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Abstract

Modeling Errors in Biometric Surveillance and De-duplication Systems

by

Brian Matthew DeCann
Doctor of Philosophy in Electrical Engineering

West Virginia University

Arun A. Ross, Ph.D., Chair

In biometrics-based surveillance and de-duplication applications, the system commonly
determines if a given individual has been encountered before. In this dissertation, these
applications are viewed as specific instances of a broader class of problems known as Anony-
mous Identification. Here, the system does not necessarily determine the identity of a person;
rather, it merely establishes if the given input biometric data was encountered previously.
This dissertation demonstrates that traditional biometric evaluation measures cannot ad-
equately estimate the error rate of an anonymous identification system in general and a
de-duplication system in particular. In this regard, the first contribution is the design of
an error prediction model for an anonymous identification system. The model shows that
the order in which individuals are encountered impacts the error rate of the system. The
second contribution - in the context of an identification system in general - is an explanatory
model that explains the relationship between the Receiver Operating Characteristic (ROC)
curve and the Cumulative Match Characteristic (CMC) curve of a closed-set biometric sys-
tem. The phenomenon of biometrics menagerie is used to explain the possibility of deducing
multiple CMC curves from the same ROC curve. Consequently, it is shown that a “good”
verification system can be a “poor” identification system and vice-versa.

Besides the aforementioned contributions, the dissertation also explores the use of gait as
a biometric modality in surveillance systems operating in the thermal or shortwave infrared
(SWIR) spectrum. In this regard, a new gait representation scheme known as Gait Curves
is developed and evaluated on thermal and SWIR data. Finally, a clustering scheme is used
to demonstrate that gait patterns can be clustered into multiple categories; further, specific
physical traits related to gender and body area are observed to impact cluster generation.

In sum, the dissertation provides some new insights into modeling anonymous identifica-
tion systems and gait patterns for biometrics-based surveillance systems.
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Notation

The following notation and symbols are used throughout this document.

s : Biometric sample
p : Biometric probe (query to a matching algorithm))
x : Biometric feature vector
x : Biometric match score
γ : Decision threshold for classifying match scores
S(xi,xj) : Function that generates a match score between feature

vectors xi and xj

G : Reference sample database
fG(x) : Genuine match score distribution
fI(x) : Impostor match score distribution
N : Number of unique (true) identities in set of test data
NT : Total number of samples in a set of test data
NG : Number of genuine biometric samples per identity
Nref : Number of reference biometric samples
Nprobe : Number of probe biometric samples

Note: Bold upper case letters denote matrices and bold lower case letters denote vectors.
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Chapter 1

Introduction

1.1 Biometric Recognition

Biometrics is the science of recognizing individuals based on the physical or behavioral

traits of an individual [9, 10]. Physical traits are those which pertain to the appearance of

an individual. Examples include face, fingerprint, iris, hand geometry and voice. Behav-

ioral traits are those which individuals learn or acquire over time. Examples include gait,

handwriting, and speech.

To be considered a biometric trait, a candidate physical or behavioral characteristic must

satisfy at least the following requirements [10]:

Universality : The characteristic is present in a majority of individuals.

Distinctiveness : Any two individuals should exhibit a sufficient variation of
the characteristic.

Permanence: The characteristic should not change significantly over time.

Collectability : The characteristic can be reliably acquired using sensors in
a relatively non-invasive manner.

Generally, characteristics that satisfy all of the aforementioned criteria are denoted as

primary biometric traits. Primary biometric traits are those which have a strong ability

to discriminate between individuals. Examples of primary biometric traits include face,

fingerprint and iris. However, not every biometric trait can be classified as primary. Some
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biometric traits may be sufficiently distinct for some individuals, while being similar across

others. Further, the traits themselves may not be permanent. Such a trait, which may not

be permanent and unique, but can be used along with primary biometric traits for human

recognition, are known as soft biometric traits. Examples of soft biometric traits include

scars, marks, tattoos (SMT), gender, ethnicity, height, and age [11]. In some literature,

traits such as gait are also viewed as being soft biometric traits.

1.1.1 Components of a Biometric System

In a biometric system, physical or behavioral traits are used to perform automated recog-

nition of individuals. A biometric system is often described as a pattern recognition system,

comprising of a sensor module, feature extraction module, matching module, and database

module [10].

Sensor Module: The sensor module is an acquisition device, which captures
the biometric data of an individual. An example of a sensor module is a camera
(visible, infrared, etc.) that captures an image of an individual’s face.

Feature Extraction Module: The feature extraction module converts the raw
biometric data from the sensor module into a set of salient, or discriminatory
features. For example, in a fingerprint recognition system, the feature set may
consist of the position and orientation of minutiae points.

Matching Module: The matching module compares a set of probe (or query)
biometric features against a set of reference data stored in a local database
(ISO/IEC 2382-37 [12]), resulting in the generation ofmatch scores. Match scores
are created via the function S(x1,x2), where x1 and x2 are two biometric feature
sets. Match scores are scalar valued, often normalized between [0, 1], where a
value of S(x1,x2) ≈ 1 represents a high degree of similarity between x1 and x2.

1

Conversely, a value of S(x1,x2) ≈ 0 represents a low degree of similarity. Match
scores are used by the matching module to make a decision regarding the identity
of the user.

Database Module: The database module, defined as the reference database
(ISO/IEC 2382-37 [12]), stores the reference sample data of enrolled users. Dur-
ing enrollment, an identifier representing an individual’s identity (e.g., surname,
username) is used to label the sample(s). The template and identifier are then
stored in the database. It is not uncommon during enrollment to acquire mul-
tiple samples per individual in order to account for variations observed in the
biometric trait.

1In this dissertation, unless otherwise stated, match scores are assumed to follow this convention.
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1.1.2 Modes of Operation

A classical biometric system has two distinct operational stages: the enrollment stage,

where biometric data acquired from an individual is stored in the database along with a label

or an identifier denoting the identity; and the recognition stage when the input biometric data

of an individual is compared against the enrolled data in order to recognize an individual.

The recognition stage can be further categorized into one of two modes: verification and

identification [10]. A visual summarizing the modules and operating modes of a biometric

system is provided in Figure 1.1.

Enrollment Mode: In enrollment, a user submits their biometric data along
with an identifier (e.g., name, user-id, etc.) and the data is added to the database
for matching. The enrollment mode may include a de-duplication module, which
evaluates whether the biometric data already exists in the database. Tradition-
ally, enrollment is an overt process.

Verification Mode: In verification, the probe biometric data is submitted with
a claim of identity. The system validates the claim of identity by comparing the
probe biometric data strictly with similarly labeled templates in the reference
database. In essence, the system is verifying the users claim of identity. This
sort of matching is commonly referred as 1:1 matching, as a probe is compared
against a single (or relatively small) number of reference entries. Verification
systems are adept at performing positive recognition tasks, wherein a user claims
to be a certain identity and the system either sustains or refutes this claim.

Identification Mode: In identification, the system only receives the probe bio-
metric data (i.e., a claim of identity is not submitted). Therefore, in order to
determine the identity of the probe, the system compares the features extracted
from the probe to every reference sample in the reference database. This type
of matching operation is commonly referred as 1:N matching, where N is the
number of reference samples in the reference database. In this dissertation, the
notation Nref will denote the total number of reference samples.2 The identi-
fication problem can further be described as either open-set or closed-set. In
closed-set identification the identity of the probe is known to be present in the
reference database. However, in open-set identification, the identity correspond-
ing to the probe may or may not be in the reference database. In practice, most
operational identification systems are open-set [13, 14]. In addition to perform-
ing positive identification tasks, identification systems are adept at performing
negative recognition applications, wherein the system establishes whether an in-
dividual is who they deny (implicitly or explicitly) to be [10].

2The notation N will denote the number of identities in a dataset.
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Figure 1.1: Simple flow diagram of a typical biometric system. During enrollment, the input
biometric data is labeled with an identity and placed in the reference database. During
matching, the input biometric data is compared against a set of reference samples in the
reference database in order to determine if a matching identity exists.

Formally, the enrollment process can be described with an input feature vector xE , and

an identifier, I. The feature vector and identifier are then added to the database.

Verification can be described with an input feature vector xQ, and a claimed identity,

I. The system must determine if (I,xQ) is either a genuine (true) or an impostor (false)

identity claim. The two outcomes can be represented as ω1 and ω2, where ω1 denotes the

genuine category and ω2 denotes the impostor category. Arriving at the decision of ω1 or

ω2 is dependent on the similarity between xQ, the input feature vector, and xI , the feature

vector in the database corresponding to user I. The degree of similarity is determined by

generating the match score through the function S(xQ,xI). The decision to classify the score

as belonging to the genuine or impostor class is typically regulated by a predefined threshold,



Brian M. DeCann Chapter 1. Introduction 5

denoted as γ. Thus a verification system classifies (I,xQ) according to the rule in Equation

(1.1).

(I,xQ) =

{

ω1, if S(xQ,xI) ≥ γ

ω2, otherwise
(1.1)

In identification, the system attempts to deduce the identity of input vector xQ, based

on the references present in the reference database. Let I1, I2, . . . , INref
denote the identities

that have been enrolled in the reference database, and x(Ik) (k = 1, 2, . . . , Nref) denote the

reference sample pertaining to identity Ik. The system then computes match scores for each

reference and orders them from highest to lowest. The output is a set of L identities whose

match scores exceed the decision threshold, γ. The identification process is described in

Equation (1.2). If no match scores are generated with a value exceeding γ, the output is an

empty set.

xQ =

{

Ik, if maxk[S(xQ,xIk)] ≥ γ, k = 1, 2, . . . , Nref

NULL, otherwise
(1.2)

If the system contains a de-duplication module, the input vector xQ is compared against

every reference sample in the database, not dissimilar from identification. If any of the

generated match scores exceed the decision threshold, xQ is flagged as a duplicate. The

system administrator may then choose to deny or accept enrollment of the probe sample.

1.1.3 Biometric System Errors

A verification system can result in two types of errors from the matching module. A false

match occurs when biometric samples from two different individuals generate a match score

greater than threshold γ. Conversely, a false non-match occurs when biometric samples from

the same individual results in the generation of a match score below threshold γ. As the

value of γ changes, so does the probability of the system incurring a false match or false

non-match. As the value of γ increases, the system is less tolerant of differences between

two corresponding feature vectors, which can reduce the probability of observing a false

match error, at the cost of increasing the probability of observing a false non-match. On the
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other hand, as the value of γ decreases, the system is better able to handle noise and input

variation. However, this comes at a cost of an increased likelihood that an impostor will be

deemed genuine by the system. Thus, there is an inherent tradeoff between the propensity

of the system to generate false-match and false non-match errors based on the selection of

the decision threshold, γ.

An identification system can also result in a false match and false non-match, although

these errors are defined differently. A false positive identification occurs when a probe,

which does not have a matching entity in the reference database, incorrectly matches to

some entity in the reference database [13, 14]. Conversely, a false negative identification

occurs when a probe, which does have a matching entity in the reference database, is not

observed in the output of L identities, or is observed at a position (e.g., rank) greater than

R (R = 1, 2, . . . , L).

1.1.4 Measuring Biometric System Performance

Since a biometric system is prone errors, it is necessary to develop techniques capable of

providing a meaningful estimation regarding the performance of the system (e.g., matching

algorithm). To facilitate this, a test database of biometric samples is required. Let N denote

the number of identities in a test database, with NG samples per identity. Denote the total

number of samples as NT (i.e., NT = N ·NG). By comparing each of the NT samples against

the remaining NT −1 samples, a total of NT (NT −1) match scores can be created. Assuming

S(xi,xj) = S(xj,xi) (i.e., a symmetric matcher), the number of distinct match scores is

1
2
NT (NT − 1). Such a process can be defined as performing an “all-to-all” match test.

When computing match scores, two distinct types are computed: Genuine match scores

and impostor match scores. Genuine match scores denote the scores generated when match-

ing two samples belonging to the same identity. Impostor match scores denote the scores

generated when matching samples belonging to different identities. For an “all-to-all” per-

formance test with a symmetric matcher, the number of genuine and impostor match scores

is given by Equations (1.3)-(1.4). Note that as the number of samples increases, the number

of impostor scores that can be generated becomes polynomially larger than the number of



Brian M. DeCann Chapter 1. Introduction 7

genuine scores.

#GenuineScores = N

(

NG

2

)

(1.3)

#ImpostorScores = N2
G

(

N

2

)

(1.4)

Using a histogram of the compiled genuine and impostor match scores, a pair of prob-

ability density functions can be estimated, denoting the probability of generating either a

genuine match score or impostor match score with a specific value. These distributions are

defined as the genuine match score distribution, fG(x), and impostor match score distribu-

tion, fI(x), respectively. Visually, these distributions offer meaningful information regarding

the separability of genuine and impostor scores.

Measuring Verification Performance

In addition to serving as a visual aid of the separability of match scores, the distributions,

fG(x) and fI(x) can be used to derive the False Match Rate (FMR) and False Non-Match

Rate (FNMR), which are two measures for estimating verification performance. Mathemati-

cally, the FMR is defined as the integral of fI(x) for x ∈ [γ,∞). Similarly, FNMR is defined

as the integral of fG(x) for x ∈ (−∞, γ]. These expressions are provided in Equations (1.5)

and (1.6). A looser interpretation of the FMR is the percentage of generated impostor scores

that exceed γ. Similarly, the FNMR can be loosely characterized as the percentage of gen-

erated genuine scores that are less than γ. Since the FMR and FNMR are obtained based

on estimates of fG(x) and fI(x), which in turn are estimated from the entirety of the match

score data, these error rates can be defined as aggregate-based measures.

FMR(x) =

∫ ∞

γ

FI(x)dx (1.5)

FNMR(x) =

∫ γ

−∞

FG(x)dx (1.6)

Note that the FMR and FNMR are a function of the decision threshold, γ. Using

Equations (1.5) and (1.6), the Equal Error Rate (EER) can be derived, which denotes the
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value of γ where the FMR and FNMR are equal. Graphically, the FMR and FNMR are

often expressed by a Receiver Operating Characteristic (ROC) curve. The ROC curve plots

1-FNMR versus FMR for the range of γ.

The ROC itself has been extensively studied in the literature. Hanley and McNeil demon-

strated that for a two-class problem (i.e., a classification problem with two outcomes), the

area underneath the ROC curve (denoted by AUC) represents the probability that randomly

selected data from both classes can be correctly classified [15]. Martin et al. defined the

Detection Error Tradeoff (DET) curve, as a variant of the ROC curve [16]. The DET curve

plots the false non-match rate versus the false match rate, directly visualizing the tradeoff

between observing both types of errors. In addition, Green and Swets define the d′ metric,

which similar to the AUC, attempts to qualitatively measure the ROC using a single number

[17].

Measuring Identification Performance

When evaluating identification performance, a set of probe samples (of size Nprobe) is

matched against a set of reference samples (of size Nref), resulting in Nprobe sets of match

scores, with each set containing Nref match scores. The match scores in each set are then

ordered from highest to lowest.

In open-set identification, these sets are used to assess the False Positive Identification

Rate (FPIR) and False Negative Identification Rate (FNIR), where the FPIR and FNIR

are defined as the proportion of false positive identification and false negative identification

errors observed from each of the Nprobe ordered match score sets. Typically, the FPIR and

FNIR are measured as a function of both γ and Nref , the number of reference samples.

In closed-set identification, the ordered score sets from the Nprobe probes are used to

estimate the general probability that the correct matching identity pertaining to a probe is

observed within the top K (K ≤ N) ranks. In other words, the FNIR is computed with

γ = 0. These probabilities are typically expressed visually through the Cumulative Match

Characteristic (CMC) curve [8, 18, 19, 20, 21, 22]. Unlike the ROC curve, which is generated

by looking at genuine and impostor scores all-at-once, the data in the CMC curve is obtained

based on the explicit ordering of genuine and impostor scores in each ordered score set. As
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Figure 1.2: Example of the ROC curve (left) and CMC curve (right). Note in closed-set
identification the CMC converges to a value of 1.0 as the number of ranks approaches the
number of identities in the reference database.

such, the CMC curve can be defined as a rank-based metric. An example of both an ROC

and CMC curve is presented in Figure 1.2.

In general, most biometric identification systems in real-world applications operate in the

open-set mode [13, 14]. However, in the academic literature, most performance evaluations

are conducted in the closed-set mode [8, 23, 24]. One possible explanation for this is that

academic researchers do not have available the resources necessary to collect and maintain

large-scale databases and thus by testing in closed-set, can utilize a maximum number of

match scores for evaluation.

1.2 Biometric Surveillance Systems

1.2.1 Surveillance Systems

Surveillance has been a long used tool to protect private or commercial property. A sim-

ple surveillance system consists of a stationary camera, which records the events occurring

within its field of view. Examples of such systems consists of Pan-Tilt-Zoom (PTZ) cameras

and Closed Circuit Television (CCTV). Traditionally, these systems are used to deter crimi-

nal activity, as it is not unreasonable to suspect these cameras might be manually monitored



Brian M. DeCann Chapter 1. Introduction 10

Figure 1.3: Sample images selected from the Performance Evaluation of Tracking and Surveil-
lance (PETS) 2007 dataset [1]. Here, a scene is viewed by four surveillance cameras. Note
the existence of correspondences between images.

or recorded. In the recent past, deployment of extensive networks [25, 26] of these cameras

for the purposes of surveillance by businesses and local authorities has become increasingly

popular. Today, it is increasingly common to view such networks within gas stations, com-

mercial banks, casinos, shopping centers, schools, and in some cities, public street corners.

Camera networks for major cities and municipalities is exceptionally large. For example, in

Great Britain, more than four million cameras have been deployed, with at least 200,000

cameras in London [27]. Similarly, in the United States, cities such as Chicago (2,250 cam-

eras) [28], New York City (2,500 cameras) [29] and New Orleans (1,000 cameras) operate

extensive camera networks [30]. Figure 1.3 illustrates an example of surveillance imagery

collected within an airport.

Given the ever increasing amount of surveillance information, it is near-impossible for it

to be manually tended to at all hours of the day. This itself, presents a challenge. Media

reports have indicated that despite the rise in deployed cameras, few are regularly watched



Brian M. DeCann Chapter 1. Introduction 11

[31, 32, 33]. Moreover, studies have also demonstrated that overburdened human operators

will profile, or selectively monitor individuals, based on factors such as race or age, which

raises ethical questions [34, 35].

If there is an over abundance of observable data, how can it be reliably used to safe-

guard against criminal activity? The answer lies in automation of the surveillance process.

Processing power of computer systems has been continually increasing, while the cost for it

diminishes. This allows for implementation of reliable algorithms for automated surveillance

systems [36, 37, 38, 39, 40]. An automated surveillance system consists of two compo-

nents: an event detection scheme, which directs attention to potential threats and a tracking

scheme, which can be used to rapidly fuse information from one person appearing in multiple

cameras. An example of such a system is the problem of license plate recognition in traffic

safety applications [41, 42].

Methods for event detection have also been characterized as activity recognition in the

literature and have received extensive attention [43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. Recent

progress and maturation in this field is evidenced by the recent deployment of event detection

algorithms in subway stations in San Francisco, California [53] and at the 2012 Republican

National Convention in Tampa, Florida [54]. Regarding the tracking component, methods

which consolidate information from individuals present in multiple cameras (at the same or

different times) has also been an active area of study in the recent literature and is defined

as the “re-identification” problem [55, 56, 57, 58, 59, 60, 61]. Information collected by the

system for event detection or tracking could also be used to perform human identification.

This can be accomplished by including a biometric recognition component into an automated

surveillance system.

1.2.2 Formal Definition

A biometric surveillance system is therefore an automated surveillance system that uses

video or images captured from a camera (or camera network) and uses the information

acquired to perform biometric recognition. Such a system invokes the same architecture

of a traditional biometric system (described in Section 1.1.1), wherein the sensor module
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represents the camera systems used to collect surveillance data. The matching module of

a biometric surveillance system operates strictly in identification mode. For this reason, a

biometric surveillance system is sometimes referred to as a system performing “identification-

at-a-distance”.3 By definition, a surveillance system aims to determine “who is present” in

a scene, rather than individuals presenting a claim of identity.

In contrast to a traditional biometric system, a biometric surveillance system (or an

identification-at-a-distance system) is unique in that the acquisition of biometric data is

passive. That is, an individual does not need to voluntarily interact with the image sensor.

This property is advantageous as it enables such systems to operate covertly, which may aid

in reducing the probability an individual can maliciously circumvent the system. However,

passive acquisition of biometric traits reduces the pool of candidate biometric traits a sys-

tem may use. For example, traits such as hand geometry, fingerprint, voice and vascular

structure require precise interactions with a sensor to properly acquire the biometric data

and cannot be used. In addition, since there are fewer constraints (in general) emplaced on

the acquisition of a biometric trait, the data obtained in covert settings may be more noisy,

which can adversely affect matching performance.

1.2.3 Challenges in Biometric Surveillance Systems

Research towards the development and deployment of a biometric surveillance system is

not new. Perhaps the first open challenge in the United States to develop such a system

was from the Defense Advanced Research Projects Agency (DARPA) in the early 2000’s.

The goal of the program was “to develop automated biometric identification technologies to

detect, recognize and identify humans at great distances” [62]. A selection of the intended

goals of the program included developing algorithms for locating and acquiring individuals

at distances of 500 feet [62].

Successful realization of a biometric surveillance system requires addressing the challenges

associated with each component of the system: Detection, tracking and recognition. As

previously mentioned in Section 1.2.1, event detection via recognition of actions is well-

3In this dissertation, the terms biometric surveillance system and identification-at-a-distance convey the
same meaning and are used interchangeably.
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studied topic in the literature [43, 44, 45, 46, 47, 48, 49, 50, 51, 52], as is tracking of individuals

[63, 64, 65, 37, 38, 39, 40, 66] and linking tracks between cameras (i.e., re-identification)

[55, 56, 57, 58, 59, 60, 61]. However, the recognition component has many challenges that

have not been sufficiently addressed. This includes subcomponents such as an appropriate

biometric modality, the matching scheme, and analysis of errors.

Challenges in Biometric Modality

One of the major challenges of performing recognition at a distance is ensuring the

biometric can be reliably collected, as a surveillance system operates in an unconstrained

environment where individuals do not voluntarily interact with the camera system. That

is, selection of an appropriate biometric modality must balance the trade-off between col-

lectability and distinctiveness (Section 1.1). For example, biometric recognition via the iris

has demonstrated extremely high discrimination power, with some large-scale system oper-

ators claiming no false match has been recorded [67]. However, conventional iris matching

requires a minimum eye radius of 70 pixels [68]. In low-resolution images (such as those in

a CCTV camera), this is simply not enough data to perform matching. While the camera

resolution could be increased, this brings the enormous challenge of localizing an iris in a

large and active background, which may be computationally infeasible.

Face recognition could be viewed as an alternative biometric suitable for surveillance

applications, as compared to iris, the resolution required to match a face is much lower. As

such, this allows for a greater distance for which recognition can be achieved, a property

desirable for surveillance. In addition, the challenges of localization are less daunting, and

several researchers have contributed positively to this problem. Examples of face detection

algorithms include, but are not limited to: Viola and Jones [69], Rowley et al. [70] and

Hsu et al. [71]. However, assuming localization can be accomplished, challenges such as

matching different profiles (i.e., viewpoints of the face), facial expressions, and illumination

remain difficult challenges, which can negatively impact matching accuracy.

Given the inherent detection and localization challenges in performing face and iris recog-

nition, it may be worthwhile to consider “non-traditional” biometric modalities as well.

Human gait, for example, is a biometric trait that may be advantageous for surveillance
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applications. Gait recognition is typically performed by extracting features from a set of im-

ages, of which explicit subject interaction with the camera is not required, thus satisfying the

collection criteria for a biometric surveillance system. In addition, extraction of features for

recognition can be accomplished at resolutions much smaller than that of face and in images

of lower contrast [72]. Further support for gait as a potential biometric for surveillance sys-

tems is evidenced in criminal investigations wherein forensic experts were able to successfully

implicate potential suspects in robbery cases in the United Kingdom [73] and Denmark [74]

using human gait patterns from CCTV cameras. Localization of a human within an image is

also a challenge, but, as with face, this topic is actively studied and relatively sophisticated

in the literature. Examples of human detection algorithms include the works from Dalal and

Triggs [63], Mikolajczyk et al. [64] and Tuzel et al. [65]. Due to the potential advantages of

using gait for human recognition, for the purposes of this dissertation, an emphasis is placed

on the methods and applications of human gait recognition.

Challenges in Matching

An additional challenge for a biometric surveillance system has to do with the manner in

which matching of encountered individuals can be achieved. In an operational environment,

a biometric surveillance system observes some number of individuals and presumably, a

subset of whom the system has not previously observed. That is, it is very likely the system

does not have in its local database the corresponding biometric data of every individual it

observes. This may be particularly true for “non-traditional” or “soft” modalities such as

gait. Complicating the issue, performing a controlled enrollment such that biometric data

is available for a majority of individuals the system is expected to encounter is unrealistic.

