6,533 research outputs found

    Human reliability analysis: exploring the intellectual structure of a research field

    Get PDF
    Humans play a crucial role in modern socio-technical systems. Rooted in reliability engineering, the discipline of Human Reliability Analysis (HRA) has been broadly applied in a variety of domains in order to understand, manage and prevent the potential for human errors. This paper investigates the existing literature pertaining to HRA and aims to provide clarity in the research field by synthesizing the literature in a systematic way through systematic bibliometric analyses. The multi-method approach followed in this research combines factor analysis, multi-dimensional scaling, and bibliometric mapping to identify main HRA research areas. This document reviews over 1200 contributions, with the ultimate goal of identifying current research streams and outlining the potential for future research via a large-scale analysis of contributions indexed in Scopus database

    Risk-based maintenance of critical and complex systems

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2016-2017.De nos jours, la plupart des systèmes dans divers secteurs critiques tels que l'aviation, le pétrole et les soins de santé sont devenus très complexes et dynamiques, et par conséquent peuvent à tout moment s'arrêter de fonctionner. Pour éviter que cela ne se reproduise et ne devienne incontrôlable ce qui engagera des pertes énormes en matière de coûts et d'indisponibilité; l'adoption de stratégies de contrôle et de maintenance s'avèrent plus que nécessaire et même vitale. Dans le génie des procédés, les stratégies optimales de maintenance pour ces systèmes pourraient avoir un impact significatif sur la réduction des coûts et sur les temps d'arrêt, sur la maximisation de la fiabilité et de la productivité, sur l'amélioration de la qualité et enfin pour atteindre les objectifs souhaités des compagnies. En outre, les risques et les incertitudes associés à ces systèmes sont souvent composés de plusieurs relations de cause à effet de façon extrêmement complexe. Cela pourrait mener à une augmentation du nombre de défaillances de ces systèmes. Par conséquent, un outil d'analyse de défaillance avancée est nécessaire pour considérer les interactions complexes de défaillance des composants dans les différentes phases du cycle de vie du produit pour assurer les niveaux élevés de sécurité et de fiabilité. Dans cette thèse, on aborde dans un premier temps les lacunes des méthodes d'analyse des risques/échec et celles qui permettent la sélection d'une classe de stratégie de maintenance à adopter. Nous développons ensuite des approches globales pour la maintenance et l'analyse du processus de défaillance fondée sur les risques des systèmes et machines complexes connus pour être utilisées dans toutes les industries. Les recherches menées pour la concrétisation de cette thèse ont donné lieu à douze contributions importantes qui se résument comme suit: Dans la première contribution, on aborde les insuffisances des méthodes en cours de sélection de la stratégie de maintenance et on développe un cadre fondé sur les risques en utilisant des méthodes dites du processus de hiérarchie analytique (Analytical Hierarchy Process (AHP), de cartes cognitives floues (Fuzzy Cognitive Maps (FCM)), et la théorie des ensembles flous (Fuzzy Soft Sets (FSS)) pour sélectionner la meilleure politique de maintenance tout en considérant les incertitudes. La deuxième contribution aborde les insuffisances de la méthode de l'analyse des modes de défaillance, de leurs effets et de leur criticité (AMDEC) et son amélioration en utilisant un modèle AMDEC basée sur les FCM. Les contributions 3 et 4, proposent deux outils de modélisation dynamique des risques et d'évaluation à l'aide de la FCM pour faire face aux risques de l'externalisation de la maintenance et des réseaux de collaboration. Ensuite, on étend les outils développés et nous proposons un outil d'aide à la décision avancée pour prédire l'impact de chaque risque sur les autres risques ou sur la performance du système en utilisant la FCM (contribution 5).Dans la sixième contribution, on aborde les risques associés à la maintenance dans le cadre des ERP (Enterprise Resource Planning (ERP)) et on propose une autre approche intégrée basée sur la méthode AMDEC floue pour la priorisation des risques. Dans les contributions 7, 8, 9 et 10, on effectue une revue de la littérature concernant la maintenance basée sur les risques des dispositifs médicaux, puisque ces appareils sont devenus très complexes et sophistiqués et l'application de modèles de maintenance et d'optimisation pour eux est assez nouvelle. Ensuite, on développe trois cadres intégrés pour la planification de la maintenance et le remplacement de dispositifs médicaux axée sur les risques. Outre les contributions ci-dessus, et comme étude de cas, nous avons réalisé un projet intitulé “Mise à jour de guide de pratique clinique (GPC) qui est un cadre axé sur les priorités pour la mise à jour des guides de pratique cliniques existantes” au centre