1,646 research outputs found

    A data augmentation methodology for training machine/deep learning gait recognition algorithms

    Get PDF
    There are several confounding factors that can reduce the accuracy of gait recognition systems. These factors can reduce the distinctiveness, or alter the features used to characterise gait; they include variations in clothing, lighting, pose and environment, such as the walking surface. Full invariance to all confounding factors is challenging in the absence of high-quality labelled training data. We introduce a simulation-based methodology and a subject-specific dataset which can be used for generating synthetic video frames and sequences for data augmentation. With this methodology, we generated a multi-modal dataset. In addition, we supply simulation files that provide the ability to simultaneously sample from several confounding variables. The basis of the data is real motion capture data of subjects walking and running on a treadmill at different speeds. Results from gait recognition experiments suggest that information about the identity of subjects is retained within synthetically generated examples. The dataset and methodology allow studies into fully-invariant identity recognition spanning a far greater number of observation conditions than would otherwise be possible

    Gait Recognition Based on Silhouettes Sequences and Neural Networks for Human Identification

    Get PDF
    Human gait recognition is moving ahead by the need for automated person identification and verification at a distance in many applications. In this paper our system presented silhouette videos and neural networks based system for human identification. For each sequence of silhouette images, an automated Region of Interest (ROI) algorithm applied to reduce dimensionality, extract gait features has been attempted with 3level 2Dimension Discrete Wavelet Transform (3L-2D-DWT), edges detection and gait cycle were used to extract relevant feature. Back propagations neural networks used as pattern recognition. The MATLAB software graphics user interface is designed to display result and simplify the use of the system. The developed system has been evaluated using (TUM-IITKGP) which contains three different type of walking categories and the results demonstrate that the proposed system achieves 98.8%, 95.87% and 88% for normal walk, walking with backpack and walking with hand in pocket category respectively of correct recognition. We concluded that the different side of view movement increase reliability of the key extracted feature and improve the neural network performance which opens a scope for further development

    Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis

    Get PDF
    This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a significant performance gain in terms of accuracy and robustness

    Modeling Errors in Biometric Surveillance and De-duplication Systems

    Get PDF
    In biometrics-based surveillance and de-duplication applications, the system commonly determines if a given individual has been encountered before. In this dissertation, these applications are viewed as specific instances of a broader class of problems known as Anonymous Identification. Here, the system does not necessarily determine the identity of a person; rather, it merely establishes if the given input biometric data was encountered previously. This dissertation demonstrates that traditional biometric evaluation measures cannot adequately estimate the error rate of an anonymous identification system in general and a de-duplication system in particular. In this regard, the first contribution is the design of an error prediction model for an anonymous identification system. The model shows that the order in which individuals are encountered impacts the error rate of the system. The second contribution - in the context of an identification system in general - is an explanatory model that explains the relationship between the Receiver Operating Characteristic (ROC) curve and the Cumulative Match Characteristic (CMC) curve of a closed-set biometric system. The phenomenon of biometrics menagerie is used to explain the possibility of deducing multiple CMC curves from the same ROC curve. Consequently, it is shown that a good\u27\u27 verification system can be a poor\u27\u27 identification system and vice-versa.;Besides the aforementioned contributions, the dissertation also explores the use of gait as a biometric modality in surveillance systems operating in the thermal or shortwave infrared (SWIR) spectrum. In this regard, a new gait representation scheme known as Gait Curves is developed and evaluated on thermal and SWIR data. Finally, a clustering scheme is used to demonstrate that gait patterns can be clustered into multiple categories; further, specific physical traits related to gender and body area are observed to impact cluster generation.;In sum, the dissertation provides some new insights into modeling anonymous identification systems and gait patterns for biometrics-based surveillance systems

    Gait Recognition

    Get PDF
    Gait recognition has received increasing attention as a remote biometric identification technology, i.e. it can achieve identification at the long distance that few other identification technologies can work. It shows enormous potential to apply in the field of criminal investigation, medical treatment, identity recognition, humanā€computer interaction and so on. In this chapter, we introduce the stateā€ofā€theā€art gait recognition techniques, which include 3Dā€based and 2Dā€based methods, in the first part. And considering the advantages of 3Dā€based methods, their related datasets are introduced as well as our gait database with both 2D silhouette images and 3D joints information in the second part. Given our gait dataset, a human walking model and the corresponding static and dynamic feature extraction are presented, which are verified to be viewā€invariant, in the third part. And some gaitā€based applications are introduced

    Novel Architecture for Human Re-Identification with a Two-Stream Neural Network and Attention Mechanism

    Get PDF
    This paper proposes a novel architecture that utilises an attention mechanism in conjunction with multi-stream convolutional neural networks (CNN) to obtain high accuracy in human re-identification (Reid). The proposed architecture consists of four blocks. First, the pre-processing block prepares the input data and feeds it into a spatial-temporal two-stream CNN (STC) with two fusion points that extract the spatial-temporal features. Next, the spatial-temporal attentional LSTM block (STA) automatically fine-tunes the extracted features and assigns weight to the more critical frames in the video sequence by using an attention mechanism. Extensive experiments on four of the most popular datasets support our architecture. Finally, the results are compared with the state of the art, which shows the superiority of this approach
    • ā€¦
    corecore