Even if such a task could be reasonably accomplished, it would be both fiscally and time

intensive. This presents a challenge in the act of performing recognition, as a biometric

system cannon perform its primary function if it is not able to deduce any information

regarding the individuals it encounters. For this reason, a biometric surveillance system

should be able to adaptively and dynamically assemble and maintain a reference database

over time. Such a property has been understudied in the literature.

In addition, a biometric surveillance system is likely to acquire large amounts of data over
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time. Consequently, it may be necessary for maintenance purposes to remove or otherwise

consolidate duplicate reference entities (i.e., any pair of reference entities that correspond to

a single identity) [75]. This process is defined as de-duplication (previously defined in Section

1.1.2). In a de-duplication matching outcome, the result can also result in a dynamic change

in the composition of the reference database (i.e., when a reference sample is flagged or

“de-duplicated” from the reference database).

Challenges in Error Analysis

Note that in both of the previously defined matching challenges (matching non-enrolled

identities and managing duplicate entries), the query to the system may or may not have

a matching reference entry in the database. This loosely resembles the “open-set” iden-

tification problem, as defined in Section 1.1.2. However, while error analysis for open-set

identification does account for reference databases of varied size, the error rates (FPIR and

FNIR) assume reference entries are correctly labeled. Should reference entries be assigned

labels (i.e., identifiers) automatically by the system, it is possible that labeling errors (via

matching errors) can alter the matching dynamics such that FPIR and FNIR no longer

resemble the actual error rates incurred.

1.3 Human Gait Recognition

1.3.1 Introduction to Gait Recognition

Gait recognition is defined as the pattern of locomotion in animals. Human gait therefore,

is the manner in which people walk. Human gait is studied by researchers in computer

vision, psychological, biomedical, and biomechanical fields. Traditionally, biomedical and

biomechanical researchers study gait as a diagnostic indicator [76, 77, 78] and to study

mechanical loads [79, 80], whereas researchers in computer vision and psychology study

gait as it pertains to recognition (i.e., biometric) capability. Unlike traditional biometric

modalities (e.g., face, fingerprint, iris) gait is sometimes classified as a soft biometric. Human

gait recognition is perceived as an attractive solution for distance based recognition for a
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number of reasons. First and most importantly, human gait is believed to be unique to the

individual. Psychological studies by Cutting and Kozlowski demonstrated that humans are

capable of perceiving gender and known individuals based on gait [81, 82]. Second, the gait

biometric can be acquired passively, meaning physical interaction with the system is not

required to collect the gait biometric from an individual. Passive acquisition beneficial as

individuals unaware of the system may be less likely to conceal or otherwise spoof biometric

information. Finally, discriminatory features of human gait can be perceived in low resolution

video sequences. This suggests that expensive camera systems are not required for gait

recognition [72]. In general, methods for extracting features for recognition of human gait

can be categorized as model-based or model-free approaches.

1.3.2 Classes of Gait Recognition Approaches

Model-Based Approaches

Model-based approaches use information collected from known structure of individuals

or through models of the human body. For example, biped models are common, but vary

on the level of complexity and type of information extracted. Features extracted through

a model-based approach include spectra of thigh inclination [83], thigh rotation [84], stride

and elevation parameters [2, 85] and cadence [86]. The primary reason for classifying gait in

this manner is that these models allow for robust feature extraction. An example of a biped

model and features that can be extracted are presented in Figure 1.4.

The primary benefit of a model-based approach is that if a model can accurately estimate

the structural estimation of a human body, distortions or occlusions induced from the pres-

ence of objects are less likely to result in a decrease in recognition performance. However,

model-based approaches are often complex and increased processing requirements may limit

the application of these approaches in real-time environments.

Model-Free Approaches

Model-free approaches generally aim to extract features based on analyzing a moving

shape. In general, the primary advantage of a model-free methodology is simplicity, as
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Figure 1.4: Example of a biped model used to extract featured in a model-based gait recog-
nition algorithm [2].

Original Image Silhouette

Figure 1.5: Example of a silhouette image (right) captured from raw video data (left). The
silhouette image represents the shape or “contour” of a detected person.

features are entirely derived from silhouette shape dynamics. Typically, this is facilitated by

the detection and conversion of the shape of a human individual into a binary “silhouette”.

An example of an extracted silhouette is illustrated in Figure 1.5.

The work by Niyogi and Adelson is recognized as one of the first approaches to automated

gait recognition [87]. In their work, active contour methods were applied to the contour of

a detected human and the change in the contour parameters was used as the feature for

recognition [88]. Other early approaches were based on eigenspace projections using principle

component analysis [89] or linear discriminant analysis [90].
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Appearance based methods, which treat an image of the human body as the principal

feature for recognition are perhaps the most popular approaches. Han and Bhanu first

defined the Gait Energy Image (GEI) [91, 92], which is loosely defined as computation of the

“average silhouette” and performing subspace optimization (e.g., PCA) and or discriminant

analysis (e.g., LDA) to reduce the dimensionality of the image prior to matching. Due

to its ease of computation, it is often cited as a benchmark for performance comparison

and has spawned several variants. Several variants of the original GEI algorithm have been

proposed, which denote pre-processing the “average silhouette” and or subspace optimization

scheme. For example, the Enhanced Gait Energy Image (EGEI) by Yang et al., makes use

of 2-D PCA to perform subspace optimization. Guan et al. also make use of 2-D PCA in

conjunction with a random subspace projection as a method for subspace optimization [93].

Similarly, Tao et al. define a feature vector based on the Gabor response of the “average

silhouette” and use a tensor discriminant for subspace optimization [94]. Zhang et. al

define the Active Energy Image (AEI), which denotes an image representation based on the

successive difference between frames and uses 2-D Locality Preserving Projections (2DLPP)

to perform subspace optimization [95]. A similar image representation is the Gait History

Image (GHI) by Liu and Zhang [96]. Chen et al. define a method that combines the positive

difference of silhouette images to the GEI image to define the Frame Difference Energy Image

(FDEI) [97]. Tan et al. also suggest cropping the “average silhouette” to just the “head”

and “torso” regions [98]. This is defined as the Head Torso Image (HTI) [98].

Other approaches attempt to extract features from key poses or “stances” from the

sequence of silhouette images. Sundaresan et al., define a method by which key poses can

be directly used in a Hidden Markov Model framework for matching [99]. Kale et al. also

define a Hidden Markov Model framework using the silhouette contour width as the primary

feature for matching [100]. The evolution of the silhouette contour has also been defined

as a Frieze pattern, which has been discussed as a feature descriptor by several authors

[101, 102, 103, 104]. Alternatively, Wang et al., first show the evolution of the silhouette

contour can be warped into the Procrustes shape-space, which is a method for computing

the difference between 2-D shapes [105].
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1.3.3 Segmentation and Silhouette Extraction

Traditionally, most gait recognition algorithms begin by converting the raw image data

(which includes a detected human) into a set of binary “silhouette” images. In particular, this

most commonly applies to recognition algorithms of the “model-free” variety (Section 1.3.2).

The silhouette image is a binary image denoting the 2-D shape of a human as it occurs in a

particular instance within the raw image data (Figure 1.5). In general, since the objective of

gait recognition is to identify spatiotemporal features regarding human movement, the raw

pixel intensities are not important. In fact, use of such information may be inappropriate as

raw pixel data contains information such as clothing, which is very likely to vary with time.

In the gait recognition literature, the simplest and most common method for performing

silhouette extraction is through background subtraction [106]. In simple background sub-

traction, an image I0, denoting a “blank” scene (no individuals are present) is compared

against a similarly aligned image, Ik, which has an individual present engaging in some type

of action (in this case, walking). The absolute difference of I0− Ik yields a difference image,

Idiff , which has large intensity values in the pixel regions denoting the captured human. Us-

ing a threshold, all pixel values exceeding the threshold value can be assigned as foreground

(i.e., belonging to the human) and the remaining pixels can be assigned as background (i.e.,

not belonging to the human). To eliminate the effect of spurious motion artifacts and noise,

the silhouette image is often post-processed with a set of morphological filters. This process

is summarized in Equations (1.7) and (1.8), where B denotes the silhouette image and λ

denotes an intensity threshold.

Idiff = abs(Ik − I0) (1.7)

B =

{

1, Idiff > λ

0, Idiff ≤ λ
(1.8)

To improve the silhouette extraction process, the image data is often pre-processed with

a contrast enhancement or edge enhancement filter. An example of a contrast enhancement

process is Contrast Limited Adaptive Histogram Equalization (CLAHE) [107]. CLAHE

enhances the contrast of images by partitioning an image, I, into many sub-regions (or
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a) Image I
k b) Contrast Adjusted Image

c) Background Image d) Difference Image

e )Resolved Silhouette

Figure 1.6: Segmentation process from a raw video image to a silhouette. a) Raw video
image, b) Image following contrast enhancement, c) Background image, d) Difference image
created by subtracting the contrast enhanced image from the background image, e) Resolved
silhouette following thresholding and noise removal.

tiles) and applies histogram equalization to each region. Median filtering prior to contrast

enhancement reduces the likelihood noise is amplified by the enhancement process. Figure

1.6 illustrates the process of resolving a complete silhouette image.

In the event the silhouette extraction process proves to be erroneous or difficult, popula-

tion based Hidden Markov Models have shown to be capable of silhouette enhancement [108].

For very long sequences, consisting of many complete gait cycles, usage of the foreground

sum signal (sum of silhouette area) can be used to identify the best subset of frames to use

for recognition [109].

1.3.4 Measuring Silhouette Quality

In the biometric literature, it is commonly believed that the quality of the raw biometric

data is correlated with the separability of genuine and impostor match scores [110]. In other

words, the variance in the genuine and impostor match score distributions is believed to be

influenced by the quality of the data used for feature extraction. As such, researchers have

developed methods for quantifying the quality of the raw biometric data. The operational

impact of a quality assessment subroutine is that poor quality data is automatically rejected
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from the system or flagged for intervention from a human operator. An example of an

established quality metric is the NFIQ fingerprint quality measure developed by the National

Institute of Standards and Technology (NIST) [111].

In the gait recognition literature, one such measure for measuring silhouette quality has

been developed by Liu et al. [109]. The measure is based on an estimate of the noise in the

“foreground-sum signal”, which is defined as the sum of all foreground pixels in a silhouette

image over a sequence of silhouette image data. A brief description of this measure is

provided in the following paragraphs.

In a set of binary silhouette images, Bk (k = 1, 2, . . .), the foreground-sum signal is

defined as the sum of foreground pixels in the kth image. Mathematically, this is defined

in Equation (1.9). In theory, φ(k) is periodic according to the rate at which an individual

performs one half of a gait cycle.

φ(k) =
∑

∀x

∑

∀y

Bk(i, j) (1.9)

Holes in the silhouette, or spurious foreground pixels caused from shadow artifacts can

greatly impart noise to φ(k). Noise is measured in a three-step process. First, φ(k) is

spatially normalized. Denote the spatially notmalized signal as f(k). Spatial normalization

is necessary to handle data collected at varying spatial resolutions. This also enables the

quality metric to be compared across datasets. The normalization process is defined in

Equation (1.10). Note the normalization parameters a0 and a2 in Equation (1.10) denote

the DC component and amplitude of φ(k), respectively.

f(t) =
φ(k)− a0(k)

a2(k)
,where a0 = E[φ(k)], a2 =

sup{φ(k)} − inf{φ(k)}

2
(1.10)

Next, the autocorrelation matrix of f(k), Rf(k), computed. An eigenvalue decomposition

is then performed on Rf(k). The resulting quality metric is denoted as ψ and is obtained

by summation of the first two eigenvalues (λ1, λ2), followed by subtraction of the 5th to d

(λ5, . . . , λd) eigenvalues, where d is the dimension of the autocorrelation matrix (Equation

(1.11)). In general, the periodicity of a silhouette is captured by λ1 and λ2, while λ5, . . . , λd
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denotes noise. Note that the 3rd and 4th eigenvalues are neglected. This is intentionally done

as these components are likely to reflect both periodicity and noise[109]. Thus, a large value

of ψ is indicative of higher quality silhouettes.

ψ =

2
∑

i=1

λi −

M
∑

i=5

λi (1.11)

1.3.5 Perceived Challenges in Gait Recognition

Gait recognition has many perceived challenges, many of which are applicable in regards

to a surveillance system. In response, the research community has been actively working to

address these issues. Some of these issues are have received more attention than others.

Robustness to Silhouette Variations

One of the primary concerns is that most gait recognition approaches, in particular those

of the model free variety, are less robust to silhouette variations that may arise in the silhou-

ette. These variations can be a consequence of the person, as when an individual is observed

carrying objects or with different clothing [112]), or a consequence of poor segmentation

(i.e., the silhouette is degraded by erroneous holes or contains shadowing artifacts). In fact

some research as demonstrated that the observed matching performance can be artificially

increased if the matcher is encoding silhouette errors (e.g., shadow effects) [108].

Regarding the effect of clothing, the usage of part-based models has been proposed as

a means to mitigate this challenge [113], but it remains an open challenge. Similarly, with

regard to errors in silhouette extraction, with exception to the study by Liu and Sarkar [108],

this problem is generally not studied in the gait recognition literature.

Though silhouette extraction via background subtraction is computationally simple and

effective in a laboratory setting, its effectiveness in resolving silhouettes in less constrained

environments (such as in an outdoor setting) is likely to be diminished. For example, in

an outdoor setting, natural illumination changes via sunlight or swaying tree branches can

impart the ability to quantify the background using a single image. Unfortunately, most

researchers in the gait recognition literature neglect the problem of silhouette extraction
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in difficult environments. Some of these challenges have been addressed by the general

computer vision community. For example, Kim et al. [114] define a “Codebook Model” for

background subtraction, which attempts to model the expected mean and variance in pixel

intensities within a local neighborhood, thereby using an adaptive threshold for foreground

classification. In addition, methods for modeling the background using gaussian mixture

models [115] and fuzzy logic [116] have been proposed.

Though the aforementioned segmentation methods are more robust to illumination in-

variance, it is important to note that these algorithms are designed to operate in the visible

spectrum. In a surveillance context, there is no assurance that images will have three chan-

nels of information. For example, CCTV images are often grayscale images. Aside from the

work by Jacques et al. [117] denotes a background detection and shadow removal method

explicitly for grayscale images, there is very little research focusing strictly on grayscale

imagery. Further, there are no studies confirming whether methods applicable for grayscale

imagery in the visible spectrum can also be extended to other image spectrums (e.g., thermal,

short-wave infrared, etc.).

Robustness to Viewpoint

Viewpoint (i.e., the angle an individual is observed walking in the image plane) is also

considered a challenge in gait recognition. Arguably, gait is best captured with respect to

the Sagittal plane (side-profile) of the human body, since the dynamics of the legs, arms

and body are most visible. Research has shown however, that matching can be performed

when evaluating gait sequences from multiple viewpoints [118], but a different camera view

between a probe sample and a reference entity will result in a loss of matching accuracy

[24, 112]. Models for transforming the silhouette to a common domain have been proposed

to rectify this issue. These models have shown promise when the difference in viewpoint is

minimal [119] or large [87], but not for both cases inclusively.

Robustness to Time

One generally unanswered question regarding human gait recognition is the whether the

gait biometric is stable over time (i.e., its permanence). To date, there is not sufficient
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research to conclusively determine whether time impacts the stability of the gait biomet-

ric. If time is a factor, it is necessary to understand the rate at which the biometric trait

degrades. Some large scale studies have attempted to investigate this issue. For example,

the HumanID Gait Challenge dataset [120] does include data for temporal analysis and the

baseline evaluation does demonstrate a loss of recognition performance over a period of six

months. However, the temporal analysis was not an intended area of study and consequently

the probe and reference data where time is a factor is also included with additional confound-

ing factors. Conversely, a small study by Matovski et al. concluded that time does not have

an impact on gait [121]. This study was performed using 25 individual identities in a con-

trolled environment over a period of nine months, where an identification accuracy of 95%

was reported between the two collection periods. Presently, no other studies or datasets in

the literature seek to address this issue.

1.4 Motivation

The motivation of this dissertation is to formally introduce and discuss some of the

aforementioned challenges facing a biometric surveillance system (or a biometric system per-

forming identification-at-a-distance). In particular, human gait recognition in the short-wave

infrared (SWIR) spectrum is highlighted as a potential solution for a suitable recognition

modality and image spectrum. In addition to an evaluation regarding the ability to perform

gait recognition in an operational environment, a subsequent analysis is performed regarding

whether gait patterns (on a silhouette-level) can be clustered.

Beyond the selection of image and recognition modalities, it is also important to address

the operational challenges of a covert biometric surveillance system. Namely, how might

the system dynamically update its database, and given a method to facilitate this, is the

probability of error affected? In addition, an operational surveillance system may collect an

abundance of data. Consequently, it may be necessary to de-duplicate (e.g., consolidate)

identity profiles. However, the errors surrounding the (general) de-duplication task have

not been described in the literature. Thus, an analysis is performed to ascertain whether

traditional measures can predict de-duplication error. Finally, an analysis is performed with
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regard to academic evaluations of the identification problem. Typically, such evaluations are

performed in closed-set and measured with the CMC curve. However, the performance values

presented by the CMC curve may not reflect a true indication regarding the separability of

match scores (which is depicted in the ROC curve). Thus an analysis is performed relating

the various outcomes that can occur from both curves from the same match score data.

1.5 Contributions

The primary contributions of this dissertation are as follows:

1. A method for performing automated human gait recognition is presented. Inspired

by the work by Wang et al. [105] and defined as the “Gait Curves” algorithm, the

algorithm denotes a model-free method for matching a sequence of silhouette images

by treating the “left” and “right” contours of the silhouette as 1-D signals and warping

them into the Procrustes shape-space for matching. The matching performance of

the Gait Curves algorithm is comparable to existing methods in the literature on

benchmark datasets.

2. Matching performance of the Gait Curves algorithm (and benchmark algorithms) is also

evaluated on a new, novel dataset. Defined as the WVU Outdoor SWIR Gait (WOSG)

dataset, the dataset is distinct from traditional gait recognition datasets in that it is

designed to be more closely related to the type of data that may be encountered in an

operational setting. In addition, the WOSG dataset is the only large gait recognition

dataset that has been collected in the Short-Wave Infrared (SWIR) spectrum, which

may be an operationally advantageous spectrum for an operational gait recognition

system.

3. By treating individual gait curves as 1-D signals, it is also possible to detect the

presence of carried objects that can distort the shape of the silhouette and correct

for them. As such, a method for accomplishing this is demonstrated in the case of

backpack detection.
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4. An analysis is performed demonstrating that human gait can be clustered using a

variety of feature descriptors (i.e., methods) and clustering algorithms.

5. A matching framework is defined which may be advantageous for surveillance-based

applications. Defined as “Anonymous Identification”, the framework enables the au-

tomatic enrollment of probes into the reference database when a match to an observed

probe cannot be found.

6. Since Anonymous Identification denotes a variant of the classical open-set identifica-

tion problem, where the contents of the reference database can be altered following

a matching decision, a comprehensive error analysis is performed. The result of the

error analysis suggests that (a) the sequential order in which probes are observed can

profoundly impact the observed error rate of the system and (b) traditional measures

for reporting biometric performance (i.e., FMR, FNMR, FPIR and FNIR) do not ac-

curately model anonymous identification error.

7. To account for the failure of traditional measures to describe anonymous identification

error, an error model is developed to act as a better prediction of these errors. The

proposed error model is also relevant to matching schemes where the contents of the

reference database can change depending on a matching outcome, as in biometric de-

duplication and re-identification.

8. A follow-up study is performed into the errors of biometric de-duplication, which is

relevant for the maintenance of large biometric databases. The analysis demonstrates

that in a simple problem space, de-duplication error cannot be accurately assessed

using traditional measures for error analysis.

9. An in-depth analysis regarding the relationship of ROC and CMC curves is performed.

The principle results demonstrate that a single ROC curve can be mapped to many

CMC curves. Consequently, the CMC curve should always be accompanied by the

ROC curve in order to better characterize performance.
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Figure 1.7: The organization of this dissertation can be viewed into two components: “Meth-
ods and Analysis” and “Performance Models and Measures”.

10. The analysis regarding the ROC and CMC relationship is supported by a method for

creating faux identities from an input set of genuine and impostor match scores. The

method leverages the Doddington’s Zoo concept to create different inter- and intra-class

relationships between identities.

1.6 Thesis Organization

This dissertation can be characterized into two components: “Methods and Analysis”

and “Performance Models and Measures”. In the “Methods and Analysis” component, the

principle aim is to discuss the challenges surrounding the hardware (e.g., image sensor)

and matchers (e.g., recognition algorithms) in a biometric surveillance system performing

automated gait recognition. Chapter 2 discusses much of this, providing an algorithm for

performing automated gait recognition and performs an evaluation on a new and challenging

dataset, which acts as a better representation of operational data. Chapter 3 provides an
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investigative look into gait recognition as a clustering problem, where the objective is to

determine if the gait biometric can be clustered, and if generated clusters can be explained

in a physiological context.

In the “Performance Models and Measures” component, the principle aim is to investigate

the functionality of traditional biometric measures (e.g., ROC and CMC curves, FPIR, FNIR,

etc.) in describing error in biometric surveillance systems; particularly systems that engage

in a dynamic matching process (e.g., the matching outcome impacts the composition of

the reference database). This is primarily expanded upon in Chapter 4, in the context of

an “Anonymous Identification” system, which generates “identity profiles” by dynamically

enrolling observed probes into the database, as opposed to using (i.e., assuming) a fixed

subset of enrolled reference samples. In Chapter 5 an analysis is performed on the data

represented by the ROC and CMC curves, where the former is not typically presented in

identification-based evaluations. A case is presented suggesting that both curves should be

reported in an identification-based evaluation, as the CMC curve may not depict the same

information as the ROC curve. Chapter 6 presents an investigative study concerning the

de-duplication problem, and whether traditional error measures (Section 1.1.4) can be used

to predict error in a de-duplication process.

Finally, Chapter 7 summarizes the findings of this dissertation and presents suggestions

for future work and recommendations to researchers in the field. A visual overview of this

organization is provided in Figure 1.7.
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Chapter 2

Methods for Recognition of Human

Gait

2.1 Introduction

2.1.1 Design of Gait Recognition Algorithms and Datasets

The early literature surrounding gait recognition served primarily to demonstrate that

automated gait recognition may be possible [83, 86, 88, 90, 101, 122]. However, many of these

early works demonstrated performance on small datasets, typically consisting of few individ-

ual identities and or constraints. Such conditions are not representative of an operational

biometric system (traditional or at-a-distance). Thus, in order to advance gait recognition

as a candidate biometric modality for a biometric surveillance system it is necessary to

(a) design recognition algorithms capable some degree of robustness to environmental (e.g.,

distance from camera, resolution of captured individuals) and individual variances (e.g., pres-

ence of objects, cadence, walking direction, etc.) while remaining computationally efficient

and (b) develop and design datasets that more closely represent an operational environment

(Chapter 1, Section 1.3.5).

With respect to algorithms for automated recognition of human gait, an ideal gait recog-

nition algorithm would be defined by the following properties:

• Matching Accuracy : The algorithm should demonstrate success in identifying large
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numbers of individuals.

• Robustness to Covariates : The algorithm should be able to perform recognition in

the presence of challenging matching situations. Examples of such situations include

matching to differing walking directions, speeds, and the presence of objects.

Although trivial, any algorithm developed must first show some degree of baseline match-

ing accuracy. In particular, demonstration of high matching accuracies from an “established”

test database with a large number of identities. Here, “established” refers to a database uti-

lized and accepted by researchers in the field. In addition, a recognition algorithm must

show some degree of robustness to challenging matching situations (i.e., covariates), which

can confound the matching accuracy. Examples of such situations include matching individ-

uals walking in different directions (i.e., walking paths), individuals wearing different clothes

and clothing styles, and individuals carrying objects.

With respect to datasets, the following criteria are desirable for operational data:

• Walking Protocol : Walking paths should include multiple directions at varying dis-

tances to the camera.

• Environment : Data collection should occur in an uncontrolled environment; preferably

one that is outdoors.

• Image modality : The camera hardware should represent the type of data used in an

operational setting.

Regarding the walking protocol, in an operational setting, it is likely that an individual

will be observed at walking in any direction, at varying distances to the camera. This is

important, as a matching algorithm must be able to compare feature vectors obtained from

sequences acquired at differing spatial resolutions. Regarding the collection environment, it is

likely an operational gait recognition system will encounter multiple individuals and spurious

motion artifacts within a scene. It may also be possible that environmental properties such

as illumination (via cloud cover) could vary in the short term. Although these issues are

more directly related to segmentation and silhouette extraction, they are nonetheless critical
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for an operational system. Finally, the image modality (e.g., RGB, Infrared, etc.) should

be similar to the type of data used operationally. Although this may appear trivial, images

in different spectrums have different challenges. Therefore it is important to target those

challenges which are most pertinent for operational data.