interdisciplinaire de recherche en réadaptation et intégration sociale du Québec (CIRRIS). Nos travaux au sein du CIRRIS ont amené à deux importantes contributions. Dans ces deux contributions (11e et 12e) nous avons effectué un examen systématique de la littérature pour identifier les critères potentiels de mise à jour des GPCs. Nous avons validé et pondéré les critères identifiés par un sondage international. Puis, sur la base des résultats de la onzième contribution, nous avons développé un cadre global axé sur les priorités pour les GPCs. Ceci est la première fois qu'une telle méthode quantitative a été proposée dans la littérature des guides de pratiques cliniques. L'évaluation et la priorisation des GPCs existants sur la base des critères validés peuvent favoriser l'acheminement des ressources limitées dans la mise à jour de GPCs qui sont les plus sensibles au changement, améliorant ainsi la qualité et la fiabilité des décisions de santé.Today, most systems in various critical sectors such as aviation, oil and health care have become very complex and dynamic, and consequently can at any time stop working. To prevent this from reoccurring and getting out of control which incur huge losses in terms of costs and downtime; the adoption of control and maintenance strategies are more than necessary and even vital. In process engineering, optimal maintenance strategies for these systems could have a significant impact on reducing costs and downtime, maximizing reliability and productivity, improving the quality and finally achieving the desired objectives of the companies. In addition, the risks and uncertainties associated with these systems are often composed of several extremely complex cause and effect relationships. This could lead to an increase in the number of failures of such systems. Therefore, an advanced failure analysis tool is needed to consider the complex interactions of components’ failures in the different phases of the product life cycle to ensure high levels of safety and reliability. In this thesis, we address the shortcomings of current failure/risk analysis and maintenance policy selection methods in the literature. Then, we develop comprehensive approaches to maintenance and failure analysis process based on the risks of complex systems and equipment which are applicable in all industries. The research conducted for the realization of this thesis has resulted in twelve important contributions, as follows: In the first contribution, we address the shortcomings of the current methods in selecting the optimum maintenance strategy and develop an integrated risk-based framework using Analytical Hierarchy Process (AHP), fuzzy Cognitive Maps (FCM), and fuzzy Soft set (FSS) tools to select the best maintenance policy by considering the uncertainties.The second contribution aims to address the shortcomings of traditional failure mode and effect analysis (FMEA) method and enhance it using a FCM-based FMEA model. Contributions 3 and 4, present two dynamic risk modeling and assessment tools using FCM for dealing with risks of outsourcing maintenance and collaborative networks. Then, we extend the developed tools and propose an advanced decision support tool for predicting the impact of each risk on the other risks or on the performance of system using FCM (contribution 5). In the sixth contribution, we address the associated risks in Enterprise Resource Planning (ERP) maintenance and we propose another integrated approach using fuzzy FMEA method for prioritizing the risks. In the contributions 7, 8, 9, and 10, we perform a literature review regarding the risk-based maintenance of medical devices, since these devices have become very complex and sophisticated and the application of maintenance and optimization models to them is fairly new. Then, we develop three integrated frameworks for risk-based maintenance and replacement planning of medical devices. In addition to above contributions, as a case study, we performed a project titled “Updating Clinical Practice Guidelines; a priority-based framework for updating existing guidelines” in CIRRIS which led to the two important contributions. In these two contributions (11th and 12th) we first performed a systematic literature review to identify potential criteria in updating CPGs. We validated and weighted the identified criteria through an international survey. Then, based on the results of the eleventh contribution, we developed a comprehensive priority-based framework for updating CPGs based on the approaches that we had already developed and applied success fully in other industries. This is the first time that such a quantitative method has been proposed in the literature of guidelines. Evaluation and prioritization of existing CPGs based on the validated criteria can promote channelling limited resources into updating CPGs that are most sensitive to change, thus improving the quality and reliability of healthcare decisions made based on current CPGs. Keywords: Risk-based maintenance, Maintenance strategy selection, FMEA, FCM, Medical devices, Clinical practice guidelines

