, USA, 2004, pp. 284–293.Schmidt, A. (2000). Implicit human computer interaction through context. Personal Technologies, 4(2-3), 191-199. doi:10.1007/bf01324126[37]S.D. Scott, M. Sheelagh, T. Carpendale and K.M. Inkpen, Territoriality in collaborative tabletop workspaces, in: Proc. of the 2004 ACM Conference on Computer Supported Cooperative Work, ACM, New York, NY, USA, 2004, pp. 294–303.Sapounidis, T., & Demetriadis, S. (2013). Tangible versus graphical user interfaces for robot programming: exploring cross-age children’s preferences. Personal and Ubiquitous Computing, 17(8), 1775-1786. doi:10.1007/s00779-013-0641-7Shadbolt, N. (2003). Brain power. IEEE Intelligent Systems, 18(3), 2-3. doi:10.1109/mis.2003.1200718Shafti, L. S., Haya, P. A., García-Herranz, M., & Pérez, E. (2013). Inferring ECA-based rules for ambient intelligence using evolutionary feature extraction. Journal of Ambient Intelligence and Smart Environments, 5(6), 563-587. doi:10.3233/ais-130232[41]A. Strawhacker, A. Sullivan and M.U. Bers, TUI, GUI, HUI: Is a bimodal interface truly worth the sum of its parts? in: Proc. of the 12th International Conference on Interaction Design and Children, ACM, New York, NY, USA, 2013, pp. 309–312.Sylla, C., Branco, P., Coutinho, C., & Coquet, E. (2011). TUIs vs. GUIs: comparing the learning potential with preschoolers. Personal and Ubiquitous Computing, 16(4), 421-432. doi:10.1007/s00779-011-0407-zTeruel, M. A., Navarro, E., López-Jaquero, V., Montero, F., Jaen, J., & González, P. (2012). Analyzing the understandability of Requirements Engineering languages for CSCW systems: A family of experiments. Information and Software Technology, 54(11), 1215-1228. doi:10.1016/j.infsof.2012.06.001[44]E. Tse, J. Histon, S.D. Scott and S. Greenberg, Avoiding interference: How people use spatial separation and partitioning in SDG workspaces, in: Proc. of the 2004 ACM Conference on Computer Supported Cooperative Work, ACM, New York, NY, USA, 2004, pp. 252–261.[45]P. Tuddenham, D. Kirk and S. Izadi, Graspables revisited: Multi-touch vs. tangible input for tabletop displays in acquisition and manipulation tasks, in: Proc. of the SIGCHI Conference on Human Factors in Computing Systems (CHI’10), ACM, New York, NY, USA, 2010, pp. 2223–2232.[46]A. Uribarren, J. Parra, R. Iglesias, J.P. Uribe and D. López de Ipiña, A middleware platform for application configuration, adaptation and interoperability, in: Proc. of the 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, IEEE Computer Society, Washington, DC, USA, 2008, pp. 162–167.Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104. doi:10.1038/scientificamerican0991-94[48]C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell and A. Wesslén, Experimentation in Software Engineering: An Introduction, 1st edn, Kluwer Academic Publishers, Norwell, MA, USA, 2000.Zuckerman, O., & Gal-Oz, A. (2013). To TUI or not to TUI: Evaluating performance and preference in tangible vs. graphical user interfaces. International Journal of Human-Computer Studies, 71(7-8), 803-820. doi:10.1016/j.ijhcs.2013.04.00

    Envisioning Future Playful Interactive Environments for Animals

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-981-287-546-4_6Play stands as one of the most natural and inherent behavior among the majority of living species, specifically humans and animals. Human play has evolved significantly over the years, and so have done the artifacts which allow us to play: from children playing tag games without any tools other than their bodies, to modern video games using haptic and wearable devices to augment the playful experience. However, this ludic revolution has not been the same for the humans’ closest companions, our pets. Recently, a new discipline inside the human–computer interaction (HCI) community, called animal–computer interaction (ACI), has focused its attention on improving animals’ welfare using technology. Several works in the ACI field rely on playful interfaces