2.1.2 Chapter Motivation

In this chapter, both (a) an algorithm for performing gait recognition and (b) a challeng-

ing dataset for investigating gait recognition are described. The matching algorithm that

will be discussed matches what is to be defined as “gait curve” matching; or more formally,

the “Gait Curves” matching algorithm. In general, a gait curve denotes a mathematical

representation of ones gait, acquired from a set of frames in which an individual is observed.

Compared to existing methods in the literature, matching gait curves is computationally

efficient and does not require a training component. In addition, the properties of a “gait

curve” can also be exploited for object detection and restoration of distorted silhouettes.

The matching performance of the algorithm is compared against two additional algorithms

from the gait recognition literature on standard datasets. Finally, the matching performance

of the Gait Curves algorithm is evaluated on a new and challenging dataset, which is de-

fined as the WVU Outdoor Gait SWIR (WOSG) dataset. The dataset is designed to mimic

a number of the challenges faced in operational data that are not present in existing gait

datasets. One feature of the WVU Outdoor SWIR Gait dataset denotes data acquired from

the short-wave infrared (SWIR) spectrum, which may be operationally advantageous over

other image spectrums (e.g., RGB).

2.2 Recognition by Matching Gait Curves

2.2.1 Static Feature Extraction

As a silhouette traverses across the viewing plane, static parameters can be collected

at each frame. For example, raw silhouette height, can be extracted by calculating the
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Figure 2.1: Labeled silhouettes. Note the difference in marking the coronal plane and
centroid.

maximum difference in vertical silhouette coordinates.1 Let vmin = {ivmin, jvmin} and

vmax = {ivmax, jvmax} denote the pixels corresponding to the minimum and maximum vertical

coordinates, respectively, for which the binary silhouette image, B(i, j) = 1. The silhouette

height, h, can then be simply computed as h = ivmax − ivmin.

Since this measure is relative to the distance of an individual from the camera, it cannot

be used as a unique feature without knowledge of local markers or depth [123]. In lieu of this

shortcoming, raw silhouette height can be used in the design of additional features. The first

such use is in isolating the coronal plane of the silhouette. In a matrix coordinate system,

vmin represents the top of the head. This location is stable for any gait sequence, regardless

of the direction of walk and therefore, can be treated as the peak of the coronal plane. vmax

however, will shift to either the left or right foot, depending on variations in stance. The

terminus of the coronal plane is then located at vter = {ivmax, jvmin}. An alternative method

to determine the coordinates of the coronal plane would involve computing the centroid,

which is the center of mass of the silhouette. However, presence of carried objects, arm

sway, or holes in the silhouette (via segmentation errors) can greatly distort the horizontal

position of the centroid. Thus, identification of the coronal plane using vmin and vter is

favored as it is less susceptible to these effects. Refer to Figure 2.1 for a fully labeled

silhouette.

1Refer to Chapter 1 for a definition of a silhouette.
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2.2.2 Spatiotemporal Feature Extraction

Following calculation of the coronal plane coordinates, the left and rightmost pixel lo-

cations of the outermost contour are obtained for each row in the silhouette. That is, for

the pth row where p ∈ [ivmin, ivmax] these pixels are denoted as gleftp and grightp , respectively.

Subtraction of the horizontal position of the coronal plane from these point sets yields a

space normalized contour, denoted as the gait curve, Gk, for the k
th frame (e.g., image) in

the sequence.

Evolution of a set of gait curves across several frame can therefore be regarded as a

spatiotemporal feature for shape based analysis. In other words, the output of an arbitrary

function F (G1, G2, . . . , GK) is a single gait curve encompassing the shape dynamics captured

in a video sequence of K frames. For example, the output of function F could be the mean

of the Gk’s.

F (G1, G2, . . . , GK) =
1

K

K
∑

k=1

Gk. (2.1)

While Equation (2.1) represents one potential method for representing a set of gait curves,

alternative solutions exist as well. The Procrustes Meanshape [124, 125] is a mathematically

elegant measure of representing and evaluating 2-D shape sets. An advantage of this measure

is that differences in translation, rotation, or scale do not negatively impact the resulting

match score between shapes transformed into the procrustes shape space. In the context of

gait recognition, this is particularly advantageous as it is likely individuals will be observed

at varying distances and at varying spatial resolutions. Conversely, computation of Equation

(2.1) cannot guarantee these properties.

To derive the procrustes meanshape of K individual gait curves, the number of elements

in each individual gait curve must first be normalized (i.e., interpolated) to the same size.

Denote this number of elements as T . The spatial coordinates of each element in each gait

curve are then encoded as a complex number. Next, the sample mean of each gait curve is

computed and subtracted from each individual gait curve, effectively aligning each gait curve

at the origin. Finally, a scatter matrix, Su, is computed. These operations are summarized

in Equations (2.2)-(2.6).
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Figure 2.2: The procrustes meanshape computed from gait curves corresponding to three
different individuals.

zk = Re(Gk) + jIm(Gk); (2.2)

z̄ =
k

∑

i=1

zi
k
; (2.3)

uk = zk − z̄; (2.4)

u = [u1,u2, ...,uK]; (2.5)

Su =
K
∑

j=1

(uju
T
j )

(uT
j uj)

. (2.6)

The first eigenvector of the scatter matrix, Su, is used to denote the procrustes mean-

shape, Ḡ, from K gait curves. Note that at least one full gait cycle and a minimum of

10 gait curves should be used to generate Ḡ. This constraint is necessary to ensure that

enough information has been captured to create a distinguishable Ḡ. A visual example of

the procrustes meanshape on a set of gait curves for three individuals is presented in Figure

2.2.

2.2.3 Matching Gait Curves

To obtain a match score between a pair of procrustes meanshapes (e.g., gait curve repre-

sentations), the procrustes distance is used. This distance is defined in Equation (2.7). The
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range of values produced by Equation (2.7) is limited to [0, 1], where the smaller the value,

the more similar the shapes
(

Ḡ1, Ḡ2

)

.

d(Ḡ1, Ḡ2) = 1−

∣
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Ḡ1
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Ḡ2
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∥
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∥
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∥Ḡ2

∥

∥

2 (2.7)

2.2.4 Backpack Detection

The gait curve Ḡ can be further exploited by treating it as a one dimensional signal, y[t]

(t = 1, 2, . . . , T ), with the y-axis denoting the silhouette height and the x-axis denoting the

distance from the coronal plane to the silhouette boundary. This is accomplished simply

by evaluating the distance between the coronal plane and gleftp and grightp . The end result

is a signal of length T that indicates the horizontal distance between each gait curve point

to the coronal plane.The first t = 1, 2, . . . , T
2
points correspond to the “back” half of the

gait curve and the remaining t = T
2
+ 1, T

2
+ 2, . . . , T points correspond to the “front” half

of the gait curve. For the purpose of backpack detection, the “back region” of y[t] is of

particular interest. Here, define the “back region” as the subset t corresponding to the back

of an individual’s extracted gait curve. If an individual is carrying a backpack, it would be

expected that the distance between the gait curve and the coronal plane would be greater in

the “back region”. Intuitively this is likely since the presence of a backpack should outwardly

distort the silhouette shape. Thus, the area under the curve in the back region should be

greater given the presence of a bag. Since the signal has also been previously interpolated to

exactly T points (as per the formation of a set of gait curves), the subset denoting the back

is relatively consistent across individuals. This allows for estimation of a window where the

back region likely exists. However, this signal is also a function of silhouette resolution. To

account for this, a normalization factor δ is included to scale the “waist region” of y[t] to

a distance of 1 unit from the coronal. Here, the “waist region” is defined as the values of t

pertaining to the waist in the first T
2
points. The waist is chosen for its consistency in the

gait cycle. That is, it does not perturb much as an individual is observed walking. Refer to

Figure 2.3 for a labeled example of this signal for the “back” half of y[t].

In observing the statistics of Figure 2.3, the intuitive notion about the silhouette shape for
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Figure 2.3: Signal representation of half of the gait curve. Note this portion of the gait
curve denotes the region encompassing the human back, particularly between values 25 to
75 (where T/2 = 150).

individuals with and without bags is verified. This information also provides the necessary

window in which to target backpack related features. In this case, a loosely defined back

window, wback is the interval [T
6
,T
2
].

Given a sequence y[t], each of the following features are collected. First, an intuitive

feature for backpack detection would be a discrete summation of the values within the

window.

f1 =
∑

t∈wback

y[t] (2.8)

Secondly, a threshold-based feature is introduced to observe how often a pre-determined

width of the back region, yθ, is exceeded. The value of yθ is slightly higher than δ, the

normalization threshold, and is empirically defined.

f2 =
∑

t∈wback

I(y[t] > yθ),where I(.) is the indicator function (2.9)

The third feature used is the total power of the signal in the back region. The motivation

for this feature is to account for high frequency components that may arise as a result of the

presence of a backpack.

f3 =
∑

t∈wback

(
∣

∣FFT(y[t])2
∣

∣) (2.10)
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Figure 2.4: Scatter plots of bag detection features. (+) With Bag, (x) Without bag.

Finally, over a sequence of frames, the extracted gait curve eigenvector, Ḡ can be itself

used as a feature for backpack recognition. Using a set of training data, a generalized

procrustes shape of an individual, Ĝ can be extracted using the same procedure as mentioned

in Section 2.2.2, and direct comparison between Ḡ and Ĝ yields a shape difference statistic

where the procrustes distance is used to denote the likelihood an individual is carrying an

object.

f4 = 1−

∣

∣

∣
ĜTḠ

∣

∣

∣

2

∥

∥

∥
Ĝ
∥

∥

∥

2
∥

∥Ḡ
∥

∥

2
(2.11)

Here, f1, f2, and f3 can be computed from each silhouette image, while f4 requires a

sequence of images. To account for this, the full backpack detection feature vector combines

f4 with an average of f1, f2, and f3 computed from K frames. Figure 2.4 provides a visual

interpretation of the separability of these features.

2.2.5 Silhouette Rectification

Most model-free approaches to gait recognition generally regress in performance when

objects are introduced. This is to be expected for algorithms utilizing shape dynamics,

as objects modify the spatial appearance of the silhouette in time. Larger objects, such

as a backpack or briefcase fall into this category. However, if the properties of the gait
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curve can be used to enable object detection, they can similarly be used in an attempt

to correct for object induced distortions. As previously mentioned in Section 2.2.4, the

average gait curve extracted from an individual both with and without a backpack are very

similar except for the back region, wback. This is evidenced visually in Figure 2.3. Unlike a

detection algorithm, where a general window can be targeted to isolate the likely position of

a backpack, a correction scheme requires additional precision to identify the position of the

backpack. This is to ensure that any correction does not erroneously impart non-backpack

data points. In order to accomplish this, a refined window of wback is created. This window

is based on estimating the values of t corresponding to an increase in y[t] from the “waist”

and a decrease in y[t] to the “head”. These are denoted as thead and twaist, respectively.

Based on the statistics of Figure 2.3, small windows representing thead and twaist are initially

implemented to observe their respective divergence and convergence areas. Using minimum

and maximum operators, the estimates for thead and twaist are extracted.

thead = min(whead) (2.12)

twaist = max(wwaist) (2.13)

The minimum operator is chosen to identify thead because the head region contains a

local minima representing the neck of an individual. From this point, a backpack is likely to

rapidly project outwards, as can be seen from Figure 2.3. Conversely, the maximum operator

is chosen to isolate twaist since backpack length is variant, and the convergence region trends

downward.

Three types of corrections were investigated. Each corrected signal is denoted as ci[t]

(i = 1, 2, 3). The first simply forces any value above the normalization threshold to 1. An

advantage of this measure is that the correction is less impacted by erroneous estimation of

thead and twaist since the values surrounding these locations are generally less than δ.

c1[t] =

{

1, y[t] > δ, thead < t < twaist

y[t], otherwise.
(2.14)

In the second correction method, y[t] is modified such that the values between y[thead]

and y[twaist] are linearly connected. Since the back region of an individual not carrying a
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Figure 2.5: Examples for each type of silhouette correction. Left: Threshold. Center: Linear.
Right: Interpolated.

backpack is relatively straight, a linear interpolation is a reasonable correction.

c2[t] =

{

y[thead] + (t− thead)
t[twaist]−y[thead]
(twaist−thead)

, thead < t < twaist

y[t], otherwise.
(2.15)

Finally, the third correction method attempts to estimate additional points based on

gradient change and linearly interpolates between them. These points include the areas of

Figure 2.3 where the gradient changes. Such a point can be denoted as tgrad. The numerical

value at any particular tgrad is given by its expected value, according to Figure 2.3, scaled

according to the values of y[thead] and y[twaist] and their expected values.

c3[tgrad] = E[y[tgrad]] + 0.5 ∗ (E[y[thead]]− y[thead] + E[y[twaist]]− y[twaist]) (2.16)

Then, c3[t] is obtained by repeating Equation (2.15) for each mgrad. Refer to Figure 2.5

for examples of each correction type.

2.3 WVU Outdoor SWIR Gait Dataset

2.3.1 Description and Properties

An argument can be made that the advancement of algorithms for human gait recognition

(Chapter 1, Section 1.3.1) and the addressing of challenges discovered (Chapter 1, Section

1.3.5) has largely coincided with the release of new and increasingly challenging datasets.
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Such datasets are typically characterized by a large number of identities, unconstrained

environment with respect to lighting and objects, variations in clothing and footwear, diverse

viewpoints with respect to the camera, etc. For example, early gait datsets, such as the CMU

Mobo Database [126] and Soton Databases [127], had a limited number of identities and were

collected in constrained settings (e.g., indoors, individuals walking on a treadmill). Despite

these limitations, these initial datasets were the first publicly available datasets available to

the research community and encouraged performance benchmarks and comparison studies.

The UMD Human Identification at a Distance (HID) [72] dataset, collected in 2001, was

one of the first datasets to consider multiple viewpoints in an outdoor environment. The

dataset included an added challenge of matching low resolution silhouettes. This dataset

was later superseded by the USF Gait Challenge dataset [120], which continues to be a

benchmark for evaluating and reporting algorithm performance. Published in 2002, the

dataset initially consisted of 74 individuals subject to 16 different collection conditions [128],

pertaining to viewpoint, walking surface and time. It has since been expanded to include

122 identities and 12 specific experiments. The next major datasets were released by the

Chinese Academy of Sciences (CASIA). Referred to as the CASIA B [129] and C Databases

[130], these datasets included a larger number of identities (124 and 153, respectively) and

exhibited diverse variations, such as viewpoint, clothing, cadence and carrying condition

(i.e., with or without a backpack). In particular, the CASIA C database was the first

large gait database to expand beyond the visible spectrum, using an infrared (thermal)

camera to collect video sequences in a nighttime environment.2 These datasets contributed

towards advancing the state-of-the-art in gait recognition allowing researchers to consider

issues such as view invariance [87, 119, 129], object detection [131], clothing [113], time [121]

and framerate [132]. A summary of these datasets is provided in Table 2.1.

In order to continue the advancement of automated gait recognition, it is essential for the

next generation datasets to have data acquired from less constrained environments. Toward

this end, the WVU Outdoor SWIR Gait (WOSG) dataset is introduced. The WOSG dataset

denotes a new challenge dataset whose properties are very likely to occur in an operational

2The operating wavelength of the image sensor in the CASIA C dataset is not published. It is only
reported as “thermal”.
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Table 2.1: Examples of public datasets available for gait recognition research. The column
“Covariates” indicates the types of intra-class variations present in the dataset.

Dataset #Identities Environment Spectrum Covariates

CMU MoBo Dataset[126] 25 Static Indoor RGB Viewpoint, Pace, Objects

Georgia Tech Dataset[133] 24 Static Indoor, RGB Pace

Static Outdoor

UMD HID Database [72] 25-55 Static Outdoor RGB Viewpoint

Soton Small Dataset[127] 12 Static Indoor RGB Shoe, Clothing, Objects

Soton Large Dataset[127] 115 Static Indoor RGB Viewpoint, Time

Static Outdoor

USF HumanID Dataset[120] 122 Static Outdoor RGB Viewpoint, Shoe, Surface,

Objects, Time

Osaka Treadmill (A)[134] 34 Static Indoor RGB Pace

Osaka Treadmill (B)[134] 68 Static Indoor RGB Clothing

Osaka Treadmill (C)[134] 200 Static Indoor RGB Viewpoint

Osaka Treadmill (D)[134] 185 Static Indoor RGB Gait Fluctuation

CASIA B Dataset[129] 124 Static Indoor RGB Viewpoint, Objects

CASIA C Dataset[130] 153 Static Outdoor Thermal Pace, Objects

WVU Outdoor SWIR Gait 155 Active Outdoor SWIR (1550nm) Viewpoint, Illumination

Dataset

setting. These properties include:

• Data collection occurs in an active, outdoor environment, wherein environmental fac-

tors such as cloud cover (that impacts illumination) and scene factors such as motion

artifacts due to trees or additional persons (that impacts segmentation and tracking)

exist.

• Multiple walking paths, resulting in video sequences representing different viewing

angles.

• The spatial resolution of the observed individual is not the same in every video se-

quence.

Additionally, the WOSG dataset is assembled using a sensor operating in the short-wave

infrared (SWIR) spectrum (900nm-1,700nm), which in an operational setting may be more

advantageous than visible light (RGB). For example, in low-light conditions, RGB imagery
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requires an active illumination source, which can be detected by the human eye. On the

contrary, SWIR illumination is for the most part undetectable to the human eye. Thus, a

system operating in the SWIR spectrum can operate covertly. Additionally, light emitted

from the sun (and reflection from the moon) and stars can act as natural illumination sources,

enabling both daytime and nighttime operation. Further, SWIR is tolerant to obscurants

such as dense clouds, fog, and smoke. For these reasons, it is worthwhile to evaluate gait

recognition in the SWIR domain. It should be noted that the current WOSG dataset does

not include nighttime imagery. It is anticipated that future versions of this dataset will

incorporate imagery from both daytime and nighttime environments.

In the gait recognition literature, recognition capability in an active outdoor environ-

ment has not been adequately tested. In particular, silhouette segmentation is superficially

treated and the performance of recognition algorithms on silhouettes extracted from a more

operational setting is not well known. On the aspect of multi-directional trajectories, an

operational gait recognition system will most certainly encounter individuals walking along

arbitrary paths (rather than a simple unidirectional path that is perpendicular to the cam-

era’s optical axis), although this issue has been receiving attention as of late [87, 129].

Finally, the problem of dealing with human silhouettes that vary in resolution across video

sequences (or even frames) has not been adequately evaluated in the literature. In an oper-

ational setting, particularly with cameras capable of performing a pan-tilt-zoom operation,

feature extraction may have to be conducted on human objects having variable spatial res-

olutions. This challenge is evident in the WOSG dataset as the observed field of view may

not be the same for all sequences. In summary, the WOSG dataset represents a challenging

dataset for the biometrics and computer vision communities in that it embodies the follow-

ing attributes: matching gait sequences across viewpoints, trajectories and distances; and

silhouette extraction in low-resolution (e.g., ≈50% reduction in bounding box area (i.e., the

rectangular pixel space occupied by a detected human) compared to the CASIA datasets),

SWIR imagery.
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2.3.2 Hardware Description

The camera used to acquire this dataset was the Sensors Unlimited Goodrich SU640KTSX-

1.7RT High Sensitivity InGaAs SWIR Camera (640x512 pixels) with a 50mm f/1.4 SWIR

lens. The Goodrich camera was used to capture video sequences of individuals walking at

distances ranging from 20-50m. The resolution of the captured video data is 640x512 pixels

and the framerate is 30 frames per second.

2.3.3 Collection Protocol

Collection occurred between September and November, 2011. Data collection with the

Goodrich camera was performed in an outdoor environment during daylight hours, supplying

natural illumination via sunlight. Cloud cover (i.e, ambient illumination) varied between

clear skies, partly cloudy and overcast. Video sequences were bandpass filtered to 1550nm

(±50nm FWHM). Operational settings such as integration time were adjusted to achieve

the best image quality based on daily environmental conditions (e.g., cloudy, sunny, etc.).

During collection, each individual completed one session and during which, was asked

to walk in a continuous motion along eight predefined trajectories. The specified walking

directions and approximate distances to the camera are denoted in Figure 2.6. The distances

and walking paths were defined such that a minimum of three complete gait cycles could be

completed in each direction. The length of each video sequence (in time) varied between 90

and 110 seconds, depending on the walking speed of each individual. Sample video frames

from the dataset are shown in Figure 2.7. In total, data was collected from 155 individuals.

In terms of gender, there were 93 males and 62 females. In terms of ethnicity, 46% of

identities identified themselves as Caucasian, 25% as Asian Indian, 13% as Asian, 8% as

African, 5% as Middle Eastern, 2% as African American and 1% as Unknown. In terms of

age, 71% of identities were between 20-29 years old, 12% between 18-19, 8% between 30-39,

4% between 40-49, 3% between 60-69 and 2% between 50-59.
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Figure 2.6: Gait collection layout. Each individual is captured walking in the numbered
direction one time.

Figure 2.7: Sample frames from the WOSG dataset. Note the variance in contrast and
brightness in each frame, occurring as a result of varying environmental conditions.

2.4 Comparison Algorithms

2.4.1 Gait Energy Image

The Gait Energy Image (GEI) is a model-free algorithm for human gait recognition

proposed by Han and Bhanu [91]. In contrast to gait curve matching, the GEI algorithm

utilizes a weighted combination of pixel values for in set of silhouette images. In other words,

the GEI algorithm attempts to reduce the motion dynamics of an individual represented in

multiple frames into a single image. As stated in the Chapter 1 (Section 1.3.2), the GEI

image is a popular benchmark for comparing performance, owing to its ease of computation.

The algorithm computes B̄, which is defined as the average of K space-normalized human

silhouette images, Bk, k = 1, 2, . . . , K. As in Section 2.2, K denotes the number of frames

in one gait cycle. Mathematically, this is described in Equation (2.17).
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Figure 2.8: Examples of Gait Energy Images (GEI) extracted from two individuals. Note
the pixel intensities in each GEI image correspond to the occupied foreground space as a
person walks.

B̄ =
1

K

K
∑

t=1

Bk (2.17)

In computing the “average” silhouette, the features used for matching correspond to

the “moving” pixel intensities as a human silhouette moves in time. In order to accurately

compute a GEI image, each silhouette image (Bk) must be normalized to the same number

of pixels and appropriately aligned. This is particularly necessary when an individual is

observed walking towards or away from the camera. Alignment can be performed using the

centroid of the image data. Examples of GEI images are presented in Figure 2.8.

Since the GEI algorithm denotes a weighted combination ofK silhouette images, raw GEI

images can have a very large dimensionality, which can cause difficulty in matching. In the

original work by Han and Bhanu [91] this rectified through Principal Component Analysis

(PCA), though other methods such as Linear Discriminant Analysis (LDA) [90], tensor

discriminants [94], and 2-D PCA [135] have also been explored. In this implementation of

the GEI algorithm, subspace optimization (i.e., dimensionality reduction) is performed using

Principal Component Analysis, wherein a principal component is retained if the associated

eigenvalue is greater than 0.001. The euclidian distance metric is used to generate match

scores between a pair of GEI feature vectors. A brief description of PCA is presented in the

following paragraphs.
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Principal Component Analysis

The aim of Principal Component Analysis (PCA) is to find an orthogonal subspace ψ

that reduces the dimensionality of the original feature space (i.e., the theoretical range of

values spanned by each element in a feature vector) while preserving a majority of the data

variance. In other words, PCA aims to reduce the number of dimensions, d, in feature

vector v, to d′ where d′ ≤ d. The output, v′, is a vector whose elements will have a maximal

variance with respect to the transformed feature space.

PCA is accomplished by performing an eigenvalue decomposition on the covariance ma-

trix computed from a set of training data. Here, the training data defines the feature space

which is to be optimized. Given n samples, xi ∈ ℜ
d,1, i = 1, 2, . . . , n, where xi denotes some

feature vector, the first step is to compute the sample mean µ (µ = 1
n

∑n
i=1 xi). Denote

X ∈ ℜd,n as a matrix containing each feature vector in the training data normalized by the

sample mean (i.e., X = {x1 − µ,x2 − µ, . . . ,xn − µ}. A scatter matrix, S is computed from

X as S = XXT , where T denotes the transpose operator.

The optimal subspace ψ is computed by performing an eigenvalue decomposition on S,

which yields a matrix of eigenvectors ψ and eigenvalues Λ. Note the eigenvector in the ith

column of ψ corresponds to the ith diagonal of Λ (i.e., Sψi = Λiψi).

