10,333 research outputs found

    An Advanced Home ElderCare Service

    Get PDF
    With the increase of welfare cost all over the developed world, there is a need to resort to new technologies that could help reduce this enormous cost and provide some quality eldercare services. This paper presents a middleware-level solution that integrates monitoring and emergency detection solutions with networking solutions. The proposed system enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and provides a framework for creating and managing rescue teams willing to assist elders in case of emergency situations. A prototype of the proposed system was designed and implemented. Results were obtained from both computer simulations and a real-network testbed. These results show that the proposed system can help overcome some of the current problems and help reduce the enormous cost of eldercare service

    ANGELAH: A Framework for Assisting Elders At Home

    Get PDF
    The ever growing percentage of elderly people within modern societies poses welfare systems under relevant stress. In fact, partial and progressive loss of motor, sensorial, and/or cognitive skills renders elders unable to live autonomously, eventually leading to their hospitalization. This results in both relevant emotional and economic costs. Ubiquitous computing technologies can offer interesting opportunities for in-house safety and autonomy. However, existing systems partially address in-house safety requirements and typically focus on only elder monitoring and emergency detection. The paper presents ANGELAH, a middleware-level solution integrating both ”elder monitoring and emergency detection” solutions and networking solutions. ANGELAH has two main features: i) it enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and ii) provides a solid framework for creating and managing rescue teams composed of individuals willing to promptly assist elders in case of emergency situations. A prototype of ANGELAH, designed for a case study for helping elders with vision impairments, is developed and interesting results are obtained from both computer simulations and a real-network testbed

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    Detection of Activities by Wireless Sensors for Daily Life Surveillance: Eating and Drinking

    Get PDF
    This paper introduces a two-stage approach to the detection of people eating and/or drinking for the purposes of surveillance of daily life. With the sole use of wearable accelerometer sensor attached to somebody’s (man or a woman) wrists, this two-stage approach consists of feature extraction followed by classification. At the first stage, based on the limb’s three dimensional kinematics movement model and the Extended Kalman Filter (EKF), the realtime arm movement features described by Euler angles are extracted from the raw accelerometer measurement data. In the latter stage, the Hierarchical Temporal Memory (HTM) network is adopted to classify the extracted features of the eating/drinking activities based on the space and time varying property of the features, by making use of the powerful modelling capability of HTM network on dynamic signals which is varying with both space and time. The proposed approach is tested through the real eating and drinking activities using the three dimensional accelerometers. Experimental results show that the EKF and HTM based two-stage approach can perform the activity detection successfully with very high accuracy
    corecore