2,375,349 research outputs found

    Effects of noise upon human information processing

    Get PDF
    Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation

    Uniform Representations for Syntax-Semantics Arbitration

    Get PDF
    Psychological investigations have led to considerable insight into the working of the human language comprehension system. In this article, we look at a set of principles derived from psychological findings to argue for a particular organization of linguistic knowledge along with a particular processing strategy and present a computational model of sentence processing based on those principles. Many studies have shown that human sentence comprehension is an incremental and interactive process in which semantic and other higher-level information interacts with syntactic information to make informed commitments as early as possible at a local ambiguity. Early commitments may be made by using top-down guidance from knowledge of different types, each of which must be applicable independently of others. Further evidence from studies of error recovery and delayed decisions points toward an arbitration mechanism for combining syntactic and semantic information in resolving ambiguities. In order to account for all of the above, we propose that all types of linguistic knowledge must be represented in a common form but must be separable so that they can be applied independently of each other and integrated at processing time by the arbitrator. We present such a uniform representation and a computational model called COMPERE based on the representation and the processing strategy.Comment: 7 pages, uses cogsci94.sty macr

    A Self-Organized Method for Computing the Epidemic Threshold in Computer Networks

    Full text link
    In many cases, tainted information in a computer network can spread in a way similar to an epidemics in the human world. On the other had, information processing paths are often redundant, so a single infection occurrence can be easily "reabsorbed". Randomly checking the information with a central server is equivalent to lowering the infection probability but with a certain cost (for instance processing time), so it is important to quickly evaluate the epidemic threshold for each node. We present a method for getting such information without resorting to repeated simulations. As for human epidemics, the local information about the infection level (risk perception) can be an important factor, and we show that our method can be applied to this case, too. Finally, when the process to be monitored is more complex and includes "disruptive interference", one has to use actual simulations, which however can be carried out "in parallel" for many possible infection probabilities

    Modeling Visual Information Processing in Brain: A Computer Vision Point of View and Approach

    Full text link
    We live in the Information Age, and information has become a critically important component of our life. The success of the Internet made huge amounts of it easily available and accessible to everyone. To keep the flow of this information manageable, means for its faultless circulation and effective handling have become urgently required. Considerable research efforts are dedicated today to address this necessity, but they are seriously hampered by the lack of a common agreement about "What is information?" In particular, what is "visual information" - human's primary input from the surrounding world. The problem is further aggravated by a long-lasting stance borrowed from the biological vision research that assumes human-like information processing as an enigmatic mix of perceptual and cognitive vision faculties. I am trying to find a remedy for this bizarre situation. Relying on a new definition of "information", which can be derived from Kolmogorov's compexity theory and Chaitin's notion of algorithmic information, I propose a unifying framework for visual information processing, which explicitly accounts for the perceptual and cognitive image processing peculiarities. I believe that this framework will be useful to overcome the difficulties that are impeding our attempts to develop the right model of human-like intelligent image processing.Comment: That is a journal version of a paper that in 2007 has been submitted to 15 computer vision conferences and was discarded by 11 of the

    Pattern Matching and Discourse Processing in Information Extraction from Japanese Text

    Full text link
    Information extraction is the task of automatically picking up information of interest from an unconstrained text. Information of interest is usually extracted in two steps. First, sentence level processing locates relevant pieces of information scattered throughout the text; second, discourse processing merges coreferential information to generate the output. In the first step, pieces of information are locally identified without recognizing any relationships among them. A key word search or simple pattern search can achieve this purpose. The second step requires deeper knowledge in order to understand relationships among separately identified pieces of information. Previous information extraction systems focused on the first step, partly because they were not required to link up each piece of information with other pieces. To link the extracted pieces of information and map them onto a structured output format, complex discourse processing is essential. This paper reports on a Japanese information extraction system that merges information using a pattern matcher and discourse processor. Evaluation results show a high level of system performance which approaches human performance.Comment: See http://www.jair.org/ for any accompanying file

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    Abstraction in decision-makers with limited information processing capabilities

    Full text link
    A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.Comment: Presented at the NIPS 2013 Workshop on Planning with Information Constraint
    corecore