Typically, d′ < d eigenvectors are retained, such that

d′ = arg mind̄

sumd̄′

i=1Λi
∑

i = 1dΛi

> Ve (2.18)

where Ve ∈ [0, 1] is the fraction of data variation to be retained.

In general, most of the variance in X is stored in the largest eigenvector in ψ. By

discarding eigenvectors associated with small eigenvalues, the feature dimensionality can be

greatly reduced without losing the discriminatory information in the original feature vector.

Note, this description was adapted from the Ph.D dissertation of Klare [136].

2.4.2 Frieze Pattern Matching

The second comparison algorithm is referred to as “Frieze Pattern Matching”. In the

mathematical context, a frieze pattern is defined as a two-dimensional pattern that repeats
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Figure 2.9: Visual example illustrating how the horizontal (row-sum) and vertical projections
(column-sum) of the silhouette can be combined to create a spatiotemporal pattern for human
gait recognition.

itself infinitely. Liu et al. [101] was the first to exploit the periodic nature of human gait

as a frieze pattern. A frieze pattern denoting human gait is defined as the concatenation

of the x- and y- projections of a silhouette moving in time. As with GEI, this method for

denoting human gait is also classified as a model-free recognition algorithm. A mathematical

description of such a pattern is described in the following paragraphs.

Consider a set of K silhouette images, denoted as Bk, k = 1, 2, . . . , K. Define a 2-d

frieze image, F (j, k) as the horizontal projection (row sum) of each of K silhouette images.

Mathematically, this is described in Equation (2.19).

F (j, k) =
∑

i

Bk(i, j) (2.19)

F (j, k), denotes the width of the kth silhouette at the vertical pixel coordinate j. Simi-

larly, F (i, k) can be defined as the vertical projection (column sum) of the silhouette, captur-

ing the height of the kth image at the horizontal pixel coordinate i. In a set of K silhouette

images encompassing at least one gait cycle, the silhouette width varies periodically due to

factors such as stride and arm sway. By observing F (j, k) as an image, the row projections

combine to form a spatiotemporal pattern. A graphical example of how these patterns are

constructed is illustrated in Figure 2.9.

In the original work by Liu et al., matching of frieze patterns was accomplished by com-

paring the central moments of a probe and gallery sequence [101]. Alternatively, Dynamic
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Time Warping (DTW) or Hidden Markov Models (HMM’s) can be used to perform match-

ing, as described by Kale et al. [100, 103]. In this implementation of the Frieze Pattern

matching algorithm, match scores between two gait sequences are generated using 2-D Dy-

namic Time Warping, [103]. The following paragraphs summarize how two Frieze patterns

can be matched using 2-D Dynamic Time Warping.

Dynamic Time Warping

In general, Dynamic Time Warping is a method for evaluating similarity between two

sequences that vary in time. For instance, in the context of a frieze pattern for gait recogni-

tion, the periodicity varies depending on the speed at which a person is walking. Similarity

between patterns is evaluated by generating cost matrix, C, which stores the difference be-

tween each pattern for each unit of time (in this case, each frame). Thus, for a pair of

patterns, A and B, with length TA and TB, C(1, 1) denotes the difference between them at

t = 1 and C(1, TB) denotes the difference between A at t = 1 and B at t = TB. The resulting

distance score is obtained by summing the smallest valued path from C(1, 1) to C(TA, TB)

while moving strictly in increments of one in an 8-connected neighborhood.

2.5 Experimental Results

Experiments are designed to convey the following information:

• A baseline analysis demonstrating the identification performance of the Gait Curves

matching algorithm on benchmark datasets. For reference, performance is reported

with respect to the comparison algorithms (GEI and Frieze Pattern matching) defined

in Section 2.4. This experiment provides a quantitative comparison between the Gait

Curves matching algorithm to other algorithms and datasets in the gait recognition

literature.

• A comprehensive analysis demonstrating the recognition capability of the Gait Curves,

GEI, and Frieze patterm algorithms on the WVU Outdoor SWIR Gait dataset. This

experiment demonstrates the recognition performance in a less constrained gait dataset.
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• An analysis measuring the ability of a background subtraction scheme for silhouette

extraction on the WVU Outdoor SWIR Gait dataset compared to data in benchmark

gait datasets. This experiment provides a qualitative analysis on the performance of

background subtraction in constrained and unconstrained data.

• An evaluation demonstrating whether the features listed for backpack detection (Sec-

tion 2.2.4) can successfully detect the presence of a backpack on a silhouette.

• An evaluation probing the ability of the defined silhouette rectification schemes (Section

2.2.5) to improve the identification performance of a silhouette distorted by a backpack.

2.5.1 Datasets

The primary dataset in this evaluation is theWVUOutdoor SWIR Gait (WOSG) dataset,

a large, outdoor gait dataset collected in the SWIR spectrum. Though the dataset consists of

155 identities, segmentation was not possible for 41 identities. Segmentation failure was often

attributed to extreme environmental factors (e.g., rapid illumination variance) or difficulty

processing the data (e.g., very low native contrast). Thus, only N = 114 identities are

used for experimental analysis. In addition, segmentation was not possible in instance when

individuals were observed walking directly towards or away from the camera (labels 7 and

8 from Figure 2.6). To be consistent with related gait literature, unless otherwise stated,

one feature vector was extracted from each of the remaining walking directions for each

individual. In other words, the number of samples per identity, NG, is six. This results in a

total number of NT = 684 gait sequences.

To aid in analysis, in addition to the WVU Outdoor SWIR Gait dataset, experiments

are also conducted on a a pair of benchmark datasets from the gait recognition literature.

The datasets chosen for comparative study are the CASIA B and C datasets. A brief review

of these datasets is presented in the following paragraphs.

CASIA B Gait Dataset

The CASIA B Gait dataset [129] is a large indoor, multi-camera gait database, which was

collected by the Chinese Academy of Sciences (CASIA). The dataset consists of N = 124
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Figure 2.10: Sample frames from the CASIA B dataset, with an individual captured walking
towards (left) and perpendicular to the camera (right)

.

individual identities, wherein each individual is captured walking 10 times (i.e., NG = 10 with

one gait feature vector extracted per video). Gait sequences were captured at 11 different

viewing angles, linearly spaced such that the individual is viewed walking towards, diagonal

to, perpendicular to, and away from the optical axis (i.e., camera viewpoint). In addition,

the dataset consists of person-based covariates (Chapter 1, Section 1.3.5) such as carrying a

backpack (two sequences per identity) and wearing a coat (two sequences per identity). The

dataset was collected in the visible (RGB) spectrum in a controlled indoor environment. The

native camera resolution for each image is 320x240 pixels and the framerate is 25 frames per

second. A sample of the image data from this dataset is provided in Figure 2.10.

CASIA C Gait Dataset

The second dataset for baseline evaluation is the CASIA C Gait dataset (alternately

defined as the CASIA Night Gait dataset) [130], which was also collected by the Chinese

Academy of Sciences. Unlike the B dataset, the C dataset was collected from an infrared

camera in an outdoor, nighttime environment. In addition, the image data is stored in a

single channel.3

3The explicit wavelength the image sensor operates at is not provided by CASIA and is therefore unknown.
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Figure 2.11: Example frames from the CASIA C dataset. Note the reduced contrast and
brightness in comparison to the CASIA B dataset.

The CASIA C dataset consists of N = 153 unique identities, wherein 10 video sequences

are captured for each identity (i.e., NG = 10). In this dataset, the only viewpoint provided

denotes the individual walking perpendicular to the optical axis. Covariates in this dataset

are person-based, concentrating on cadence (i.e., the rate at which a person walks) and

carrying condition. Thus, two sequences are collected for both slow and fast cadence, to

contrast against four sequences of normal walk. The remaining two sequences denote normal

walk with a backpack. The native resolution of the image data is 279x200 pixels and the

framerate is 25 frames per second. A sample illustration of frames from this dataset is

provided in Figure 2.11.

Provided the CASIA C dataset was collected outdoors and in a nighttime environment,

and that the image data contains one channel of information, this dataset is less constrained

than the CASIA B dataset and is arguably more challenging.

2.5.2 Evaluation of Silhouette Quality

Prior to evaluating the matching accuracy of the Gait Curves matching algorithm and

the comparison matching algorithms (GEI and Frieze Pattern matching), a good precursor is

to evaluate the quality of the silhouettes produced in the silhouette extraction process. Since

the image data in the WVU Outdoor SWIR Gait dataset was collected in a significantly less

constrained environment, it is useful to compare how well the typical method for silhouette

extraction (i.e., background subtraction) performs on more challenging data. The quality
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Table 2.2: Median silhouette quality metric for the gait sequences in the WOSG dataset,
CASIA C dataset, and CASIA B dataset.

Dataset Median ψ Median ψ

(all frames) (50 frame moving window)

WOSG Dataset 0.389 0.443

CASIA C Dataset 0.609 0.654

CASIA B Dataset 1.000 0.971

metric used is the noise of the foreground sum signal as defined in Chapter 1, Section 1.3.4.

Here, ψ (the quality value) is computed using (a) all of the frames in a video sequence

and (b) the mean value of ψ from a 50-frame moving window. That is, computing the average

of ψ from the frame sets: {1, 2, . . . , 51}, {2, 3, . . . , 52}, . . ., {K − 50, K − 49, . . . , K}. For

comparison, ψ is also computed on the CASIA B and C datasets. To mitigate the effect of

outliers (i.e., exceptionally high quality sequences or exceptionally poor quality sequences),

the median value of ψ from all sequences us reported to indicate the global quality of the

silhouettes extracted in the whole dataset. These results are tabulated in Table 2.2. Note

that the quality value produced for the WOSG dataset is less than the CASIA C dataset,

which is less than the CASIA B dataset. This outcome suggests that background subtraction

may not be a sufficient method for silhouette extraction on more challenging image data.

2.5.3 Protocol for Measuring Matching Performance

The matching performance of the Gait Curves, GEI, and Frieze Pattern matching algo-

rithms are evaluated using ROC and CMC curves (Chapter 1, Section 1.1.4), which comprise

a traditional biometric verification and identification analysis. The specifics by which match

scores are extracted for each matching algorithm are described in the following paragraph.

For gait curve matching, extracted gait curves are normalized to a size of 300 elements

(i.e., T = 300), aligned and then warped to the procrustes space as defined in Section 2.2.2.

The procrustes distance measure (Equation 2.7) is used to generate match scores. GEI fea-

tures are extracted using a 91-pixel horizontal window, which is centered at the centroid of

each silhouette image. Extracted silhouette images are normalized to a vertical height of

100 pixels. The resulting GEI image (of size 100x91) is then downsampled using bicubic
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interpolation to a resolution of 50x46. Further dimensionality reduction and subspace opti-

mization is performed using principle component analysis. A principle component is retained

if its associated eigenvalue has a value larger than 0.001. The match score between two GEI

features is evaluated using the Euclidean distance metric. Similar to GEI, silhouettes for

Frieze pattern matching are normalized to a height of 100 pixels. The x- and y- projections

for each silhouetted image are then computed and concatenated. Match scores are defined

as the distance value obtained using Dynamic Time Warping. For each of the matching

algorithms, the computed distance score is subtracted from a value of one to convert it into

a similarity score.4

Since the GEI algorithm requires a training subset for computing the subspace projection

matrices, samples for 15% of identities are randomly selected for this purpose (and are not

present in either the probe or reference sets). To remove selection bias, all experiments

involving GEI are repeated 10 times (e.g., trials). All reported ROC and CMC curves

denote the average performance from each trial.

2.5.4 Baseline

In the baseline evaluation, ROC and CMC curves are computed for differing combinations

of probe (test) and reference (training) samples. In particular, using the subsets of match

scores that can be generated when comparing “normal” walking sequences to each covariate

(e.g., with bag, with coat, fast walk, slow walk) and against similarly labeled “normal”

sequences. When comparing “normal” to “normal” gait sequences, half of the sequences

are designated as probe and reference, respectively. In addition, an additional experiment,

denoting comparing each feature vector against the other NT − 1 feature vectors is also

performed. Here, this experiment is referred to as “all-to-all” matching. In the interest of

being concise, viewpoint (CASIA B) is not considered in the baseline evaluation. Table 2.3

and Table 2.4 summarize the list of experiments for both datasets and the corresponding

probe and reference sets for each experiment. ROC and CMC curves for the CASIA B and

C datasets are presented in Figures 2.12 and 2.13, respectively.

4This computation is cosmetic. However this dissertation assumes all match scores are similarity scores.
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Table 2.3: List of experiments on the CASIA B dataset.

# of Identities Gallery Size Probe Size Gallery Sequence Probe Set
105 315 315 Normal Normal
105 630 210 Normal Bag
105 630 210 Normal Coat
105 210 210 Bag Bag
105 210 210 Coat Coat
105 1050 1050 All All

Table 2.4: List of experiments on the CASIA C dataset.

# of Identities Gallery Size Probe Size Gallery Sequence Probe Set
130 260 260 Normal Normal
130 520 260 Normal Bag
130 612 260 Normal Slow
130 612 260 Normal Fast
130 1300 1300 All All

2.5.5 Identification Performance on the WVU Outdoor SWIR

Gait Dataset

In order to perform a comprehensive evaluation of the Gait Curve, GEI, Frieze pattern

algorithms, a number of experiments were developed. The experiments performed quan-

tify (a) general matching performance from all gait sequences; (b) the performance when

matching sequences of differing viewpoint; and (c) sequences of the same viewpoint. To

be consistent with related gait literature, unless otherwise stated, one feature vector per

matching algorithm is extracted from each of the NT = 684 gait sequences.

General Matching Performance

In the first experiment, matching is performed using a leave-one-out cross validation

scheme. That is, each of NT = 684 gait sequences are compared against the remaining

NT − 1 sequences, regardless of walking direction. Establishing the reference data in this

way illustrates the matching performance when the constraint of viewing angle is reduced,

but not eliminated. These results are illustrated in Figure 2.14.
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Figure 2.12: Baseline matching performance of the Gait Curve, GEI, and Frieze pattern
algorithms on the CASIA B dataset. Dashed lines in the CMC curves (bottom) indicate one
standard deviation above or below the mean for ten trials.

Matching Major Differences in Walking Direction

In the second experiment, the ability to match gait sequences corresponding to differ-

ent viewing angles is evaluated. To avoid redundancies in experimental data, sequences of

“leftward” walk are compared against sequences of “rightward” walk. Here, “leftward” walk

is defined as those sequences wherein an individual is walking from the left to the right

(from the camera’s perspective). This includes sequences with direction labels “1”, “4”, and

“5” from Figure 2.6. Similarly, “rightward” walk is defined as those sequences wherein an

individual is walking from the right to the left. This includes sequences with direction labels

“2”, “3”, and “6” in Figure 2.6. In particular, the experiment is designed such that each of

the three leftward sequences are matched against the three rightward sequences. This results

in a total of nine probe and gallery combinations, which are defined in Table 2.5. ROC and

CMC curves for this experiment are illustrated in Figure 2.15 and Figure 2.16, respectively.
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Figure 2.13: Baseline matching performance of the Gait Curve, GEI, and Frieze pattern
algorithms on the CASIA C dataset. Dashed lines in the CMC curves (bottom) indicate one
standard deviation above or below the mean for ten trials.

Matching Same Walking Direction

In the third experiment, the probe and reference sequences correspond to the same di-

rection. To accommodate this, two feature vectors are extracted per video sequence, where

frames belonging to the first K
2
images are used to generate the first feature vector, while the

remaining K
2
images are used to generate the second feature vector. Extraction of two fea-

ture vectors from a single video sequence is necessary since each individual in the database

provided data in only a single session. Since two feature vectors for recognition are ex-

tracted sequentially, the similarity between the two vectors should be quite high. As such,

this experiment also acts as a measure of local feature variance. If the variance is low, the

matching performance should be very good, as both feature vectors for each identity would

be approximately equal to one another. If the variance is high, matching performance will

be degraded. These results are illustrated in Figure 2.17.
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Figure 2.14: General matching performance of the Gait Curves, GEI, and Frieze pattern
algorithms on the WVU Outdoor SWIR Gait dataset. Here, ROC (left) and CMC curves
(right) illustrate the combined matching performance across all walking directions using
leave-one-out cross validation (LOOCV). Dashed lines indicate one standard deviation above
or below the mean for ten trials.

2.5.6 Backpack Detection

In this experiment, the ability to predict the presence of a backpack using Equations

(2.8-2.11) is evaluated. Here, the experiment is conducted on the CASIA C dataset, wherein

each individual is classified as either “carrying a backpack” or “not carrying a backpack”.

Note that although the CASIA B dataset also contains a “with bag” covariate class, most

individuals are not wearing backpacks, but rather, carrying handbags or briefcases. Addi-

tionally, one individual in the CASIA C dataset is carrying a briefcase, rather than wearing

a backpack. For the purposes of this experiment, this individual is regarded as not carrying

a backpack.

To evaluate detection performance, features are compared using a 5-Nearest Neighbor

classifier with 10-fold cross validation, where each fold denotes 10% of identities for training

(i.e., reference data) and 90% for testing (i.e., evaluation). In addition, the training data

is comprised with an equal number of backpack and “non-backpack” samples, in order to

mitigate recognition bias towards either class. Here, the “non-backpack” samples denote the

first two “normal walk” samples for each identity. Note that this framework suggests that

for a given cross validation fold, if an identity is selected to be in the training set, only four of

ten samples are used and the remaining six samples are ignored. Alternatively, if an identity
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Table 2.5: Probe and reference combinations for matching gait sequences corresponding to
different viewing angles. The arrows denote the direction of walk (in the image plane).

Probe (Test data) Reference (Training data)

Direction 1 (←−) Direction 6 (ր)

Direction 1 (←−) Direction 2 (−→)

Direction 1 (←−) Direction 3 (ց)

Direction 4 (տ) Direction 6 (ր)

Direction 4 (տ) Direction 2 (−→)

Direction 4 (տ) Direction 3 (ց)

Direction 5 (ւ) Direction 6 (ր)

Direction 5 (ւ) Direction 2 (−→)

Direction 5 (ւ) Direction 3 (ց)

Table 2.6: Confusion matrix for backpack detection in the CASIA C dataset.

K = 5 Without Bag With Bag
Without Bag 9739 (88.5%) 1268 (11.5%)
With Bag 314 (11.4%) 2440 (88.6%)

is selected to be in the test set, all samples are used. Results are summarized in Table 2.6

in the form of a confusion matrix. The confusion matrix is a table whose row entries denote

the actual class and the column entries denote the predicted class.

2.5.7 Silhouette Rectification

In this experiment, the silhouette correction module discussed in section presented in

Section 2.2.5 is activated. Here, each of the described silhouette correction methods are

tested both with and without the detection module. That is, silhouette correction is first

performed on all video sequences where the individual is carrying a backpack. Then, the

experiment is repeated such that the rectification scheme is applied only when a backpack

is detected, either correctly or incorrectly. The results of the previous experiment regarding

backpack detection are used to determine whether a backpack was detected. A backpack is

determined as having been detected if a probe sample tests positive in five of nine (55.55%)

cross validation folds.5 Since the silhouette rectification module is concerned with estimating

5Note, under 10-fold cross validation, a sample participates in nine test sets and one training set.
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Figure 2.15: ROC curves generated from comparing gait sequences of different viewing angle.

the shape of the silhouette without a backpack, this experiment is also only conducted on

the CASIA C dataset. For this experiment, ROC and CMC curves are presented for a “with

bag” probe set and “normal walk” reference set (Row two from Table 2.4). Results are

presented in Figures 2.18-2.19.

2.5.8 Discussion

Evaluating Silhouette Quality

Prior to performing a performance test of the Gait Curves and baseline algorithms (GEI

and Frieze Patterns), an experiment was performed regarding the quality of silhouettes (Sec-

tion 2.5.2) produced for each of the test databases (CASIA B, CASIA C, WVU Outdoor

SWIR). In particular, the analysis concentrated on the performance of using simple back-
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Figure 2.16: CMC curves generated from comparing gait sequences of different viewing angle.

ground subtraction to perform the segmentation and silhouette extraction process. The

results demonstrated that produced silhouettes contained a larger concentration of noise as

the degree of “challenge” in the image data increased. Numerically, the measure of silhouette

quality for the WOSG data was found to be ≈ 39% and ≈ 64% of the values for the CASIA

B and C datasets, respectively. Generally, the performance degradation can be attributed to

single channel images often being of lower contrast than RGB, which increases the difficulty

of properly identifying foreground pixels (i.e., pixels that denote a human body). To further

convey this, Figure 2.20 depicts a set of intensity histograms from an image in the CASIA

B dataset (RGB) and the WOSG dataset. Note that in the RGB image, regions depicting

the human (intensities between 25-75) and background (intensities between 75-150) can be

inferred. In the SWIR image, the range of intensities is smaller and no such distinction
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Figure 2.17: Matching performance when comparing feature vectors extracted from the same
walking direction Top) Gait Curves. Middle) Gait Energy Image (GEI). Bottom) Frieze
Pattern matching.

between person and background can be made.

Thus, as potentially confounding environmental factors are introduced (e.g., illumination

variance) in conjunction with a reduction of the number of channels in the image data (i.e.,

grayscale imagery), simple methods such as background subtraction become less adept at per-

forming silhouette extraction. Figure 2.21 highlights a sequence of image data with extreme

short-term illumination variance, which increases the difficulty of identifying foreground pix-

els. Additionally, Figure 2.22 illustrates a comparison of silhouette images extracted from

the WOSG dataset, CASIA B dataset and CASIA C dataset. Note the gradual degradation

of silhouette quality, as constraints such as a fixed background (CASIA B and C) are re-
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Figure 2.18: Recreation of the “With Bag” vs. “Normal Walk” matching experiment on the
CASIA C dataset when the silhouette correction module of the Gait Curves algorithm is
activated. Note: This figure assumes perfect backpack detection.
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Figure 2.19: Recreation of the “With Bag” vs. “Normal Walk” matching experiment on
the CASIA C dataset when the backpack detection and silhouette correction modules of the
Gait Curves algorithm is activated.

moved and the number of channels in image data is reduced from three (CASIA B) to one

(CASIA C and WOSG).

Baseline Analysis

The baseline analysis compares the performance of the Gait Curves algorithm (Section

2.2) to the GEI and Frieze pattern matching algorithms (Section 2.4 on the CASIA B and

CASIA C gait datasets, where the comparison algorithms and datasets denote established

algorithms and data in the gait recognition literature. The analysis compared ROC and CMC

curves for differing combinations of probe and reference data. The purpose of the baseline
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Figure 2.20: Sample images from the CASIA B (RGB) and WVU Outdoor Datasets and
their associated intensity histograms. Note the dynamic range for the SWIR image is less
than that of the RGB image.

Figure 2.21: Example of a challenging video sequence. Here, changing cloud cover results in
a significant change in background pixel intensity over a short period of time, resulting in
difficulty in identifying foreground (silhouette) pixels.

analysis was to determine whether the Gait Curves matching algorithm was comparable to

existing gait recognition techniques from the literature.

Regarding the results on the CASIA B dataset (Figure 2.12, the matching performance

of the Gait Curves algorithm was generally comparable to the performance of the GEI

algorithm. For example, rank-1 recognition rates for “normal vs. normal” walk for the

Gait Curves and GEI algorithms were 0.972 and 0.978, respectively. The GEI algorithm

performed slightly better on the probe set with a backpack (0.226 vs. 0.277), while the Gait

Curves algorithm performed slightly better on the probe set with a coat (0.213 vs. 0.145).

Frieze pattern matching performed worse than the Gait Curves algorithm at evaluating

“normal vs. normal” walk, achieving a rank-1 recognition rate of 0.894. However, for the

instances comparing walk with a bag and with a coat, Frieze pattern matching significantly

outperformed matching by Gait Curves. Note in all instances when the probe and reference
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CASIA C Dataset CASIA B DatasetWVU Outdoor Dataset

Figure 2.22: Comparison of silhouette quality using simple background subtraction (as de-
scribed in Chapter 1, Section 1.3.3. Note that the silhouettes produced in the WOSG dataset
are of lower quality (i.e., silhouette holes, distorted shape).

sets comprised of differing covariates (e.g., “normal vs. coat”), the matching performance

degraded considerably. Since the features generated from each of the three tested algorithms

are based on the properties of the silhouette (i.e., model-free algorithms), the performance

loss is due to the induced silhouette shape distortions induced from wearing a backpack

(expansion of the back region) and wearing a coat (thickening of the upper body).