to mediate this digital communication between animals and humans. Until now, the development of these interfaces only comprises a single goal or activity, and its adaptation to the animals’ needs requires the developers’ intervention. This work analyzes the existing approaches, proposing a more generic and autonomous system aimed at addressing several aspects of animal welfare at a time: Intelligent Playful Environments for Animals. The great potential of these systems is discussed, explaining how incorporating intelligent capabilities within playful environments could allow learning from the animals’ behavior and automatically adapt the game to the animals’ needs and preferences. The engaging playful activities created with these systems could serve different purposes and eventually improve animals’ quality of life.This work was partially funded by the Spanish Ministry of Science andInnovation under the National R&D&I Program within the projects Create Worlds (TIN2010-20488) and SUPEREMOS (TIN2014-60077-R), and from Universitat Politècnica de València under Project UPV-FE-2014-24. It also received support from a postdoctoral fellowship within theVALi+d Program of the Conselleria d’Educació, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catalá (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat Politècnica de València under the “Beca de Excelencia” program and currently by an FPU fellowship from the Spanish Ministry of Education, Culture, and Sports (FPU13/03831).Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Envisioning Future Playful Interactive Environments for Animals. En More Playful User Interfaces: Interfaces that Invite Social and Physical Interaction. Springer. 121-150. https://doi.org/10.1007/978-981-287-546-4_6S121150Alfrink, K., van Peer, I., Lagerweij H, et al.: Pig Chase. Playing with Pigs project. (2012) www.playingwithpigs.nlAmat, M., Camps, T., Le, Brech S., Manteca, X.: Separation anxiety in dogs: the implications of predictability and contextual fear for behavioural treatment. Anim. Welf. 23(3), 263–266 (2014). doi: 10.7120/09627286.23.3.263Barker, S.B., Dawson, K.S.: The effects of animal-assisted therapy on anxiety ratings of hospitalized psychiatric patients. Psychiatr. Serv. 49(6), 797–801 (1998)Bateson, P., Martin, P.: Play, Playfulness, Creativity and Innovation. Cambridge University Press, New York (2013)Bekoff, M., Allen, C.: Intentional communication and social play: how and why animals negotiate and agree to play. In: Bekoff, M., Byers, J.A. (eds.) Animal Play Evolutionary. Comparative and Ecological Perspectives, pp. 97–114. Cambridge University Press, New York (1997)Burghardt, G.M.: The Genesis of Animal Play. Testing the Limits. MIT Press, Cambridge (2006)Catalá, A., Pons, P., Jaén, J., et al.: A meta-model for dataflow-based rules in smart environments: evaluating user comprehension and performance. Sci. Comput. Prog. 78(10), 1930–1950 (2013). doi: 10.1016/j.scico.2012.06.010Cheok, A.D., Tan, R.T.K.C., Peiris, R.L., et al.: Metazoa ludens: mixed-reality interaction and play for small pets and humans. IEEE Trans. Syst. Man. Cybern.—Part A Syst. Hum. 41(5), 876–891 (2011). doi: 10.1109/TSMCA.2011.2108998Costello, B., Edmonds, E.: A study in play, pleasure and interaction design. In: Proceedings of the 2007 Conference on Designing Pleasurable Products and Interfaces, pp. 76–91 (2007)Csikszentmihalyi, M.: Beyond Boredom and Anxiety. The Experience of Play in Work and Games. Jossey-Bass Publishers, Hoboken (1975)Filan, S.L., Llewellyn-Jones, R.H.: Animal-assisted therapy for dementia: a review of the literature. Int. Psychogeriatr. 