    Modelling multicriteria value interactions with Reasoning Maps

    Get PDF
    Idiographic causal maps are extensively employed in Operational Research to support problem structuring and complex decision making processes. They model means-end or causal discourses as a network of concepts connected by links denoting influence, thus enabling the representation of chains of arguments made by decision-makers. There have been proposals to employ such structures to support the structuring of multicriteria evaluation models, within an additive value measurement framework. However, a drawback of this multi-methodological modelling is the loss of richness of interactions along the means-end chains when evaluating options. This has led to the development of methods that make use of the structure of the map itself to evaluate options, such as the Reasoning Maps method, which employs ordinal scales and ordinal operators for such evaluation. However, despite their potential, Reasoning Maps cannot model explicitly value interactions nor perform a quantitative ranking of options, limiting their applicability and usefulness. In this article we propose extending the Reasoning Maps approach through a multilinear evaluation model structure, built with the MACBETH multicriteria method. The model explicitly captures the value interactions between concepts along the map and employs the MACBETH protocol of questioning to assess the strength of influence for each means-end link. The feasibility of the proposed approach to evaluate options and to deal with multicriteria interactions is tested in a real-world application to support the construction of a population health index

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Resilience engineering for sociotechnical safety management

    Get PDF
    Modern societies call for a reconsideration of risk and safety, in light of the increasing complexity of human-made systems. Technological artefacts, and the respective role of humans, as well as the organizational contexts in which they operate, dramatically changed in the last decades with an even more severe transformation expected in the future. Rooted in human factors, ergonomics, cognitive engineering, systems thinking and complexity theory, the discipline of resilience engineering proposes innovative approaches for safety challenges imposed by the dynamic, uncertain, and intertwined nature of modern sociotechnical systems. Resilience engineering aims to provide support means for ensuring that systems can sustain required operations under both expected and unexpected conditions. This chapter aims to provide a summary of the scientific field of resilience engineering, as well as a description of two methods common in the field, the resilience analysis grid and the functional resonance analysis method. Following two examples, the chapter proposes a multidisciplinary research agenda for the field

    Designing for Risk Assessment Systems for Patient Triage in Primary Health Care:A Literature Review

    Get PDF
    Background: This literature review covers original journal papers published between 2011 and 2015. These papers review the current status of research on the application of human factors and ergonomics in risk assessment systems’ design to cope with the complexity, singularity, and danger in patient triage in primary health care. Objective: This paper presents a systematic literature review that aims to identify, analyze, and interpret the application of available evidence from human factors and ergonomics to the design of tools, devices, and work processes to support risk assessment in the context of health care. Methods: Electronic search was performed on 7 bibliographic databases of health sciences, engineering, and computer sciences disciplines. The quality and suitability of primary studies were evaluated, and selected papers were classified according to 4 classes of outcomes. Results: A total of 1845 papers were retrieved by the initial search, culminating in 16 selected for data extraction after the application of inclusion and exclusion criteria and quality and suitability evaluation. Conclusions: Results point out that the study of the implications of the lack of understanding about real work performance in designing for risk assessment in health care is very specific, little explored, and mostly focused on the development of tool

    Framing the FRAM: A literature review on the functional resonance analysis method

    Get PDF
    The development of the Functional Resonance Analysis Method (FRAM) has been motivated by the perceived limitations of fundamentally deterministic and probabilistic approaches to understand complex systems’ behaviour. Congruent with the principles of Resilience Engineering, over recent years the FRAM has been progressively developed in scientific terms, and increasingly adopted in industrial environments with reportedly successful results. Nevertheless, a wide literature review focused on the method is currently lacking. On these premises, this paper aims to summarise all available published research in English about FRAM. More than 1700 documents from multiple scientific repositories were reviewed through a protocol based on the PRISMA review technique. The paper aims to uncover a number of characteristics of the FRAM research, both in terms of the method's application and of the authors contributing to its development. The systematic analysis explores the method in terms of its methodological aspects, application domains, and enhancements in qualitative and quantitative terms, as well as proposing potential future research directions

    Sustainable Assessment in Supply Chain and Infrastructure Management

    Get PDF
    In the competitive business environment or public domain, the sustainability assessment in supply chain and infrastructure management are important for any organization. Organizations are currently striving to improve their sustainable strategies through preparedness, response, and recovery because of increasing competitiveness, community, and regulatory pressure. Thus, it is necessary to develop a meaningful and more focused understanding of sustainability in supply chain management and infrastructure management practices. In the context of a supply chain, sustainability implies that companies identify, assess, and manage impacts and risks in all the echelons of the supply chain, considering downstream and upstream activities. Similarly, the sustainable infrastructure management indicates the ability of infrastructure to meet the requirements of the present without sacrificing the ability of future generations to address their needs. The complexities regarding sustainable supply chain and infrastructure management have driven managers and professionals to seek different solutions. This Special Issue aims to provide readers with the most recent research results on the aforementioned subjects. In addition, it offers some solutions and also raises some questions for further research and development toward sustainable supply chain and infrastructure management
    corecore