Regarding the results on the CASIA C dataset (Figure 2.13, the matching performance

for each of the algorithms was generally comparable for normal vs. normal walk, as rank-1

recognition rates of 0.936, 0.955, and 0.920 were achieved for the Gait Curves, GEI and

Frieze pattern algorithms, respectively. Recognition performance was also comparable when

comparing “fast vs. normal” walk. Similar to the CASIA B data, a performance loss was

evident in all algorithms when comparing different covariates. Interestingly, a degradation is

evident when comparing differing walking speeds. Intuitively, this should be expected, as the

dynamics of walk are not the same for all speeds. For example, one might take shorter strides

when walking at slower paces. This may reflect why the Gait Curves algorithm was the least

robust to changes in walking speed, as it is largely concentrated on changes in shape. Of

particular interest is that the ROC curves for the GEI algorithm visually depict a larger area

underneath the curve (AUC) than the Frieze pattern algorithm, despite having lower rank-

accuracies for the speed and carrying condition covariates. In general, these results suggest

that the Gait Curves algorithm performs comparably to the described baseline algorithms.

Here, it should be noted there are other advantages of gait curve matching aside from
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matching performance numbers. Namely, the complexity (i.e., computational expense) of

gait curve matching is much less than the comparison algorithms. For example, the length

of the feature vector used for each gait curve was 300 elements. By comparison, the GEI

algorithm was 2300 (50x46) and the Frieze pattern algorithm was 100xT , where T is the

number of silhouette images extracted in a video sequence. Since the length of the feature

vector is relatively low, the Gait Curves algorithm does not require training for subspace

optimization and dimensionality reduction (as with GEI).

Recognition Performance on the WOSG Dataset

To establish a baseline of performance on the WVU Outdoor SWIR Gait dataset, three

specific experiments were developed. In the first experiment the relative matching accuracy

is determined, without specific regard to any covariate (i.e., all-to-all matching). In this

case, the matching performance achieved for each algorithm is significantly less than the

accuracies obtained in the baseline experiments (Figure 2.14).

The second experiment expands the analysis to specifically account for matching se-

quences of differing walking directions. These results, expressed in Figure 2.15, also yielded

poor performance numbers, but with some interesting caveats. As with Figure 2.14, the ini-

tial observation is that the GEI algorithm generally outperforms the Gait Curves and Frieze

pattern algorithms. A closer look into the results (as they pertain to direction) indicates

that each algorithm tended to yield reduced performance numbers when matching against

sequences of horizontal walk (i.e., directions one and two from Table 2.5). This result is

particularly interesting as it is commonly believed that gait recognition is optimally per-

formed when an individual is viewed moving perpendicular to the field of view [72]. In other

words, the matching performance is expected to be optimal when an individual is viewed

moving horizontally in the image plane. In some instances, this reduction of performance

is noticeably significant, as in the instances when the reference data consists of directions

three and six.

The third experiment investigates the ability of each recognition algorithm to match

the same direction of walk. Provided the WOSG dataset only has one gait sequence per

identity in a given walking direction, this was accomplished by extracting two feature vectors
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sequentially from one gait sequence. In addition to a measure of performance, this experiment

indirectly doubles as an additional measure of silhouette quality. In theory, a pair of gait

features extracted sequentially (seconds apart) and in the same walking direction should

match very well to one another as the walking dynamics are (presumably) consistent in

the short-term. Poor recognition performance, therefore, is an indication that the shape

of the silhouette is not consistent (i.e., is of poor quality). Noting this, though the results

in Figure 2.17 show an increase in rank- accuracy, the increase is not substantial and is

direction dependent. The dependence on direction is also noteworthy, as a uniform increase

in performance would suggest issues in the matching algorithms, rather than the data. The

results across all algorithms indicate that, in general, the “highest” quality silhouettes were

extracted from direction six (the observed individual walks from bottom left to upper right

of image plane), while the “lowest” quality silhouettes were extracted from direction one

(the observed individual walks from right to left in the image plane). Additional evidence

of this can be found in Figure 2.15, where matching with direction one consistently yielded

among the lowest rank-accuracies.

In summary, of the three evaluated algorithms, none exhibited a high matching perfor-

mance on the WOSG dataset. However, based on the experimental results (Figures 2.14-

2.17), an argument can be made that the likely source of error was the lower quality silhou-

ettes generated from the segmentation process (Table 2.2). Recall that the segmentation

process used to generate silhouettes on the WOSG dataset is consistent with related gait

literature.

Backpack Detection

With regard to the experiments on bag detection (Section 2.5.6), the features derived

from a gait curve are generally able to successfully detect the presence of a backpack, with

successful detection (or non-detection) rates approaching 90%. Visual evidence of feature

separability from Figure 2.4 supports this claim.

Errors in detection generally occur as a result of error in normalizing y[t] (e.g., gait

curve) to a common spatial domain. In the case of false positives (involving the detection of

a backpack when one is not present), segmentation errors in the silhouette can greatly cause
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Figure 2.23: Examples of backpack misclassification. Top: False bag rejection. Bottom:
False bag positive.

the normalization threshold to be lower than expected, resulting in signal characteristics

of a bag. Conversely, missed detection of a backpack can occur if part of a bag exists in

the expected waist region. This will result in a higher normalization threshold and reduce

the efficacy of the signal based features. Visual examples illustrating the causes of detection

errors are found in Figure 2.23. However, although the stated features for backpack detection

performed quite well, three of the four are strictly application limited, as they examine only

a portion of silhouette shape based on a targeted location of the gait curve. The exception

to this is the feature corresponding to expected silhouette shape. This feature is perhaps

the most robust because it has no dependence on scale and observes the general silhouette

shape. As a result, its usefulness may be extended beyond backpack detection. In spite of

the robustness of this feature, it is derived from local database information. Therefore, in an

operational setting, each system would need to compute this feature individually, and one

feature representation may not work well in a different system or setting.
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Silhouette Rectification

Implementation of the silhouette rectification scheme (Section 2.2.5) yielded interesting

results. Assuming perfect backpack detection, the rank-1 identification accuracy of the Gait

Curves algorithm when comparing “With Bag” samples to “Normal” samples increased by

a factor exceeding 100% (0.259 to 0.561, Figure 2.18).6 The increase in rank-1 identification

accuracy exceeded the rank-1 accuracy of the GEI algorithm for each of the three correction

schemes and exceeded the rank-1 accuracy of the Frieze pattern algorithm for one of the

correction schemes (linear correction, Equation (2.15)). However, the area under the ROC

for these corrections is less than the GEI and Frieze algorithms. In general, this result

suggests that the silhouette rectification schemes can successfully mitigate the distortions

induced from a backpack and improve the recognition accuracy of the Gait Curves algorithm.

Changing the experiment such that samples detected to include a backpack are subject

to the rectification schemes (including the reference samples) resulted in an even larger

improvement in rank-1 accuracy (Figure 2.19). A similar increase in AUC is also present in

the ROC data. This result is particularly interesting, as it might be expected that a reduced

recognition accuracy would follow due to missed backpack detections. However, in this case,

it turns out that some samples incorrectly not recognized as having a backpack are now

matching correctly. In other words, the rectification scheme was less beneficial to samples

near the decision boundary of “backpack” or “no backpack”. Alternatively, there were a few

instances where a sample was correctly detected as having a backpack matched correctly to its

corresponding sample in the reference set, but the reference sample was incorrectly detected

as having a backpack. Such a situation occurs for identities with a large body area, whose

shape, even in normal situations might appear as a backpack. Thus, when the correction

scheme is applied to both the probe and reference samples, it results in increased similarity.

This outcome was in the minority though, found only in three instances. In general, this

result suggests that the silhouette rectification schemes are helpful in improving recognition,

but not in all cases.

One interesting caveat of the three rectification schemes is that each was found to boost

60.561 denotes the lowest performing of the three correction schemes.
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recognition performance by the same amount (within ±2%). This is likely due to the fact

that each correction generally performs the same task, except with increasing complexity.

Although each correction method results in a noticable increase in matching performance,

the increase is still less than matching “normal” to “normal” sequences. The results of Figure

2.19 suggests some of this discrepancy is due to adverse effects of the correction method on

some samples, but it is also likely that other factors, such as cadence account for differences

in the gait biometric between “normal” and “with bag” samples.

2.6 Summary

This chapter introduces (a) a novel algorithm for performing human gait recognition

and (b) a new challenge gait database to evaluate recognition performance. Defined as gait

curve matching, the recognition algorithm denotes a shape-based approach to characterize

human gait. The feature representation is also advantageous in that it can be used to detect

for abnormalities in the silhouette (e.g., object detection). If objects can be detected, then

subsequent silhouette restoration methods can be used to increase recognition performance.

Although the Gait Curves algorithm did not outperform the comparison algorithms, the

results were generally comparable and the feature representation is less expensive and does

not require training or dimensionality reduction.

The second component of this chapter included a performance evaluation on the WVU

Outdoor SWIR Gait (WOSG) dataset. The dataset is unique as the data was collected in

an unconstrained, outdoor environment, with a SWIR image sensor. This is in contrast

to the majority of gait datasets (including those with an infrared image sensor), where the

background environment is very controlled. Consequently, one of the major challenges in

the data is the segmentation component. Experimental results confirm this result by (a) the

use of a quality metric, which suggests the silhouette data is of much lower quality than the

silhouettes produced from baseline datasets (using the same segmentation algorithm) and

(b) the matching performance observed, which is significantly reduced in comparison to the

performance observed on the baseline datasets.

These results indicate that recognition of human gait is an appropriate modality for
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biometric surveillance systems, while also highlighting that more research is required in the

segmentation component, in order to further advance the state of the art.
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Chapter 3

Clustering Human Gait

3.1 Introduction

Traditionally, human gait recognition implies deducing the identity based on how a person

walks. Chapter 1, Section 1.3.2 summarizes a number of gait recognition algorithms from the

literature. Though a number of recognition algorithms have been proposed, research has not

explicitly captured what these algorithms are actually capturing to infer a decision regarding

identity. In particular, this is true for model-free approaches as the matcher is based on

the differences in a moving shape, rather than an explicit set of measured parameters. It

might be possible that static physical characteristics are embedded within ones gait pattern.

Examples of such physical properties might include body size, walking speed (i.e., cadence),

and gender.1 If so, it may further be the case that these characteristics factor into the

assessment of similarity (or difference) between gait patterns from a gait matching algorithm.

In the context of a biometric surveillance system, this becomes a very interesting property

and further advantage of utilizing gait. One of the primary advantages pertains to the

instances when an observed individual is not recognized by the system (i.e., no matching

data is found in the database). Arguably, this scenario is likely to occur using gait biometrics

in a surveillance context. Assuming an individual is not recognized, it may still be possible

to generate a semantic profile based on which gait patterns the probe data is most similar

to. Semantic profiles can be generated by a cluster analysis of gait data.

1While gender is primarily a genetic property, it impacts the physical aspects of an individual.
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In addition to the generation of semantic profiles as an advantage for clustering gait data,

additional benefits exist as well. If the reference data is very large (arguably a property of

an operational biometric surveillance system), the search for an identity can be confined to

specific clusters based on the input gait data, thereby reducing search time (e.g., biometric

indexing [137]). Indexing or semantic profiling can also be used to narrow down the search

space for a more sophisticated matching algorithm (e.g., a face matcher, which may be more

computationally expensive), if present. Further,

3.1.1 Classification of Physical Attributes from Gait Patterns

As stated previously in Chapter 1, in the early psychological studies by Kozlowski and

Cutting, gender was concluded to be embedded within human gait [81]. Recent studies

using force places using force plates have also concluded that men and women have differing

gait patterns [138]. Some researchers have attempted to apply these conclusions to test

whether gait data can be used to classify gender. Lee and Grimson, published the first study

attempting to classify gender from gait data [139]. Their study attempted to model the side-

profile of the human body by fitting ellipses. A classification rate of 84% was achieved on a

dataset of 24 identities. Later, Huang and Wang performed a similar study fitting ellipses on

front-view and side-view gait data in the CASIA B dataset [140]. Using a fusion approach,

a 89.5% classification accuracy was achieved with a bootstrapped test set of 50 identities

(25 male, 25 female) identities. In another study by Li et al. [141], the Gait Energy Image

(GEI) image [91] was divided into six components denoting different regions of the human

body (side-view). Using a SVM classifier, a gender classification rate of 98% was reported

on a test set of 122 identities (USF Human ID dataset [120]). Li et al. [141] further remark

that the torso and movement of the leading leg contribute the most discriminative power for

gender recognition. The success of these gender classification schemes suggests gender may

be embedded in a gait feature descriptor. However, it is unclear how strong of an influence

gender has, or if there are any other attributes that may be stronger.

Beyond gender, Samangooei and Nixon presented a study attempting to ascertain which

physical attributes were related to the matching reference of a probe gait sequence [142]
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using GEI features. In their study, the physical attributes tested included those that might

be used in a surveillance or law enforcement scenario. A sample of these attributes includes

gender, age, height, ethnicity, hair length, and hair color. Each physical attribute was

categorized by human annotators into simplified classes (e.g., “Male”, “Female”, “Tall”,

“Blonde”, “Middle-aged”, etc.). Physical attributes and gait features were extracted from

the University of Southampton “Large” dataset (115 identities). Their results concluded

that gender, hair length, height, and age were often similar returned categories between a

probe and the top ranked match. However, only gender and hair length were found to be

statistically significant.

3.1.2 Clustering Gait Patterns to Measure Groups of Identities

While research indicated that physical attributes such as gender are likely to be embedded

in gait patterns, there has been limited research investigating the clustering of gait patterns,

and whether gait patterns can be described semantically. In a study by Watelain et al.,

a cluster analysis was performed to discover whether age (“young” or “elderly”) could be

inferred from gait [143]. In their study, force-plate and 3-D muscle power data was extracted

from walking individuals in “young” and “elderly” age groups. Using hierarchical clustering

and analysis of variance (ANOVA) hypothesis testing, the muscle power data was found to

be significant among age groups.

3.1.3 Chapter Motivation

In a surveillance context, the studies by Samangooei and Nixon [142] and Watelain et al.

[143] are interesting as they show that (a) surveillance-based physical attributes are likely

to be embedded in gait patterns [142] and (b) identities can be clustered based on physical

attributes [143]. The motivation of this chapter is to build upon both of these studies

by performing a cluster analysis of gait features from multiple matching and clustering

algorithms, and further analyze whether clusters can be described by semantic physical

attributes. This is accommodated by subjecting the feature set extracted by a gait matcher

to a clustering scheme. The cluster analysis is well-suited to this problem as it depicts



Brian M. DeCann Chapter 3. Clustering Human Gait 74

how matching identities group identities. This analysis will effectively demonstrate whether

semantic profiles can be generated from gait features.

Since multiple gait matching algorithms are evaluated, additional post-analysis will ex-

amine whether there are any differences between clusters generated from different matchers.

From an academic standpoint, such an analysis will demonstrate whether matchers per-

ceive gait features differently, and as such, whether certain physical attributes emphasized

uniquely in assessing similarity. An operational caveat of this an analysis is that (a) it is

possible to identify the matchers that best profile specific physical attributes and (b) fu-

sion of matching algorithms that assess similarity differently are likely to result in increased

matching performance.

In this chapter, the physical properties that will be investigated consist of gender, body

area, height, stride, and cadence. The matching algorithms used in the cluster analysis con-

sist of the gait curves algorithm from Chapter 2, and the comparison algorithms: GEI [91]

and frieze pattern [101] matching, which are reviewed in Chapter 2, Section 2.4. The clus-

tering analysis is performed using k-means and hierarchical clustering, which are introduced

in Section 3.2. The cluster analysis is performed in Section 3.3 and an analysis of the results

is presented in Section 3.3.7. A brief summary of key findings is presented in Section 3.4.

3.2 Clustering Algorithms

In general, the clustering problem refers to organizing a set of samples into distinct

groups such that samples in the same group (i.e., cluster) are most similar to other samples

in the same group and less similar to samples in different groups. In the context of pattern

recognition, the clustering problem is typically characterized as an unsupervised learning

problem, as the goal is typically to discover structure (i.e., class-labels) for a set of samples.

Thus, clustering is popular in areas such as image analysis [144, 145], bioinformatics [146,

147], and data mining [148, 149].

Clustering is not limited to a single method or algorithm. The literature offers many

clustering techniques which vary according to how clusters are defined and how samples are

assigned. In this chapter, clustering of gait patterns is performed using the k-means and
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Hierarchical clustering algorithms, which denote common approaches to the clustering task.

These algorithms are chosen as they are well-known and offer a good starting point for a

data discovery problem. A brief description of these algorithms are provided in the following

subsections.

3.2.1 K-means Clustering

The original k-means clustering algorithm was developed internally within Bell Labs in

the 1950’s as a technique for pulse-code modulation and was first published in 1982 [150].

A similar version of the algorithm was also developed and published by Forgy in 1965 [151].

The k-means algorithm is defined as a data partitioning algorithm, where each cluster is

defined (and modified) simultaneously.

Algorithmically, the k-means algorithm is an iterative process with an initialization fol-

lowed by two successively alternating steps: Assignment and Update. The algorithm initial-

izes with c “means” or “cluster centroids”. Denote these “means” as m
(0)
1 ,m

(0)
2 , . . . ,m

(0)
c .

Note the superscript (0) denotes a time step, t (initially t = 0). Each cluster centroid, m
(t)
i ,

(i ∈ [1, c]) has a dimensionality of d, equal to the dimensionality of the sample data being

clustered. In other words, m
(t)
i is a vector with the same number of elements as the sample

data. Assigning initial values to each m
(t)
i can be performed in a number of different ways.

For example, each m
(t)
i can be assigned random values or be assigned values equal to one of

the samples to be clustered.

In the assignment step, each sample is assigned to a cluster, ci, that has the smallest

distance between the sample, xj (j = 1, 2, . . . , NT ), and the cluster centroid m
(t)
i . Denote

D(m
(t)
i ,xj) as the distance between cluster centroid m

(t)
i , and sample data xj . Mathemati-

cally, this is described in Equation (3.1).

xj ∪ ci : miniD(m
(t)
i ,xj), i = 1, . . . , k (3.1)

In the update step, the numerical values pertaining to cluster centroid m
(t)
i , are updated

to reflect the mean of the sample data assigned to cluster ci. Mathematically, this is described

in Equation (3.2).
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m
(t+1)
i =

1

|ci|

∑

xj∈ci

xj (3.2)

The algorithm terminates when the sample data at iteration t is assigned to the same

clusters as in the previous iteration.

One of the advantages of the k-means algorithms is that it will always converge to some

minimum. However, the identified solution is not guaranteed to be the global minimum.

Another limitation of the k-means algorithm is that the number of clusters must be pre-

specified as an input parameter. Additionally, the range of values specified for clusters is

sensitive to the properties of the distance metric used. For example, using the Euclidean

distance metric, k-means tends to generate spherical clusters with respect to the data space.

3.2.2 Hierarchical Clustering

Hierarchical Clustering is a clustering technique that builds clusters by “linking” sam-

ples together. This can be performed using an agglomerative or divisive strategy. In an

agglomerative strategy, each sample is initialized as its own cluster (i.e., initialize with NT

clusters). Next, samples are linked together (using some distance metric) such that the num-

ber of clusters is successively reduced from NT to 1. A divisive strategy is the opposite of an

agglomerative strategy. Initially, each sample is initialized to the same cluster (i.e., initialize

with one cluster). Samples are successively removed and placed in new clusters until each

sample is its own cluster. The process of linking samples together results in a “tree”, which

depicts which samples are linked together for c clusters (1 ≤ c ≤ NT ). This is defined as a

dendrogram.

Algorithmically, an agglomerative strategy can be defined as follows. Given a samples

s1, s2, . . . , sNT
, define dendrogramD as the set of cluster labels (l

(c)
1 , l

(c)
2 , . . . , l

(c)
NT

) for c clusters

(1 ≤ c ≤ NT ). Initially (at c = 1), each cluster label has the same value (e.g., l
(1)
k = 1,

k = 1, 2, . . . , NT ). For c = 2 to NT , denote sample sa, with label l
(c)
a = α (α ≥ 1), as the best

matching sample to the samples whose label is equal to β (α 6= β). The label for sample sa

is set to β and c is increased by one.

The primary advantage of hierarchical clustering is that the analysis depicts how samples
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are linked as the number of clusters increases or decreases. In addition hierarchical clustering

can isolate small clusters, which may be beneficial for discovery problems. However, hier-

archical clustering can be computationally expensive, where computation is at least O(n)2

and n is the number of samples. Additionally, the dendrogram can be significantly impacted

by the linkage established between the first few samples.

3.3 Experimental Results

3.3.1 Dataset

Cluster analysis is performed on the “normal walk” subset of the CASIA B Gait dataset.

Recall from Chapter 2, Section 2.5.1, the “normal walk” subset of the CASIA B dataset

consists of NG = 6 video sequences for N = 124 individuals and that the CASIA B Gait

dataset is a controlled, indoor, gait dataset with high quality silhouette data (Chapter 2, Table

2.2). The CASIA B dataset is chosen for cluster analysis as it (a) has a large number of

identities, and (b) yields high quality silhouettes. The latter point is particularly important

as the cluster analysis could be degraded by noisy silhouettes [108].

In addition to collecting the gait biometric from each video sequence, ancillary physical

features regarding each identity are also extracted. The ancillary features consist of: Gender,

Stride , Cadence (viz., walking speed), Height, and Area.2 Gender is determined by visual

observation. Stride (in pixels) is computed from stride vector sk (k = 1, 2, . . . , K), where sk =

maxi{Bk(i, j)}−mini{Bk(i, j)} andBk(i, j) refers to the k
th silhouette image. The estimated

stride corresponds to the average of sτ , where τ corresponds to the values of k that denote

a local maxima in sk (i.e., feet apart). Local maxima are identified by counting the negative

zero-crossings in the difference vector, ṡk. Cadence is measured by |τ |, the total number of

negative slope zero-crossings in the stride difference vector, ṡk. Height (in pixels) is computed

from height vector hk (k = 1, 2, . . . , K), where hk = maxj{Bj(i, j)} −minj{Bk(i, j)}. The

estimated height corresponds to the average of hπ, where π corresponds to the values of

k that denote a local maxima in hk (i.e., feet together). Local maxima are identified by

2Ground truth for this information is not provided by CASIA.
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Table 3.1: Extracted physical characteristic data from the CASIA B dataset.

Height Area Stride Cadence Gender

(pixels) (pixels) (pixels) (half cycles) (male / female)

137.0 ± 7.33 3335 ± 443.9 69.1 ± 6.48 5.17 ± 1.23 474 (75%) / 156 (25%)

counting the positive slope zero-crossings in ṡk.
3 Area (in pixels) is measured by area vector

ak, where ak =
∑

i

∑

j Bk(i, j). The estimated area corresponds to the average of aτ . A

summary of the extracted physical data is provided in Table 3.1. Note that “Height”, “Area”,

and “Stride” are measured in pixels. “Cadence” is measured in half gait cycles completed,

and “Gender” is a binary value.

3.3.2 Matching Algorithms

Cluster analysis is performed using the Gait Curves (Chapter 2, Section 2.2), GEI [91],

and Frieze Pattern matching approaches [101]. Refer to Chapter 2 for a review of these

matching algorithms.

Feature vectors for the GEI, gait curve, and frieze pattern algorithms were constructed

using all video frames where an individual was viewed fully in the image plane. GEI images

were extracted using a 90-pixel horizontal window, with the silhouette height normalized to

100 pixels. The resulting GEI image was then downsampled by a factor of two. Subspace

optimization was performed using PCA, wherein a principal component was retained if the

associated eigenvalue was greater than 0.001. The Euclidean distance metric was used to

compare GEI features. For the gait curves algorithm, each gait curve was normalized to

contain 300 elements and the procrustes distance metric (Chapter 2, Equation (2.7)) was

used to compare feature vectors. As with GEI, frieze patterns were extracted from a 90-pixel

horizontal window and normalized to a height of 100 pixels. Frieze patterns are compared

using Dynamic Time Warping (Chapter 2, Section 2.4.2). Since the GEI algorithm utilizes

PCA, 15% (19 identities) of identities are used for training the subspace optimization. This is

consistent with the method for subspace optimization in the experiments evaluating matching

performance in Chapter 2, Section 2.5. Clustering is performed on the remaining NC = 105

3The stride vector is used in this calculation as it was found to have a larger range in amplitude.
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Figure 3.1: Baseline recognition performance of the data used for clustering. Left) ROC
Curve. Right) CMC Curve.

identities for all algorithms (NC : number of identities available for clustering). A baseline

recognition performance evaluation consisting of ROC and CMC curves of the cluster data

is presented in Figure 3.1. Note the AUC obtained from the samples utilized for clustering

is 0.982, 0.981, and 0.922 for the GEI, Gait Curve, and Frieze Pattern algorithms. The

corresponding rank-1 identification accuracies are 0.951, 0.975, and 0.924, respectively.

3.3.3 Protocol For Generating Clusters

Clusters are generated using the k-means and hierarchical clustering algorithms, as de-

scribed in Section 3.2. Cluster centroids are estimated from a training set based on randomly

sampling one of NG samples for the NC remaining identities. This set is denoted as Ctrain.