18(4), 597–611 (2006). doi: 10.1017/S1041610206003322García-Herranz, M., Haya, P.A., Alamán, X.: Towards a ubiquitous end-user programming system for smart spaces. J. Univ. Comput. Sci. 16(12), 1633–1649 (2010). doi: 10.3217/jucs-016-12-1633Hirskyj-Douglas, I., Read, J.C.: Who is really in the centre of dog computer interaction? In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Hu, F., Silver, D., Trude, A.: LonelyDog@Home. In: International Conference Web Intelligence Intelligent Agent Technology—Workshops, 2007 IEEE/WIC/ACM IEEE, pp. 333–337, (2007)Huizinga, J.: Homo Ludens. Wolters-Noordhoff, Groningen (1985)Kamioka, H., Okada, S., Tsutani, K., et al.: Effectiveness of animal-assisted therapy: a systematic review of randomized controlled trials. Complement. Ther. Med. 22(2), 371–390 (2014). doi: 10.1016/j.ctim.2013.12.016Lee, S.P., Cheok, A.D., James, T.K.S., et al.: A mobile pet wearable computer and mixed reality system for human–poultry interaction through the internet. Pers. Ubiquit. Comput. 10(5), 301–317 (2006). doi: 10.1007/s00779-005-0051-6Leo, K., Tan, B.: User-tracking mobile floor projection virtual reality game system for paediatric gait and dynamic balance training. In: Proceedings of the 4th International Convention on Rehabilitation Engineering and Assistive Technology pp. 25:1–25:4 (2010)Mancini, C.: Animal-computer interaction: a manifesto. Mag. Interact. 18(4), 69–73 (2011). doi: 10.1145/1978822.1978836Mancini, C.: Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability. CHI ’13 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2227–2236 (2013)Mancini, C., van der Linden, J.: UbiComp for animal welfare: envisioning smart environments for kenneled dogs. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 117–128 (2014)Mancini, C., Harris, R., Aengenheister, B., Guest, C.: Re-centering multispecies practices: a canine interface for cancer detection dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing System, pp. 2673–2682 (2015)Mancini, C., van der Linden, J., Bryan, J., Stuart, A.: Exploring interspecies sensemaking: dog tracking semiotics and multispecies ethnography. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing—UbiComp ’12. ACM Press, New York, pp. 143–152 (2012)Mankoff, D., Dey, A.K., Mankoff, J., Mankoff, K.: Supporting interspecies social awareness: using peripheral displays for distributed pack awareness. In: Proceedings of the 18th Annual ACM Symposium on User interface Software and Technology, pp. 253–258 (2005)Maternaghan, C., Turner, K.J.: A configurable telecare system. In: Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments—PETRA ’11. ACM Press, New York, pp. 14:1–14:8 (2011)Matsuzawa, T.: The Ai project: historical and ecological contexts. Anim. Cogn. 6(4), 199–211 (2003). doi: 10.1007/s10071-003-0199-2McGrath, R.E.: Species-appropriate computer mediated interaction. CHI ‘09 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2529–2534 (2009)Mocholí, J.A., Jaén, J., Catalá, A.: A model of affective entities for effective learning environments. In: Innovations in Hybrid Intelligent Systems, pp. 337–344 (2007)Nijholt, A. (ed.): Playful User Interfaces. Springer, Singapore (2014)Norman, D.A.: The invisible computer. MIT Press, Cambridge (1998)Noz, F., An, J.: Cat cat revolution: an interspecies gaming experience. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2661–2664 (2011)Paldanius, M., Kärkkäinen, T., Väänänen-Vainio-Mattila, K., et al.: Communication technology for human-dog interaction: exploration of dog owners’ experiences and expectations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New York, pp. 2641–2650 (2011)Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Pons, P., Jaén, J., Catalá, A.: Animal ludens: building intelligent playful environments for animals. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Resner, B.: Rover@Home: Computer Mediated Remote Interaction Between Humans and Dogs. M.Sc. thesis, Massachusetts Institute of Technology, Cambridge (2001)Ritvo, S.E., Allison, R.S.: Challenges related to nonhuman animal-computer interaction: usability and “liking”. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Robinson, C., Mncini, C., Van Der Linden, J., et al.: Canine-centered interface design: supporting the work of diabetes alert dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3757–3766 (2014)Rumbaugh, D.M.: Language Learning by a Chimpanzee: The LANA Project. Academic Press, New York (1977)Rumbaugh, D.M.: Apes and their future in comparative psychology. Eye Psi Chi 18(1), 16–19 (2013)Rumbaugh, D.M., Gill, T.V., Brown, J.V., et al.: A computer-controlled language training system for investigating the language skills of young apes. Behav. Res. Methods Instrum. 5(5), 385–392 (1973)Schwartz, S.: Separation anxiety syndrome in cats: 136 cases (1991–2000). J. Am. Vet. Med. Assoc. 220(7), 1028–1033 (2002). doi: 10.2460/javma.2002.220.1028Schwartz, S.: Separation anxiety syndrome in dogs and cats. J. Am. Vet. Med. Assoc. 222(11), 1526–1532 (2003)Solomon, O.: What a dog can do: children with autism and therapy dogs in social interaction. Ethos J. Soc. Psychol. Anthropol. 38(1), 143–166 (2010). doi: 10.1111/j.1548-1352.2010.01085.xTeh, K.S., Lee, S.P., Cheok, A.D.: Poultry. Internet: a remote human-pet interaction system. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems, pp. 251–254 (2006)Väätäjä, H., Pesonen, E.: Ethical issues and guidelines when conducting HCI studies with animals. In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems, pp. 2159–2168 (2013)Väätäjä, H.: Animal welfare as a design goal in technology mediated human-animal interaction—opportunities with haptics. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Weilenmann, A., Juhlin, O.: Understanding people and animals. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’11. ACM Press, New York, pp. 2631–2640 (2011)Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)Westerlaken, M., Gualeni, S., Geurtsen, A.: Grounded zoomorphism: an evaluation methodology for ACI design. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Westerlaken, M., Gualeni, S.: Felino: the philosophical practice of making an interspecies videogame. Philosophy of Computer Games Conference, pp. 1–12 (2014)Wingrave, C.A., Rose, J., Langston, T., LaViola, J.J.J.: Early explorations of CAT: canine amusement and training. In: CHI ’10 Extended Abstracts on Human Factors in Computing Systems, pp. 2661–2669 (2010

    Channel State Information from pure communication to sense and track human motion: A survey

    Get PDF
    Human motion detection and activity recognition are becoming vital for the applications in smart homes. Traditional Human Activity Recognition (HAR) mechanisms use special devices to track human motions, such as cameras (vision-based) and various types of sensors (sensor-based). These mechanisms are applied in different applications, such as home security, Human–Computer Interaction (HCI), gaming, and healthcare. However, traditional HAR methods require heavy installation, and can only work under strict conditions. Recently, wireless signals have been utilized to track human motion and HAR in indoor environments. The motion of an object in the test environment causes fluctuations and changes in the Wi-Fi signal reflections at the receiver, which result in variations in received signals. These fluctuations can be used to track object (i.e., a human) motion in indoor environments. This phenomenon can be improved and leveraged in the future to improve the internet of things (IoT) and smart home devices. The main Wi-Fi sensing methods can be broadly categorized as Received Signal Strength Indicator (RSSI), Wi-Fi radar (by using Software Defined Radio (SDR)) and Channel State Information (CSI). CSI and RSSI can be considered as device-free mechanisms because they do not require cumbersome installation, whereas the Wi-Fi radar mechanism requires special devices (i.e., Universal Software Radio Peripheral (USRP)). Recent studies demonstrate that CSI outperforms RSSI in sensing accuracy due to its stability and rich information. This paper presents a comprehensive survey of recent advances in the CSI-based sensing mechanism and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology
    corecore