The remaining samples are assigned to the test set Ctest. Each sample in Ctest is assigned

to the cluster whose centroid is closest to the sample. Thus, the maximum number of clus-

ters that can be created is 105 and the minimum is one. Although it is best practice to

ensure there are no overlapping identities in Ctrain and Ctest (to prevent “overtraining”), it is

performed here primarily to maximize the amount of data available for post-analysis. Clus-

tering experiments are performed using c = 5 and 10 clusters, which are arbitrarily selected.4

Though arbitrarily selected, the number of clusters must be in a range that will not diminish

the physical attributes that we seek to find in individual clusters. The distance metrics are

4Note the selection of c = 5 and c = 10 is arbitrary and may not be the best number of clusters for the
analyzed gait data
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Sub-Experiment A: Generating and Assigning Clusters (k-means)
Step 1: Draw one sample per identity to comprise Ctrain.
Step 2: Assign the remaining samples to Ctest.
Step 3: Initialize k-means with an input of c clusters and randomly choose
c samples from Ctrain as the initial cluster centers.

Step 4: Learn cluster centroids using Ctrain.
Step 5: Note the identified cluster centers and the total cluster-member distance.
Step 6: Repeat Steps 4-5 2,000 times.
Step 7: Keep the cluster centers with the smallest cluster-member distance.
Step 8: Assign samples in Ctest to the closest cluster.

Sub-Experiment B: Generating and Assigning Clusters (Hierarchical)
Step 1: Draw one sample per identity to comprise Ctrain.
Step 2: Assign the remaining samples to Ctest.
Step 3: Initialize hierarchical clustering with each sample as its own cluster.
Step 4: Merge the two clusters that minimize median distance.
Step 5: Repeat Step 4 until c clusters remain.
Step 6: Assign samples in Ctest to the closest cluster.

Euclidean (GEI), Procrustes (Gait Curves) and Dynamic Time Warping (Frieze Patterns).

Regarding k-means clustering, c of NC samples in Ctrain are randomly selected and initial-

ized as the cluster centroids. The convergence criteria is met when the change in summed

distance between each cluster centroid and its members is less than 1e-6 between iterations.

This process of random initialization and convergence is repeated 2,000 times (with different

initial centroids) and the centroids with the smallest summed cluster-member distance are

kept for further evaluation. This is necessary to increase the likelihood of converging to

the globally optimal solution. Regarding hierarchical clustering, median-linkage is used to

assign clusters. In median-linkage, a sample is added to the cluster whose sample members

have the minimum-median distance. The process for generating clusters using k-means is

summarized in Sub-Experiment A and the process for generating clusters using hierarchical

clustering is summarized in Sub-Experiment B.

3.3.4 Basic Cluster Analysis

First, a basic analysis is performed investigating the composition of the generated clus-

ters. This includes a visual analysis (i.e., a visual look at the clusters produced), an analysis
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Figure 3.2: Samples nearest to the identified cluster centroid for each matching algorithm for
k-means clustering with c = 5 clusters. Note that with exception to #46, nearest-centroid
samples are different across matchers and appear reasonably distinct.

of cluster membership (i.e., samples per cluster), cluster matching (i.e., the proportion of

samples in Ctest assigned to the same cluster as their corresponding sample in Ctrain), and

cluster purity (i.e., identities per cluster) for both the k-means and hierarchical clustering

algorithms. The motivation of the basic analysis is to ascertain whether identities are, in

fact, being clustered into different groups.

Visual Analysis

In the visual analysis, the samples nearest to each cluster centroid as they pertain to each

matcher are visualized for one execution of the k-means and hierarchical clustering algorithms

(with c = 5).5 The intent of the visual analysis is to visualize the samples identified near the

cluster centroids. In a simple context, if the nearest cluster samples appear distinct visually,

it may be an indication that meaningful clusters are being generated. The nearest centroid

samples for each matcher are visualized in Figure 3.2 for the k-means clustering algorithm

and Figure 3.3 for the hierarchical clustering algorithm. Note the physical variations between

identities in Figures 3.2-3.3.

5For hierarchical clustering, the sample nearest to the cluster centroid is defined as the sample that has
the maximum similarity to all other samples in the same cluster.
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Figure 3.3: Samples nearest to the identified cluster centroid for each matching algorithm
for hierarchical clustering with c = 5 clusters. Note that with exception to #14 and #38,
nearest-centroid samples are different across matchers and appear reasonably distinct.

Cluster Membership

Here, an analysis is performed to investigate the distribution of cluster members. In other

words, an analysis of the number of samples per cluster. Though it is difficult to ascertain

what would comprise an ideal distribution, it may be more prudent to investigate whether

cluster membership is not dominated by one (or two) clusters. Figure 3.4 and Figure 3.5

depict a histogram of member size for one trial of cluster generation for c = 5 and c = 10

clusters for k-means and hierarchical clustering, respectively. This includes the Ctrain cluster

training samples and the Ctest assigned samples. For aesthetic purposes, cluster membership

size is sorted from largest to smallest for each feature representation scheme (e.g., Gait

Curves, GEI, Frieze Patterns). Note that for both k-means and hierarchical clustering,

one cluster is much larger than the others. This attribute is much more pronounced in

hierarchical clustering (Figure 3.5).

Evaluating Cluster Matching

Here, an analysis is performed to investigate whether samples in Ctest are being assigned

to the same cluster as their corresponding sample in Ctrain. This is analogous to the hit

rate in the biometric indexing problem in the literature. The indexing problem denotes

a runtime optimization problem, wherein the reference data in the database is assigned a
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Figure 3.4: Histogram of samples per cluster for k-means clustering.
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Figure 3.5: Histogram samples per cluster for hierarchical clustering. Note that most samples
are placed in a single cluster.

second identifier (i.e., a cluster label), which is used to reduce the search space (i.e., the

number of match scores computed) for a given probe [137]. In the indexing literature, the

hit rate is defined as the probability that a probe sample matches to a cluster that contains

the identity of the probe. Mathematically, this is described in Equation 3.3 where Nhit

denotes the number of times a probe matches to a cluster containing the identity belonging

to the probe and Nprobe denotes the number of probe samples (i.e., the number of samples

in Ctest).

Hit Rate =
Nhit

Nprobe

(3.3)

The proportion of correctly assigned test samples (e.g., hit rate) is tabulated in Table 3.2
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Table 3.2: Computed hit rates for the GEI, Gait Curve, and Frieze Pattern algorithms with
c = 5 and c = 10 clusters.

k-means Hit Rate (c = 5) Hit Rate (c = 10)

GEI 0.798 0.685

Gait Curves 0.745 0.741

Frieze Patterns 0.598 0.512

Hierarchical Hit Rate (c = 5) Hit Rate (c = 10)

GEI 0.878 0.754

Gait Curves 0.836 0.739

Frieze Patterns 0.966 0.973

for c = 5 and c = 10 clusters. Ideally, the hit rate would be 1.0, indicating that samples are

being matched to the same cluster as its corresponding training sample. Values significantly

less than 1.0 may be an indication that clustering of identities is not occurring.

Note a complete description of the biometric indexing problem and analysis is treated as

supplementary material and can be found in Appendix A.

Evaluating Cluster Purity

Here, an analysis is performed to investigate the “purity” of clusters, where “purity” is

defined by the proportion of clusters that contain a single identity. Ideally, samples for each

identity would be assigned to the same cluster. This would indicate a “high” cluster purity.

If samples for each identity are assigned across several clusters, this might suggest that the

clusters do not convey any meaningful information. This analysis is performed by noting the

cluster labels for both the Ctrain and the Ctest assigned samples. Figure 3.6 and Figure 3.7

conveys this information in the form of a histogram of the number of clusters each identity

is represented in. Note that for both clustering algorithms, most identities are represented

by one or two clusters.

Conclusions of the Basic Analysis

Summarizing the results of the basic analysis, k-means clustering was generally found to

assign samples to multiple clusters, which is a trait indicating groups are being formed via

the clustering process. However, the hit rates produced are lower than might be desired.
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Figure 3.6: Histogram of identities per cluster for k-means clustering. Generally, most
identities are represented by no more than two clusters.
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Figure 3.7: Histogram of identities per cluster for hierarchical clustering. Generally, most
identities are represented by no more than two clusters.

Despite this, most identities are generally observed in no more than two clusters. Hierarchical

clustering differed from k-means clustering in that samples were more likely to be distributed

to the same cluster. In other words, one “large” cluster was generated accompanied by

“smaller” clusters. As such, the corresponding hit rates and cluster purity were artificially

higher. Given the differences between the two clustering algorithms, it is likely that k-

means clustering is “clustering” samples while hierarchical clustering is not. Generally, this

is because the k-means clustering algorithm is generating more diverse clusters (e.g., clusters

of proportional size). Though hierarchical clustering produced a higher hit rate (Table 3.2)

and more “pure” clusters (Figure 3.5), this is largely due to most samples being assigned to

the same cluster (Figure 3.7). In detail, the small number of member samples for clusters
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4 to 5 in Figure 3.5 (left) and clusters 7 to 10 in Figure 3.5 (right) are concerning as they

involve a small proportion of samples. This is particularly evident for the clusters generated

from Frieze pattern features, where over 80% of the sample data is assigned to a single

cluster for both c = 5 and c = 10. As a result of these findings, hierarchical clustering

may not be adequately clustering the sample data. Consequently, the remainder of the

experimental analysis will only utilize k-means clustering.

3.3.5 Evaluating Identity Pairs in Clusters

In this experiment, an analysis is performed identifying whether pairs of identities are

clustered similarly among different feature representation schemes. The results of such an

experiment demonstrate whether different gait matchers group identities similarly. This is

accomplished by tabulating which of the Ctrain samples (corresponding to one identity per

sample) appear in the same cluster following cluster generation. Here, the test samples

(Ctest) are not considered. Define Ω as a binary matrix (e.g., table) of identity pairs, of size

NCxNC . Let α(i, j) (i, j = 1, 2, . . . , NC) be the row and column entries of Ω. Each α(i, j) is

assigned a value of “true” if the ith and jth identity is assigned to the same cluster. Otherwise

α(i, j) is “false”. The proportion of identity correspondences between two matrices, Ω1 and

Ω2 (e.g., GEI and gait curves) is described in Equation (3.4).

ω =|
Ω1 AND Ω2

Ω1 OR Ω2
| (3.4)

Here, | Ω | counts the number of “true” entries in Ω. High values of ω denote denote

increased cluster similarity between matchers. Equation (3.4) can be expanded to show

common identity pairs forM matching algorithms (M = 1, 2, . . .). This expansion is defined

in Equation (3.5).

ω =|
Ω1 AND Ω2 AND . . . AND ΩM

Ω1 OR Ω2 OR . . . OR ΩM
| (3.5)

Using Equation (3.5), ω is computed using the following combinations: Gait Curves (Ω1),

GEI (Ω2), and Frieze Patterns (Ω3),M = 3; Gait Curves (Ω1) and GEI (Ω2),M = 2; Gait

Curves (Ω1) and Frieze Patterns (Ω2),M = 2; GEI (Ω1) and Frieze Patterns (Ω2),M = 2.
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Table 3.3: Proportion of similarly paired identities when clustering GEI, gait curve, and
frieze pattern data with c = 5 and c = 10 clusters.

Combination ω (c = 5) ω (c = 10)

Gait Curves, GEI, Frieze Patterns 0.068 ± 0 0.045 ± 0

Gait Curves, GEI 0.333 ± 0 0.183 ± 0

Gait Curves, Frieze Patterns 0.155 ± 0 0.172 ± 0

GEI, Frieze Patterns 0.161 ± 0 0.106 ± 0

These values are computed for 1,000 different trials of cluster generation. The mean of these

values (± one standard deviation) are tabulated in Table 3.3 for c = 5 and c = 10 clusters,

respectively. Note that in general, the values of ω produced between matchers are low,

suggesting each matcher assesses similarity between gait patterns differently.

3.3.6 Measuring Significance of Physical Characteristics

In this experiment, an analysis is performed in order to determine if any of the physical

attributes (e.g., Gender, Stride, Cadence, Height, Area) are distinct across clusters. The

intent of this experiment is to discover whether identities in the same cluster share cer-

tain physical characteristics. This experiment also doubles as an indirect evaluation of the

clustering tendency of the gait data and also utilizes the test Ctest samples.

Significance of a physical variable is measured using two statistical tests. First, a chi-

square test of independence is performed using the cluster labels and each physical variable.

The chi-square test of independence evaluates whether a physical variable is independently

distributed among cluster labels. If the physical variable is independently distributed (i.e.,

the null hypothesis is accepted), it does not have any impact on the clustered data. Second

(assuming the null hypothesis is rejected), the Spearman Rank Correlation Coefficient (rs)

is computed for each physical variable and cluster label. The strength of correlation is

measured by how close rs is to a value of 1.0. In computing rs, the labels for each cluster

are assigned in increasing order of the cluster-mean corresponding to each physical variable.

This ensures that rs is valued between [0,1] and is not adversely impacted by the arbitrary

cluster label assignment.

These experiments are performed 1,000 times, with c = 5, and c = 10 clusters, for the
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Table 3.4: Cluster dependence on physical attributes; c = 5 clusters. The proportion of
accepted null hypothesis tests is displayed (where appropriate).

Variable Matcher Independent? p-value

Gender GEI No 0 ± 0

Gender Gait Curve No 0 ± 0

Gender Frieze Patterns No 0 ± 0

Stride GEI No 0 ± 0

Stride Gait Curve No 0 ± 0

Stride Frieze Patterns No 0 ± 0

Cadence GEI No 0 ± 0

Cadence Gait Curve No 0 ± 0

Cadence Frieze Patterns Yes (41%) 0.19 ± 0.23

Height GEI No 0 ± 0

Height Gait Curve No 0 ± 0

Height Frieze Patterns No 0 ± 0

Area GEI No 0 ± 0

Area Gait Curve No 0 ± 0

Area Frieze Patterns No 0 ± 0

GEI, Gait Curves, and Frieze Pattern matchers. Tables 3.4-3.5 tabulate the assertion of

dependence and average p-value (± one standard deviation) for each variable and matcher.

Dependence is asserted if exactly zero hypothesis tests result in acceptance of the null hy-

pothesis. Tables 3.6-3.7 tabulate the average Spearman rs and average p-value. Both values

are reported ± one standard deviation. Low p-values denote the likelihood the asserting that

the test outcomes were not due to random chance.6

3.3.7 Discussion

Again looking first at the output of the clustering process, Figure 3.4 illustrates the

distribution of samples per cluster. Note that in general, neither the k-means clustering

algorithm or the hierarchical clustering algorithm resulted in an equal distribution of samples

per cluster. However, the clusters generated via k-means clustering did not contain a large

majority of the sample data. The largest clusters via k-means contained ≈40% of the sample

6In Tables 3.4-3.7 p-values smaller than 0.001 are rounded to 0.
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Table 3.5: Cluster dependence on physical attributes; c = 10 clusters. The proportion of
accepted null hypothesis tests is displayed (where appropriate).

Variable Matcher Independent? p-value

Gender GEI No 0 ± 0

Gender Gait Curve No 0 ± 0

Gender Frieze Patterns No 0 ± 0

Stride GEI No 0 ± 0

Stride Gait Curve No 0 ± 0

Stride Frieze Patterns No 0 ± 0

Cadence GEI No 0 ± 0

Cadence Gait Curve No 0 ± 0

Cadence Frieze Patterns Yes (3%) 0.007 ± 0.054

Height GEI No 0 ± 0

Height Gait Curve No 0 ± 0

Height Frieze Patterns No 0 ± 0

Area GEI No 0 ± 0

Area Gait Curve No 0 ± 0

Area Frieze Patterns No 0 ± 0

data, whereas the largest clusters generated via hierarchical clustering contained ≈ 40% −

90% of the sample data. These results indicate that the k-means algorithm is likely clustering

identities into discernable groups. The large bias in samples per cluster for hierarchical

clustering makes it difficult to ascertain whether discernable groups are being created. It

may be possible that the sample data was not of sufficient size or variability for hierarchical

clustering to perform well.

From the first experiment, Table 3.3 demonstrates the proportion of similarly clustered

identities (ω, Equation (3.4)) between matchers. The motivation for such an experiment is to

understand if gait matching algorithms tend to group the same identities together. The low

values of ω in Table 3.3 indicate that the gait matchers tended to group identities differently.

This suggests that different gait matchers assess similarity between gait patterns differently.

In addition, the values of ω were found to be equal for each trial of cluster generation (with

different training samples). This suggests that the clustering process is converging to the

same local minimia, which could be the global minimum.

Provided that the matching algorithms cluster identities differently, it is worthwhile to
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Table 3.6: Spearman’s correlation coefficient for the clustered physical attributes; c = 5
clusters.

Variable Matcher Spearman rs p-value

Gender GEI 0.691 ± 0 0 ± 0

Gender Gait Curve 0.501 ± 0.002 0 ± 0

Gender Frieze 0.234 ± 0.006 0 ± 0

Stride GEI 0.457 ± 0 0 ± 0

Stride Gait Curve 0.450 ± 0 0 ± 0

Stride Frieze 0.153 ± 0.010 0 ± 0

Cadence GEI 0.192 ± 0 0 ± 0

Cadence Gait Curve 0.293 ± 0 0 ± 0

Cadence Frieze 0.096 ± 0.012 0.022 ± 0.024

Height GEI 0.691 ± 0 0 ± 0

Height Gait Curve 0.323 ± 0.003 0 ± 0

Height Frieze 0.227 ± 0.010 0 ± 0

Area GEI 0.804 ± 0 0 ± 0

Area Gait Curve 0.495 ± 0.001 0 ± 0

Area Frieze 0.378 ± 0.012 0 ± 0

evaluate whether fusion of the matchers that are the most distinct from one another results

in the highest gains in recognition performance. In Table 3.3, the lowest value of ω produced

between a pair of matching algorithms denotes the pair with the least similarity between

clustering results. For c = 5, this corresponds to Gait Curves and Frieze Patterns. For

c = 10, this corresponds to GEI and Frieze Patterns. One might argue that fusion of either

the GEI or Gait Curves matcher with the Frieze Pattern matcher should achieve the highest

recognition performance, as the pair of algorithms have minimum information overlap. To

test this, ROC and CMC curves of the fused data are created. These results are presented

in Figure 3.8. The AUC values produced are 0.984, 0.984, and 0.974 for fused GEI and Gait

Curves, GEI and Frieze Patterns, and Gait Curves and Frieze Patterns, respectively. The

rank-1 accuracies are 0.967, 0.968, and 0.975 for fused GEI and Gait Curves, GEI and Frieze

Patterns, and Gait Curves and Frieze Patterns, respectively. As hypothesized, the fusion

results with the best recognition performance involved the Frieze Pattern algorithm.

The second experiment attempts to ascertain whether the generated clusters can be de-

scribed by semantic terms (i.e., physical attributes). This is facilitated by extracting physical
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Table 3.7: Spearman’s correlation coefficient for the clustered physical attributes; c = 10
clusters.

Variable Matcher Spearman rs p-value

Gender GEI 0.707 ± 0.008 0 ± 0

Gender Gait Curve 0.604 ± 0.032 0 ± 0

Gender Frieze 0.427 ± 0.078 0 ± 0

Stride GEI 0.526 ± 0.027 0 ± 0

Stride Gait Curve 0.484 ± 0.031 0 ± 0

Stride Frieze 0.321 ± 0.054 0 ± 0

Cadence GEI 0.278 ± 0.036 0 ± 0

Cadence Gait Curve 0.337 ± 0.034 0 ± 0

Cadence Frieze 0.258 ± 0.070 0 ± 0

Height GEI 0.673 ± 0.019 0 ± 0

Height Gait Curve 0.483 ± 0.048 0 ± 0

Height Frieze 0.374 ± 0.052 0 ± 0

Area GEI 0.818 ± 0.011 0 ± 0

Area Gait Curve 0.617 ± 0.028 0 ± 0

Area Frieze 0.484 ± 0.051 0 ± 0

attributes of the identities in the CASIA B dataset, and attempting to find correlation in

the cluster data. Such an analysis also provides insight into which physical attributes are

captured by a gait matcher and their relative “weight” as it pertains to matching. Tables

3.4-3.5 first demonstrate that each of the physical variables are dependent with respect to

their assigned cluster, with exception to cadence in the frieze pattern matcher, which was

found to be independent in some trials (41% and 3% for c = 5 and c = 10, respectively).

From Tables 3.6-3.7, each of the three matchers exhibited the highest correlation in body

area and gender. Gender is particularly interesting because it was not evenly distributed in

the dataset. Of the 105 identities available for clustering, only 26 (≈25%) were female. In

Figure 3.9, a histogram of gender and cluster number is presented for each of the matchers.

Note that each cluster is largely dominated by one gender. Given the small number of fe-

males in the test data, this likely describes the why the cluster sizes were not the same from

the k-means clustering algorithm (Figure 3.4) and presents evidence that meaningful clusters

are being generated. Additionally, the “male” and “female” clusters are further subdivided

primarily based on body area. This is evidenced in Figure 3.10. As the number of clusters
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Figure 3.8: Matching performance when the matchers used in the cluster analysis are fused
(score-level). Note the best fusion results involve the algorithms most distinct from one
another (viz. Table 3.3). Left) ROC Curve. Right) CMC Curve.

increased from 5 to 10, the rs values for height, stride, and cadence increased slightly. This

suggests that these properties play a secondary role when separating identities into a larger

number of groups.

Between matchers, the strength of body area and gender in cluster generation was the

most pronounced in the GEI algorithm. This is likely attributed to the fact that the GEI

matcher is an appearance-based recognition scheme, where the pixel content is the primary

feature vector. The gait curves matcher is unique in that stride and cadence play a larger

role than in any of the other matchers. This suggests that the gait curves matcher captures

more information regarding the dynamics of the lower limbs. The frieze pattern matcher

presented comparatively lower values of rs for each physical variable. In particular, the low

value of rs for cadence is expected as it was found to show a weak dependence on cluster

label. These values, as well as the lower values of ω when comparing identity pairs (Table

3.3) suggest either (a) that there is an unknown latent variable that is driving how the Frieze

Pattern matcher assess similarity between gait patterns or (b) there is a higher proportion

of identities whose samples are distributed across multiple clusters.

Overall, these results suggest that (a) gait patterns can be clustered, (b) the clusters can

be described by certain physical properties, and (c) the description of clusters is dependent

on the matcher. These results are very important in the context of an operational surveillance

system utilizing human gait. As mentioned in Section 3.1, a surveillance system utilizing gait
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Figure 3.9: Histogram of gender and assigned cluster. Note that most clusters are predomi-
nantly characterized by a single gender.

may observe individuals it is not able to recognize as a consequence of not having available

reference data. In such a scenario, clustering enables the generation of profiles, which would

be beneficial to the operator. Such profiles could be used to direct resources for more

computationally expensive matchers (e.g., a face localizer and matcher) while maintaining

real-time operation. In another example, suppose the reference database is very large. This

could occur naturally if the system stores sample data acquired in real-time. In this case,

clustering can be utilized to reduce the search space in the reference dataset.

One question that might arise from this study is if clusters can be described via physical

characteristics, why not use the physical descriptors as features for recognition. However, it

turns out that using the physical characteristics as features for recognition does not result

in outstanding matching performance. In Figure 3.11, Receiver Operating Characteristic

(ROC) curves are presented for the physical features, as well as the GEI, gait curve, and

frieze pattern matchers on the data used in the cluster analysis. Here, match scores from the

physical features are generated using a normalized-Euclidean distance and the Mahalanobis

distance. Note to use Euclidean distance, the features must be normalized to remove bias, as

each has a different mean and variance. On the other hand, the Mahalanobis distance does

not require normalization, but rather an estimate of the covariance between features, which
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Figure 3.10: Box plot of body area and assigned cluster. Note that the distinct male and
female clusters present in Figure 3.9 are separated by differences in body area.

is acquired from the samples used to train subspace optimization for the GEI algorithm (e.g.,

samples not used in clustering). In Figure 3.11, note that the ROC data for the physical

features suggests decreased recognition performance when compared to the three matchers.

The decrease in recognition performance is likely due to the fact that matchers are utilizing

additional physiological properties that were not utilized in this analysis.

One limitation of this study is that the analysis is computed on a single dataset and

clustering algorithm, both of which are areas of future work. With respect to clustering

algorithms, empirical analysis using hierarchical clustering demonstrated that the distribu-

tion of samples per cluster was too biased to a single cluster to reliably conclude whether

meaningful clusters were being generated. These results occurred using a number of linkage

strategies. Advanced clustering schemes, such as affinity propagation [152], which sets the

numbers of clusters intrinsically, tended to converge to a solution with c = 2 clusters and

most sample data being assigned to a single cluster. Future studies should consider the OU-

ISIR gait database [134], which is another high-quality gait dataset that emphasizes cadence.

Provided the resources were available, it would be ideal to recreate this type of study on a

larger and more demographically diverse dataset. However, such a dataset does not exist in

the public domain.
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Figure 3.11: ROC curves comparing general recognition performance of the metadata and
the GEI, Gait Curve, and Frieze Pattern matching algorithms. Note that the metadata does
not perform recognition as well as the matching algorithms.

3.4 Summary

In this chapter, a clustering analysis is performed on three gait recognition matchers

from the literature (Gait Energy Image, Gait Curve matching, Frieze Pattern matching) to

investigate whether certain physical properties (body area, gender, height, stride, cadence)

are utilized by gait matchers to assess similarity between gait patterns. Using k-means

clustering, the analysis conveys the following:

• Human gait can be clustered into a small number of groups (e.g., 5-10 clusters). Within

clusters, identities sharing similar body area and gender tend to occur together.

• Clustering of gait problems is relevant to a biometric surveillance system in that it

may be possible to generate a physical profile of an individual, which can yield some

information, or potentially as an indexing scheme for a more traditional biometric

matching algorithm.

• The three gait matchers studied in this work assess similarity between gait patterns dif-

ferently. Thus, fusion of matchers that cluster identities differently is likely to increase

recognition performance.
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Chapter 4

Anonymous Identification:

A Matching Framework for a

Biometric Surveillance System

4.1 Introduction

4.1.1 Matching in Traditional (Overt) Biometric Systems

In a typical biometric system [153], the input probe (query) biometric data is compared

against the reference samples residing in the reference database. Traditionally, these samples

are added into the database during an overt collection procedure, which is defined as an

enrollment. During enrollment, an individual submits their biometric data, which is paired

with an identifier (e.g., name, user-id, etc.). The biometric data and identifier is then added

to the database. This process enables the system to either deduce the identity of some

input biometric data (referred to as identification or 1:N matching) or verify the identity of

some input data (referred to as verification or 1:1 matching). In the traditional verification

and identification problems, the contents of the reference database do not change following

a matching decision. In other words, the contents of the reference database are generally

fixed. For example, a biometric system deployed for access control would contain a database

comprised of individuals whom are allowed access to something tangible. Conversely, a

biometric system deployed for border throughput might be concerned in preventing a select
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number of people from crossing. Again, in this scenario the database would comprise of a

list of individuals to be on the lookout of (i.e., a watch-list).

4.1.2 Matching Requirements in a Biometric Surveillance System

In a surveillance application, the primary application might be to identify the presence

of suspicious individuals (via a watch-list). Conversely, the application might seek to de-

termine if an unfamiliar individual is present, which could also be indicative of a security

threat. However, a traditional biometric identification system is limited to making a de-

cision on whether an observed individual matches to the watch-list, which may be limited

in size and only contain a number of high-profile threats. Other suspicious behavior, such

as the frequency in which individuals are observed, cannot be ascertained. This reflects an

additional surveillance need, as suspicious patterns of observation could be indicative of a

malicious act.

Therefore, in a biometric surveillance system, the following properties within the match-

ing scheme would be ideal:

• The system should be able to identify whither or not a specified individual (i.e., an

enrolled identity) is present.

• The system should be able to ascertain whither or not a unknown individual is present.

• The system should be able to determine whither or not any individual (i.e., an enrolled

or not enrolled identity) has been encountered before.

A traditional open-set identification can be used to address items 1 and 2 above. How-

ever, item 3, which asks “Has this person been encountered before?”, cannot be directly

ascertained. This is due to the fixed nature of the database. In order to fully address this

question, the database must be able to automatically enroll all probe samples that do not

match to any reference sample in the database. In doing so, the database can grow following

the matching decision rendered from the matching algorithm.
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4.1.3 Anonymous Identification

To involve the capability of enrolling unrecognized biometric samples to the database,

the framework of a classical biometric identification system is modified such that:

• An explicit enrollment process is not required. Instead, biometric data presented to the

system for matching is added to the reference database directly following the outcome

from the matcher (e.g., after a probe is tested for a match, it is added to the database).

• If a probe sample is matched to an entity in the reference database, it is assigned the

same identifier as that of the matching entity.

• If a probe sample does not match to any entity in the reference database, it is assigned

a unique identifier from the system.

Thus, the system is strictly determining if a matching sample in the reference database

exists. Consequently, without a priori identity information (via an enrollment process),

the recognition problem is fundamentally changed and the system addresses the question:

“Has this person been encountered before?” Therefore, such a system no longer performs

classical identity management, but engages in what is defined as anonymous identification.

The term anonymous identification is used to define this matching process, as the “true”

identity of any individual observed is never collected or stored within the system. Rather, the

system assigns its own class labels (i.e., identifier) to each entity in the reference database.

As a result, neither the identifier from the matcher nor the matching process necessarily

deduces the “true” identity of a probe. Note this formulation is distinct from the classical

identification problem, since the identification problem assumes (a) samples in the reference

database are absolutely associated with a known identity and (b) the reference database is

static (i.e., it does not update following each probe observation). Figure 4.1 illustrates the

functionality of an anonymous identification system. Note that identity information is not

explicitly presented to the system, a separate enrollment process is not necessary and that

the matching outcome does not report a specific identity, but rather a label.
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Figure 4.1: Simple flow diagram of an anonymous identification system. Here, the input
probe is compared against the reference database in order to determine if there is a match.
If a match exists (top), then the probe is labeled with the identifier of the matching reference.
If a match does not exist (bottom), then a new identity profile is created. Face images are
taken from the FRGC dataset [3].

4.1.4 Benefits of Anonymous Identification

Anonymous identification, as defined in this Chapter, confers a number of benefits specif-

ically pertaining to a biometric surveillance system. For example, as defined in Chapter 1,

Section 1.2.2, a biometric surveillance system performs identification-at-a-distance. In appli-

cations involving public areas (e.g., shopping centers, airports, etc.), it is likely the system

encounters a large number of individuals that might not have corresponding biometric data

in the reference database. It may be therefore advantageous to (a) detect the presence

of unknown identities and (b) generate “identity profiles” by storing the newly collected

biometric data in the reference database. The generation and storage of identity profiles

enables the ability for future matches to be made, should the identity appear again. The

anonymous identification framework enables this by enrolling observed identities into the

reference database as they are encountered in real-time. In doing so, an identity profile is

either created (an unseen individual was detected) or updated (a previously stored identity

was identified). This dynamic expansion of the reference database is made possible by taking

advantage of the fact that an identification-at-a-distance system does not necessarily require

an overt collection of biometric data. Thus, an anonymous identification system could also

operate covertly, a property that is highly desirable in surveillance applications. Anonymous

identification may also be a natural matching framework for incorporating “soft” biometric
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Figure 4.2: Example demonstrating the effect of order of probe encounter in an anonymous
identification framework. Here, depending on the order in which probes are observed, either
one or two identity profiles are created.

modalities, such as human gait.

In addition to the operational benefits for surveillance systems, the matching and error

properties of anonymous identification can be expanded to the biometric de-duplication and

re-identification problems [55, 56, 57, 58, 59]. In the context of biometric recognition, de-

duplication denotes presenting the system with a probe (query) and strictly determining if

the probe exists in the reference database (i.e., has been encountered before). This problem

has recently gained considerable traction, particularly in the context of national scale ID

programs [154]. In the biometric re-identification problem, the general aim is to match

biometric data acquired using one camera, to data acquired from another camera in the

short-term. The existing literature typically assumes a distinct reference database is available

to the system when performing “re-identification” [56, 57, 58, 59]. However, in reality, when

an individual enters a scene, a corresponding “track” (i.e., reference biometric data) may not

exist, and the system must be able to recognize this and subsequently create a new “track”.

This process is analogous to the proposed anonymous identification framework (Figure 4.1).
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4.1.5 Error in an Anonymous Identification System

Consider a biometric system that encounters NT probes, denoted as {p1, p2, . . . pNT
}

in some (arbitrary) sequential order. In an anonymous identification system, in order to

determine if an individual has been encountered before, the system assesses if the kth

(k = 1, 2, . . . , NT ) probe is similar to any of the preceding k − 1 probes. As with a tra-

ditional biometric system, the probability the system incurs a decision error is critical to

understanding the matching accuracy. In general, two types of errors are possible: (a) an

encountered probe, pk is incorrectly matched with one of the previously encountered probes,

p1, p2, . . . , pk−1 and (b) an encountered probe is incorrectly not matched with any of the

previously encountered probes, p1, p2, . . . , pk−1. Traditionally, the respective probability of

these errors is estimated through performance metrics such as FMR (False Match Rate),

FNMR (False Non-match Rate), FPIR (False Positive Identification Rate), FNIR (False

Negative Identification Rate) and ROC (Receiver Operating Characteristic), each of which

has been well studied in the literature [9, 155, 156]. However, these measures do not com-

pletely describe the error dynamics of an anonymous identification system for two specific

reasons. First, error rates for a traditional biometric system are derived from a fixed reference

database. In other words, the identifiers associated with an identity are always assumed to

be the same. This is appropriate for a traditional biometric system, as the reference database

is assembled in a controlled, overt, setting. Second, in a traditional biometric system, the

occurrence of an error is a static event that cannot impact future matches. In contrast, in

an anonymous identification system, the reference database is dynamically evolving, as new

identity profiles are created or old identity profiles are updated following each probe. As a

consequence, the sequential order in which probes p1, p2, . . . , pk−1 are observed and entered

into the reference database can affect the probability the kth probe is incorrectly matched (or

not matched). This can lead to two error scenarios. In the first scenario, probes pertaining

to a single identity may be erroneously placed in different (multiple) profiles. In the second

scenario, probes from different identities may be placed in a single profile. If P is defined to

be the set of all possible permutations {p1, p2, . . . pNT
} of probe orders that can be observed

by the system, then two such permutations Π ∈ P and Θ ∈ P, can result in different error
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probabilities. In Figure 4.2, an example is provided demonstrating how two different probe

orders affect the manner in which identity profiles are created.

4.1.6 Chapter Motivation

The motivation for this chapter is to formally introduce, model, and analyze the per-

formance of a biometric system operating with the anonymous identification framework. In

particular, this chapter introduces and discusses the following points:

1. Formally introduce the framework and pertinent definitions of an anonymous identifi-

cation system (Section 4.2.1).

2. Explicitly define decision errors in an anonymous identification system and demonstrate

how these errors are different from those encountered in a traditional biometric system

(Section 4.2.3).

3. Develop mathematical expressions to model errors in an anonymous identification sys-

tem (Section 4.2.4).

4. Demonstrate that the sequential order in which probes are observed can have a signif-

icant impact on the probability of decision error (Section 4.2.5).

5. Validation of the error model and effect of sequential probe order through a single

experiment conducted on two different sets of match scores pertaining to the face and

fingerprint modalities (Section 4.3.2).

4.2 Anonymous Identification

4.2.1 Formal Definitions

An anonymous identification system consists of exactly the same architecture as a tradi-

tional biometric system. This includes components such as a matching algorithm, decision

threshold and a database of reference samples.
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Def 1. Matching Algorithm - Given two biometric samples sA and sB, the
matching algorithm computes S(sA, sB) and returns a similarity match score, x,
between them. The similarity match score, x, is assumed to be normalized in
[0, 1].

Def 2. Decision Threshold - A pair of biometric samples, sA and sB, are
said to match if the match score returned by the matching algorithm is above a
numerical threshold γ; else, it is a non-match.

Def 3. Reference Database - Reference database G, represents a local database
where the encountered probes are stored. Initially, the database is a null set.

The fundamental difference between anonymous and traditional biometric systems is in

the definition of identity. To highlight the difference, an identity is defined as being either

unique or anonymous.

Def 4. Unique Identity - The true identity representing a biometric sample
(e.g., this sample belongs to “Jason,” or “user 123”).

Def 5. Anonymous Identity: An identifier that is assigned to a probe by
the matching algorithm. Anonymous identities are defined in the integer interval
[1, NT ] and the list of identifiers are stored in set I. A matched probe receives
the identifier corresponding to the matching entity in the reference database.
Non-matched probes receive a new identifier which is 1 more than the maximum
value in I.

In this definition, it is assumed that the matching algorithm generates similarity scores

and that the reference database G is initialized to the null set. During online operation, a

biometric system will observe a set of probes in a particular order. Each observation of an

individual probe is defined as an encounter.

Def 6. Encounter - The instance when the biometric system observes a probe.
Denoted by ek for k = 1, 2, . . . , NT probes received.

When reference database, G, is empty, the very first probe p1, associated with encounter

e1 is automatically added to the reference database and assigned anonymous identity I1. For

all remaining encounters, probe pk is matched against the contents of the reference database.

A dynamic match with previously encountered probe pi occurs if S(pk, pi) ≥ S(pk, pj) and

S(pk, pi) ≥ γ, ∀i 6= j, i, j = 1, 2, . . . k − 1. Following the match, pk is enrolled into the

reference database with matching anonymous identity Ii. Here, Ii is used to indicate the

anonymous identity of probe pi. If a match does not exist, a dynamic non-match occurs and
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a new anonymous identity is created and added to the reference database. The algorithm

describing this procedure is indicated in Alg. 4.1.

Finally, it is necessary to state the relationship between anonymous identification and

cluster generation. Here, the term identity cluster is defined to refer to a particular subset

of anonymous identity entries stored in set I.

Def 7. Identity Cluster - Elements in I sharing a common anonymous iden-
tity number as designated by the matching algorithm. Each unique identifier
represents at least one entry in G.

Note that Alg. 4.1 represents one operational approach towards implementing an anony-

mous identification system. Other approaches may be adopted in the creation and matching

of identity clusters (i.e., profiles) within the reference database. As with any biometric sys-

tem, the method used by the matching algorithm to select the best matching reference entity

(in this case, identity cluster) is a controllable parameter which can affect the performance

of the system.

4.2.2 Extension to Multibiometrics

Section 4.2.1 outlined the framework of a single modality anonymous identification sys-

tem. Next, that foundation is expanded upon to include multiple biometric modalities

working collectively to produce a single match outcome. The motivation behind this is that

a multibiometric system is less likely to generate a decision error as the number of biometric

cues pertaining to an individual increases. This effect has been extensively observed in the

literature [157, 158, 159].

Consider a biometric system with r modalities, wherein upon each encounter, r probes

pertaining to r different modalities are observed. Thus, a random permutation of NT probes

follows {p1,p2, . . . ,pNT
}, where pk is a vector with elements 〈pk,1, pk,2, . . . , pk,r〉

T and pk,i

is the ith modality of the kth probe. Now, the matching algorithm is presented with a set of

probes at each encounter and the decision is based on the fusion of information pertaining

to the r modalities.

Def 8. Fusion Operation - Given probe vector pk, fusion operation F (:) fuses
the information related to pk,1, pk,2, . . . pk,r and generates a single similarity
match score.
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Algorithm 4.1: Anonymous Identification
Input : Biometric probes p1, p2, . . . , pNT

Output : Reference database G comprised of NT probes with
assigned anonymous identity numbers
I = {I1, I2, . . . , INT

}.
Define: S(pk, pj) as similarity score between pk and pj.

Initialize:
I1 = 1 \\ assign p1 anonymous identity number 1.
Reference database G = {(p1, I1)} \\ the first probe is

placed in the reference database.
I2 = I3 = INT

= −1 \\ probes p2, . . . , pNT
are yet to be observed.

//Begin algorithm
for k = 2 to NT do \\ iterate through the rest of the probes.

for j = 1 to k − 1 do
\\ compare pk with the previous set of encountered probes.

R(j) = S(pk, pj)
\\ compute similarity between pk and pj.

if maxj{R(j)}
k−1
j=1 ≥ γ then

Ik = Im where m = argmaxj{R(j)}
k−1
j=1

\\ there is a match with the mth reference.
else
Ik = max(I) + 1
\\ if there is not a match, assign pk an anonymous
identity number one higher than the maximum
value in I.

G = G ∪ {(pk, Ik)}
\\ add the new probe, along with its anonymous
identity number to the reference database.

//End algorithm
Return G
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The fusion operation can occur at the feature level, score level, or decision level. In

feature level fusion, feature vectors of probes belonging to different modalities are combined

according to F (:). The end result is a single probe feature vector for which the matching

algorithm can compute a match score. In score level fusion, a matching algorithm is invoked

for each of the r modalities. The fusion operation F (:) converts the set of r scores into a

single score, which is then compared against a decision threshold γ. In decision level fusion,

the matching algorithm is called to report a matching identity for each of r modalities.

Fusion operation F (:) uses this information to determine the single best matching identity.

In this work, F (:) is defined to be the SUM rule for score level fusion. The SUM rule states

that for r modalities, the final match score is the sum of r match scores returned by the

matching algorithm. This is defined in Equation (4.1).

F (PA,PB) =
r

∑

i=1

S(pA,i, pB,i) (4.1)

4.2.3 Error Analysis

An anonymous identification system incurs error akin to traditional biometric systems.

Typically, the matching performance of a traditional biometric system is evaluated through

measures such as False Match Rate (FMR), False Non-match Rate (FNMR), False Positive

Identification Rate (FPIR), False Negative Identification Rate (FNIR), Receiver Operat-

ing Characteristic (ROC) curves, Cumulative Match Characteristic (CMC) curves, d-prime

statistic, etc. Classical CMC analysis, for example, illustrates the (closed-set) probability

that when presented a probe (with a corresponding entity in the reference database) the

matching algorithm will return the correct identity within N ranks (e.g., estimations from

the matcher), where N is the number of unique identities in the reference database. However,

CMC analysis assumes that the identifier associated with a biometric sample is always the

same. That is, probe pk is always associated with a specific subset of entities in the reference

database. In the anonymous framework, this condition does not hold. Here, depending on

which probes were observed prior to pk, the actual identity pertaining to probe pk may or

may not have been encountered previously and subsequently, may not exist in the reference
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database (i.e., anonymous identification is open-set). Further, if multiple true matches exist

in the reference database, they may each exist in separate identity clusters as a result of

error induced by the matching algorithm. As a result, decision errors and the order probes

are encountered can alter the (a) composition, and (b) number of identity clusters within

the reference database. Decision errors can be classified into one of two distinct types. Let

N denote the number of unique identities encountered and M denote the number of anony-

mous identities. The first type of error occurs when probe pk incorrectly matches to an

anonymous identity Im, m = 1, 2, . . . ,M . This is defined as a false dynamic match (FDM).

As a consequence, the single identity Im is then associated with two or more (of N) unique

individuals. The second type of error occurs when probe pk, which in fact belongs to some

identity in I, is not matched with any identity in I. This error is defined as a false dynamic

non-match (FDNM). Note by definition, a genuine (true) match for pk must exist within

the reference database for a false dynamic non-match to occur. On the other hand, a false

dynamic match is not bound by this constraint. Further, a false dynamic match does not

occur when a probe correctly matches to an identity cluster consisting of the true identity

in addition to other identities.

The consequences of these errors can impact system performance in different ways. For

example, a large incidence of false dynamic matches can potentially bias the matcher to

repeatedly match multiple probes to the same anonymous identity in I. The extreme rep-

resentation of this error occurs at a decision threshold of γ = 0, where all probe encounters

are deemed to have a “match” in the reference database. Refer to Figure 4.3 for a visual

representation of this error.

The result of a false dynamic non-match is different from that of a false dynamic match.

Instead of multiple unique identities being represented in one identity cluster, here a single

unique identity appears in several identity clusters. Identity clusters created as a result of a

false dynamic non-match will typically consist of few members. Such clusters often remain

small in size, as members have low similarity scores with respect to the reference database

and range of candidate probes. This effect occurs as a result of a classifier decision threshold

being set towards a high degree of similarity. Again, the extreme case of this error occurs at

a decision threshold of γ = 1.0, where the decision outcome is a “non-match,”. Figure 4.4
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Figure 4.3: Flowchart of a false dynamic match. Here, probes belonging to multiple (unique)
identities are incorrectly matched, resulting in multiple (unique) identities being merged into
a single anonymous identity profile.

presents a simple flowchart illustrating false dynamic non-matches.

Figure 4.4: Flowchart of a false dynamic non-match. Here, probes belonging to a single
(unique) identity are incorrectly not matched, resulting in a single (unique) identity appear-
ing in multiple anonymous identity profiles.

4.2.4 Error Modeling

Although the performance of an anonymous identification system is dependent on the

sequential order in which probe data is observed, prediction of expected error rates can still

be accomplished. Suppose a set of NT probes pertaining to several different identities is

available and each identity is represented by multiple probes. Assuming that the probability

of encountering any one of NT probes is uniform, an analytical approach using combinatorics

can be used for error prediction. In order to derive a model for error analysis, it is necessary

to understand the “events” that contribute to the occurrence of a false dynamic match

or false dynamic non-match. Once this is accomplished, the events can be modeled using

probabilistic expressions. In deriving a model for error prediction, an assumption is made
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Table 4.1: Summary of assumptions for FDMR and FDNMR estimation.

Assumption Description
“Closed” Sample Space The model assumes sample data is available for a population

of identities.
Uniform Sampling The probability of observing any sample belonging to any

identity is uniform.
Matching Algorithm The rank-1 matching identity returned from the matching

algorithm corresponds to the identifier associated with the
reference sample from which the maximum match score is
generated.

Model Training Match scores used to train the model can be designated as
genuine or impostor.

that the best matching reference entity selected by the matching algorithm corresponds to the

entity with the maximum match score. In addition, it is assumed that the match scores used

to train the model can be designated as genuine or impostor. Meaning, a genuine match score

represents the similarity between two biometric probes sharing the same (unique) identity,

while an impostor match score represents the similarity between two biometric probes of two

different (unique) identities. Finally, it is assumed that the probability of observing any one

of NT probes is uniform. A summary of these assumptions is provided in Table 4.1.

False Dynamic Match

By definition, a false dynamic match occurs when a probe is incorrectly matched to an

identity cluster whose entries do not contain the true identity of the probe. This occurs if

one of the following events occur.

Event A: When probe pk (observed during encounter ej , j = 1, 2, . . . , NT ) is
matched against G, there are no genuine scores generated and at least one im-
postor score is greater than γ.

Event B : When probe pk (observed during encounter ej) is matched against
G, both genuine and impostor scores are generated, and there is at least one
impostor score that (a) exceeds γ and (b) is greater than all the genuine scores.

Mathematically, the union of Events A and B therefore denote the probability of observ-

ing a False Dynamic Match. This is expressed in Equation (4.2). Visual examples of Events

A and B are also illustrated in Figure 4.5.
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Figure 4.5: Visual example of Events A and B, where the occurrence of either event results
in a false dynamic match. Note that these events denote the generation of impostor scores
exceeding γ and in the case of Event B, exceeding the maximum generated genuine scores.
Face images are taken from the FRGC dataset [3].

P (FDM |pk, ej) = P (A|pk, ej) ∪ P (B|pk, ej) (4.2)

Individually, the probabilities of Events A and B can be elicited through combinatorics.

In this case, the goal is to objectively determine the probability that a specific probe pk,

observed at encounter ej , has been preceded by some combination of j − 1 probes from a

set of NT possible probes, which result in Event A or B. In the context of Event A, denote

NG as the total number of genuine probes (i.e., the number of probes having the same true

identity as pk) and N
γ
G as the total number of probes which, when matched against pk result

in a genuine score exceeding γ. Therefore, NT −NG denotes the number of impostor probes

with respect to pk. For Event A to occur, none of the j − 1 probes in the reference database

should have the same true identity as that of pk. The number of combinations (in this

case, hypothetical reference databases) that satisfies this is denoted by
(

NG

0

)(

NT−NG

j−1

)

. This

number is divided by the total number of all possible combinations of j − 1 probes, denoted

by
(

NT

j−1

)

, yielding the probability that a reference database of j − 1 probes has no genuine

matches. Second it is necessary to generate at least one impostor score exceeding γ. Define

Nγ
I as the number of impostor probes, that when matched against pk, generate a match

score exceeding γ. The number of combinations (i.e., hypothetical reference databases) that

satisfy this is denoted by
∑

(

N
γ
I
z

)(

NT−N
γ
I

j−z−1

)

for z = 1, 2, . . . , Nγ
I . The summation is necessary



Brian M. DeCann Chapter 4. Anonymous Identification 111

since it may be the case that multiple impostor probes which could result in a match with pk

could have been observed in the previous j−1 encounters. Again, division by
(

NT

j−1

)

yields the

probability a reference database satisfying this condition occurs. Multiplication of these two

probabilities yields the probability of Event A, for probe pk, observed at the jth encounter.

This probability is expressed in Equation (4.3).

P (A|pk, ej) =

N
γ
I

∑

z=1

(

(

N
γ
I
z

)(

NT−N
γ
I

j−z−1

)

(

NT

j−1

)

)

·

(

NG

0

)(

NT−NG

j−1

)

(

NT

j−1

) (4.3)

Deriving Event B is slightly more complicated, as in this case, the objective is to identify

a combination of j−1 probes wherein at least one impostor score exceeds γ and any genuine

scores that are generated. Here, denote NγG
I as the number of impostor scores above both

γ and the maximum genuine score. In addition, define C as a set of genuine probes (with

1 to NG elements), representing the genuine probes which could have been observed in the

previous j − 1 encounters. For example, suppose there are two probes, pα and pβ that share

the same true identity as pk (i.e., NG = 2). For a genuine score to be generated at the jth

encounter, either (a) pα was observed, (b) pβ was observed, or (c) pα and pβ were observed.

Therefore, C is defined as {pα},{pβ},{pα, pβ}. Finally, define Cℓ as the number of elements

in a particular realization of C (Cℓ = 1, 1, 2) in the aforementioned example. The number

of combinations (databases) satisfying the presence of an impostor score exceeding γ and

the maximum genuine score is given by
∑

(

N
γG
I
z

)(

NT−N
γG
I

j−z−1

)

for z = 1, 2, . . . , Nγ
I . This term

is multiplied by
∑

(

NT−NG

j−Cℓ−1

)

, the number of combinations enabling Cℓ genuine scores to be

generated, for all possible realizations of C. Again, division by
(

NT

j−1

)

converts the number

of combinations for each term into probabilities and multiplication of the two terms denotes

the probability of event B. This is expressed in Equation (4.4).

P (B|pk, ej) =
∑

∀C

N
γG
I

∑

z=1

(

N
γG
I
z

)(

NT−N
γG
I

j−z−1

)

(

NT

j−1

) ·

(

NT−NG

j−Cℓ−1

)

(

NT

j−1

) (4.4)

False Dynamic Non-Match

Conversely, a false dynamic non-match occurs when a probe does not match to a genuine

reference and all impostor probes which potentially could match have not been observed as
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yet. This can be described by the simultaneous occurrence of the following events.

Event C : When pk (observed during encounter ej) is matched against G, all
genuine scores generated are below γ.

Event D : When pk (observed during encounter ej) is matched against G, all
impostor scores generated are below γ.

Figure 4.6: Visual example of Events C and D, which, when occurring simultaneously, results
in a false dynamic non-match. Note that Event C denotes the instance when all genuine
scores are less than γ and Event D denotes the instance when all impostor scores are less
than γ. Face images are taken from the FRGC dataset [3].

Thus, the probability of observing a false dynamic non-match for probe pk at ej is de-

pendent on the intersection of Events C and D, and is given by Equation (4.5). A visual

example of these events is also described in Figure 4.6.

P (FDNM |pk, ej) = P (C ∩D|, pk, ej) (4.5)

Event C represents the first condition for a false dynamic non-match by choosing a

reference database whose entries do not produce a genuine match score greater than γ. To

describe this, first denote Nγ
G as the number of genuine probes, which when matched with

pk, result in a match score exceeding γ. Let NG retain its previous definition. Should Nγ
G

be nonzero, the term
(

NG−N
γ
G

z

)(

N
γ
G
0

)(

NT−NG

j−z−1

)

denotes the number of reference databases that

would result in the generation of z genuine scores below γ and 0 genuine scores exceeding

γ, for z = 1, 2, . . . , NG − N
γ
G. Division by

(

NT

j−1

)

converts this number into a probability for

Event C, and is given by Equation (4.6).

P (C|pk, ej) =

NG−N
γ
G

∑

z=1

(

NG−N
γ
G

z

)(

N
γ
G
0

)(

NT−NG

j−z−1

)

(

NT

j−1

) (4.6)
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Event D satisfies the second condition of a false dynamic non-match, wherein the probe

does not (incorrectly) match to a reference entity originating from a different identity. This

component is essential, otherwise a false dynamic match would occur, and can be described

fairly easily. Recall Nγ
I is defined as the total number of probes which, when matched

against pk, result in a genuine score exceeding γ. For Event D to occur, the database

must consist of a combination of probes that generate impostor scores with values less than

γ. That is, the reference database contains none of the Nγ
I probes which could result in a

match. Mathematically, this combination is expressed as
(

N
γ
I
0

)(

NT−N
γ
I

j−1

)

and the corresponding

probability is given in Equation (4.7).

P (D|pk, ej) =

(

N
γ
I
0

)(

NT−N
γ
I

j−1

)

(

NT

j−1

) (4.7)

As is, Equations (4.2) and (4.5) define the probability of a specific probe, pk, observing

an error during encounter ej. Computing the mean probability across all probes yields the

general probability of error at ej . Further, summation of this probability yields an estimation

of observed errors for NT encounters. Appropriate scaling establishes an expected value for

each of the two rates of error, resulting in:

E(FDMR) =
100

NT

∑

ej

∑

pk

P (FDM |pk, ej) (4.8)

E(FDNMR) =
100

NT

∑

ej

∑

pk

P (FDNM |pk, ej) (4.9)

A summary of the parameters used in Equations (4.2)-(4.9) and their interpretation is

provided in Table 4.2.

4.2.5 Probing for Worst-Case Error

Although the previous section states that it is possible to estimate the false dynamic

match rate and false dynamic match rate, it is possible that certain permutations of P

(probe orders) could result in widely different error rates than what might be expected.

Thus, it is necessary to identify such permutations in P that contribute to exceptionally
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Table 4.2: Summary of estimated parameters for FDMR and FDNMR estimation.

Parameter Interpretation
NG Number of genuine scores per identity
Nγ

I Number of impostor scores exceeding γ

NγG
I Number of impostor scores exceeding

both γ and the maximum genuine score
Nγ

G Number of genuine scores exceeding γ
C Set of hypothetical genuine scores that

may exist in the reference database
Cℓ Number of elements in C
NT Number of samples to observe

poor performance. Identification of these permutations can yield an approximation of a

“worst-case” estimation of FDMR and FDNMR, which could serve as a secondary measure

for understanding the performance of an anonymous identification system.

A simple metric for measuring how prone a given permutation of probes might be for error

is to observe the ratio of genuine to impostor scores computed for each encounter. Intuitively,

a probe encounter that results in a decreased proportion of genuine scores and an increased

proportion of impostor scores may correspond to an increased probability of decision error.

Therefore, if probes p1, p2, . . . , pNT
are ordered such that the observed error (Equations

(4.8)-(4.9)) is abnormally high, this may be the result of encounters consistently occurring

with a low genuine to impostor score ratio. To demonstrate this effect, two hypothetical

permutations of probe orders which result in distinctly different ratios of genuine to impostor

match scores generated are defined. First, define permutation increment subject (IS), which

orders N unique identities with NG probes successively (Equation (4.10)). The motivation

behind “increment subject” is as each additional unique identity is introduced, every probe

must be compared against an increasing number of impostor entities. Note in Equation

(4.10), the subscripts n and t pertain to the nth and tth unique identity and genuine sample,

respectively.
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IS = {pn1t1 , pn1t2 , . . . , pn1tNG
,

pn2t1 , pn2t2 , . . . , pn2tNG
,

. . . , pnN tNG−1
, pnN tNG

}, IS ∈ P (4.10)

By contrast, define permutation increment probe (IP) as a probe order such that probes

corresponding to a unique identity occur after every N th encounter, i.e., the first set of

N probes correspond to one sample of N different identities, the second set of N probes

correspond to another sample of N different identities, and so on. This is summarized in

Equation (4.11). Here, the ratio of genuine to impostor reference entities is approximately

the same value for every encounter, and each ofN unique identities is observed in the minimal

number of encounterers.

IP = {pn1t1 , pn2t1 , . . . , pnN t1 ,

pn1t2 , pn2t2 , . . . , pnN tNG
}, IP ∈ P (4.11)

These permutations are expressed visually in Figure 4.7, where N = 75 and NG = 5.

Note that for any combination of N and NG, the genuine to impostor ratio for “increment

subject” rapidly declines to values similar to, or less than “increment probe”.

In addition to establishing a permutation which is favorable to observing an error, the

probability of error is also impacted by the between-class variance (similarity of impostor

entities) and within-class variance (similarity of genuine entities) of existing identity clusters.

Identity clusters with above average between- and within-class variance are increasingly likely

to result in an error. By specifically ordering probes of a test set according to the between-

and within-class variance of each unique identity, “increment subject” can be further en-

hanced to act as an example of “worst-case” error. Here, ordering is designed by assigning a

class label to each unique identity according to the framework by Doddington et al., referred

to as Doddington’s Zoo [7].

Doddington et al. devised a scheme for classifying users of a biometric system according

to their contributions to the FMR (false match rate) and FNMR (false non-match rate).
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Figure 4.7: Permutations “increment subject” (IS) and “increment probe” (IP). In general,
a lower ratio of genuine to imposter comparisons, increases the probability of decision error.
Note that as the number of encounters increases, the ratio of genuine to impostor comparisons
made for “increment subject” declines steadily. Conversely, for “increment probe”, the ratio
is relatively stable (i.e., similar in value).

Their classification scheme presents four separate classes: Sheep, Goats, Lambs and Wolves.

Sheep are defined as ordinary users, who do not significantly contribute to adverse system

performance. Goats are users who are difficult to recognize, thus contributing to the FNMR.

Such users will typically have lower genuine similarity scores. By contrast, Lambs are users

who are easily imitated by others. These users will commonly exhibit above average impostor

similarity scores. Finally, wolves are users who are capable of imitating others. Here, an

assumption is made that users are not willfully attempting to spoof the system, so the

contribution of wolves is ignored. In this case, a sequence of probe encounters that may

result in increased decision error would follow: Lambs, Sheep and Goats. The reasoning

for this is fairly straightforward. Since goats are difficult to recognize, they are placed last,

when the conditions for error are more favorable. Lambs are placed first, as they are most

likely to falsely match with a goat (or even a sheep) in a future encounter.

User categorization is based on the definitions supplied by Ross et al. [160]. A user

is labeled as a goat if the mean genuine score from all of their probes is below the 30th

percentile. Lambs are identified as users who have mean-maximum impostor scores above the

90th percentile. The mean-maximum operation is defined as the average maximum impostor

score for a set of probes pertaining to a single identity. When this information is used to

generate a sequential order of encounter, the subset of identities that are observed first are
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Lambs. Within this subset, the ordering is based on the mean-maximum impostor score

generated for each identity (from highest to lowest). The next subset of identities are those

identities classified as lambs. These users are also sorted based on their mean-maximum

impostor score. Finally, the identities classified as goats are observed, again based on mean-

maximum impostor score.

4.3 Experimental Results

4.3.1 Datasets

Experiments are conducted using similarity scores generated from the face and fingerprint

subsets of the WVU Multimodal Dataset [6]. The face subset contains 5 frontal face images

for each of 240 unique individuals. The fingerprint subset consists of 5 fingerprint images

for each of 240 unique individuals. Fingerprints captured include the right index (R1), right

middle (R2), left index (L1), and left middle (L2) fingers. In the interest of being concise,

analysis is restricted to R1 scores. Match scores for face and fingerprint were obtained from

the commercial software VeriLook and VeriFinger, respectively. The face and fingerprint

datasets were used to create multimodal sets of scores as well, comprising a set of fused face

and fingerprint (R1) scores. Fusion of scores was performed using the SUM rule, given by

Equation (4.1). Scores corresponding to individual modalities were normalized between [0,1]

using min-max normalization [161].

In total, 2,400 genuine and 717,000 impostor scores are generated from each test set for

each modality. The aforementioned datasets were chosen as they represent commonly used

biometric modalities where previous studies have demonstrated acceptable results. DET

Curves for the face and fingerprint (R1) subsets are provided in Figure 4.8 along with fused

face and fingerprint (R1) scores. The intent of Figure 4.8 is to provide a reference to the

separability of the match scores, rather than precise performance numbers.
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Figure 4.8: DET curves for face; fingerprint (R1); and fused face and fingerprint.

4.3.2 Experimental Protocol

Here, an experiment is presented to highlight (a) the impact of probe order on an anony-

mous identification system; (b) the ability of the error model presented in Section: Error

Modeling to estimate error in an anonymous identification system (i.e., FDMR and FD-

NMR); and (c) the inability of traditional error metrics (e.g., FMR, FNMR, FPIR, FNIR)

to appropriately measure error in an anonymous identification system. To accomplish these

goals, an analysis is performed comparing the average observed (i.e., empirical) FDMR and

FDNMR to the expected FDMR and FDNMR (Equations (4.8) and (4.9)). These rates are

also compared against the traditional error measures of the verification (FMR and FNMR)

and open-set identification (FPIR and FNIR) recognition tasks. Note, the traditional

analysis is included as a means to assess their ability to describe the error dy-

namics of anonymous identification.

To distinguish between the observed and expected error rates, the match score data

is divided into two random partitions of 120 identities. These partitions are denoted by

“testing” and “training”, respectively. To reduce the effect of selection bias, 100 partition

pairs are sampled and the results from each pair are averaged together. Each “testing”

and “training” partition is mutually exclusive. That is, identities in a particular “testing”

partition are not in the corresponding “training” partition.

Observed values of FDMR and FDNMR are computed by implementing Alg. 4.1, while
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setting γ between (0, 1) in increments of 0.001. Using the actual (unique) identity of each

individual in the “testing” partition as ground truth, the average observed FDNMR and

FDNMR is obtained by noting the percentage of encounters where a decision error (Section

4.2.3) occurred. To demonstrate the impact of probe order, observed error rates are computed

for three distinct ordering schemes. The first scheme is defined as random draw. In “random

draw”, probes are sampled at random without replacement. The second and third schemes

are “increment subject” and “increment probe”, as defined in Equations (4.10) and (4.11),

respectively. Visual examples of these probe orders are provided in Figure 4.9. For each

sampled “testing” partition, the observed FDMR and FDNMR is computed and averaged

for P = 10, 000 instances of “random draw”, “increment subject”, and “increment probe”.

Additionally, a single instance of “increment subject” is structured with specific ordering

according to Doddington’s Zoo assignment (as defined in Section 4.2.5) is included (denoted

as Increment Subject + Zoo), which is hypothesized to be an estimate of “worst-case” error.

This process for generating the observed false dynamic match rate and observed false dynamic

non-match rate is summarized under the label Sub-Experiment C.

Sub-Experiment C: Obtaining Observed FDMR and FDNMR
Step 1: Sample NT probes.
Step 2: Set γ (Between [0,1]) for normalized similarity scores.
Step 3: Implement Alg. 4.1. Maintain a record, ErrFDM and
ErrFDNM , the number of false dynamic matches and
false dynamic non-matches incurred for a specified γ.

Step 4: Repeat steps 1-3 P times.
Step 5: Division of EFDM and EFDNM by P yields

the observed FDMR and FDNMR for a specified γ.

Predicted (expected) rates of FDMR and FDNMR are obtained by implementing Equa-

tions (4.2) and (4.5) on the “training” partition. This is accomplished by selecting a value

for γ ∈ (0, 1) and obtaining values for NG, N
γ
I , N

γG
I , Nγ

G, C, Cℓ, and K for each sample in

the “training” partition. Refer to Table 4.2 for a summary of these parameters and their

interpretation. This enables the implementation of Equations (4.2)-(4.7). This process for

generating the predicted false dynamic match rate and false dynamic non-match rate is also

provided under the label Sub-Experiment D.

To provide a contrast against the observed and predicted rates of FDMR and FDNMR, a
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Figure 4.9: Potential sequences in which probes are observed for permutations “random
draw”, “increment subject” (IS), and “increment probe” (IP), where N = 4 and NG = 2. For
each permutation, the first subscript denotes the identity number and the second subscript
denotes the probe number. Note the first subscript does not necessarily follow 1, 2, . . . , N ,
but rather any combination of 1, 2, . . . , N (e.g., 2, 1, 3, 4, or 3, 2, 4, 1).

Sub-Experiment D: Obtaining Predicted FDMR and FDNMR
Step 1: Compute match scores for N identities, denoting a total of
NT probes and NG probes per identity (NT = NG ·N).

Step 2: Set γ (Between [0,1]) for normalized similarity scores.

Step 3: Obtain Nγ
I , N

γG
I , Nγ

G, C, and Cℓ

Step 4: Using the match score data, apply Equations (4.2)-(4.7)
to obtain the predicted FDMR and FDNMR for a specified γ.

traditional analysis comprised of standard verification (FMR and FNMR) and identification

(FPIR, FNIR) is also conducted from the “training” partition. Values for the FMR and

FNMR are obtained according to the definitions supplied in Equation (1.5) and Equation

(1.6) in Chapter 1, Section 1.1.4. Values for the FPIR and FNIR are obtained according to

the definitions supplied in Chapter 1, Section 1.1.4.

Results of this experiment are presented in Figures 4.10-4.15 in the form of a bargraph.

Each bargraph highlights values of average observed FDMR and FDNMR, expected FDMR

and FDNMR, and the traditional analysis comprising FMR, FNMR, average FPIR, and

average FNIR for four specific values of γ. The selected values for γ denote the approximate
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Figure 4.10: Bar graphs of observed FDMR, predicted FDMR, FMR and FPIR for face
scores at selected values of γ. Note (a) the observed FDMR is different for each probe order
(“random draw”, “increment probe”, “increment subject”); (b) the predicted FDMR is very
close to the observed value; and (c) FMR and FPIR are not accurate models of anonymous
identification error. To observe the differences in error rates between the proposed model
and the traditional metrics for the full range of thresholds see Figure B.2 and Figure B.3 in
Appendix B.1 and Appendix B.2, respectively.

values for which FNMR = 0.001, FMR = 0.001, the Equal Error Rate (EER), and what is

defined as the dynamic Equal Error Rate (dEER), the threshold where FDMR is equal to

FDNMR.

Supplemental experimentation demonstrating (a) observed FDMR and FDNMR for the

full range of γ, (b) the variance in observed error rates within each type of probe order, and

(c) further evaluation of the prediction model can be found in Appendix B.1 and B.2.

4.3.3 Discussion

Based on the experimental results, it is immediately apparent that the general shape

of the curves in Figures 4.10-4.15 is similar to performance curves for traditional biometric

recognition. That is, there exists a trade-off between false dynamic match rate and false

dynamic non-match rate as the decision threshold is varied. However, such similarities are

strictly visual. With regard to comparing FDMR and FDNMR to the error measures from

traditional biometric verification (FMR and FNMR), and identification (FPIR and FNIR),

Figures 4.10-4.15 show that classical metrics poorly describe the errors of an anonymous

identification system. In general, FMR and FNMR are not appropriate measures as they
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Figure 4.11: Bar graphs of observed FDMR, predicted FDMR, FMR and FPIR for fingerprint
(R1) scores at selected values of γ. Note (a) the observed FDMR is different for each probe
order (“random draw”, “increment probe”, “increment subject”); (b) the predicted FDMR
is very close to the observed value; and (c) FMR and FPIR are not accurate models of
anonymous identification error.

denote the general probability a single impostor and genuine score are incorrectly classified,

respectively. Here, most matching outcomes are based on the comparison of multiple match

scores. Regarding the false positive identification, one of the reasons the FPIR does not

accurately describe the FDMR is that the FPIR only considers instances where the probe

does not have a corresponding match in the reference database, while the FDMR is valid

both when a genuine match in the reference database is and is not present. Similarly, for

the false negative identification, while both the FNIR and FDNMR require a genuine match

in the reference database to be present, the FDNMR also requires all generated genuine

and impostor scores to be less than γ, a condition not necessary to procure a “non-match”

identification error. In addition, the FPIR and FNIR assume (regardless of the number of

references) that the reference elements are “correctly” labeled, a condition that cannot be

presumed in an anonymous identification system. For these reasons, metrics such as FMR,

FNMR, FPIR, and FNIR cannot be used to describe anonymous identification performance.

Although traditional metrics failed to describe anonymous identification performance,

the proposed prediction performance model (Section 4.2.4) proved to be very good, as il-

lustrated in Figures 4.10-4.15. In general, the model successfully predicted FDMR for the

probe order “random draw”, and FDNMR for each type of probe order. The model was
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Figure 4.12: Bar graphs of observed FDMR, predicted FDMR, FMR and FPIR for fused
face and fingerprint (R1) scores at selected values of γ. Note (a) the observed FDMR is
different for each probe order (“random draw”, “increment probe”, “increment subject”);
(b) the predicted FDMR is very close to the observed value; and (c) FMR and FPIR are not
accurate models of anonymous identification error.

less adept at predicting FDMR for the probe orders “increment probe” (overestimate) and

“increment subject” (underestimate), but was generally within 5% of the observed FDMR

and substantially better than traditional metrics. Excluding the effects of uncertainty in

the database [162], these results suggest that the prediction model is able to reasonably

approximate error rates. To appropriately estimate the expected FDMR and FDNMR for

operational data, as with classical verification or identification, a training set of reasonable

size is necessary [163].

Regarding the effect of probe order on observed error, Figures 4.10-4.12 demonstrate

that the probability of observing a false dynamic match can be significantly impacted by

the sequential order in which probes are encountered. This is evidenced from the different

values of FDMR for the probe orders: “random draw”, “increment probe”, and “increment

subject”. In Figures 4.10-4.12, these observations are the most evident when γ is set to the

equal error rate (FMR = FNMR) and dynamic equal error rate (FDMR = FDNMR). As

predicted in Section 4.2.5, the order “increment subject” yielded larger error rates than both

“random draw” and “increment probe”. Further, by explicitly structuring “increment sub-

ject” such that the identities that would be classified as “lambs” (via the Doddington’s Zoo

classification scheme) are observed first, the observed FDMR can be significantly increased.
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Figure 4.13: Bar graphs of observed FDNMR, predicted FDNMR, FNMR and FNIR for face
scores at selected values of γ. Note (a) the predicted FDNMR is very close to the observed
value; and (b) FNMR and FNIR are not accurate models of anonymous identification error.
To observe the differences in error rates between the proposed model and the traditional
metrics for the full range of thresholds see Figure B.2 and Figure B.3 in Appendix B.1 and
Appendix B.2, respectively.

This demonstrates how the intra- and inter-class variation between identities contribute to

error rates that vary as a result of probe order. Additionally, establishing probe orders

this way may demonstrate a possible “worst-case” error. On the other hand, permutation

“increment probe”, which was designed to mitigate conditions resulting in decision error,

yielded the lowest FDMR and FDNMR rates. This implies a relationship between the num-

ber of unique individuals encountered by the system in its early operating life and future

performance. Interestingly, the observed FDNMR rates from Figures 4.13-4.15 for “random

draw”, “increment probe”, and “increment subject” (randomized and Doddington-based)

were approximately equal for all sets of match scores. This suggests that although FDNMR

is a dynamic quality, it appears to be much less likely to be influenced by probe order.

However, it may be the case that factors that increase or decrease the probability of a false

dynamic non-match are not the same as factors affecting a false dynamic match, which was

the primary aim in establishing the orders “increment probe” and “increment subject”.
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Figure 4.14: Bar graphs of observed FDNMR, predicted FDNMR, FNMR and FNIR for
fingerprint (R1) scores at selected values of γ. Note (a) the predicted FDNMR is very close
to the observed value; and (b) FNMR and FNIR are not accurate models of anonymous
identification error.

4.4 Summary

In a traditional biometric identification system, one of the limitations that has not been

addressed in the literature is how to detect whether an individual has been observed before.

This is especially important for surveillance applications. Additionally, in the gait recognition

literature, one limitation that has not been addressed is how a database of gait features can

be dynamically assembled. This chapter introduces a variant of the traditional open-set

identification system, which enables the enrollment of biometric data as it is observed and

matched by the system and addresses the aforementioned limitations. Defined as Anonymous

Identification, this approach goes beyond deducing unique identity information, or verifying

a claimed identity. Rather, the system observes a probe and asserts “Has this person been

encountered before?”. Therefore, the probe is either (a) merged into an existing identity

profile, or (b) emplaced within a new identity profile, depending on whether a matching

entity in the reference database is found or not.

A consequence of this matching framework is that the matching outcome becomes a

dynamic process, as the reference database can potentially change following each probe ob-

servation. As such, the probability of observing a decision error is now dependent on both

(a) the contents of the reference database (as in the traditional open-set identification prob-
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Figure 4.15: Bar graphs of observed FDNMR, predicted FDNMR, FNMR and FNIR for fused
face and fingerprint (R1) scores at selected values of γ. Note (a) the predicted FDNMR is
very close to the observed value; and (b) FNMR and FNIR are not accurate models of
anonymous identification error.

lem) and (b) the explicit order in which prior probes were observed. The latter point is

particularly notable as the identifiers assigned by the system to probes of the same identity

(individual) may not be the same. Since the probability of decision error differs from that

of a traditional biometric system, new terminology is introduced to define anonymous iden-

tification error. These errors are defined as either a false dynamic match (FDM), or false

dynamic non-match (FNDM).

To confirm that these errors are different than those in traditional biometric recogni-

tion, an experiment is presented to demonstrate that the rates of these errors cannot be

represented by traditional metrics that measure biometric performance (e.g., FMR, FNMR,

FPIR, FNIR) (Section 4.3.2). Additionally, the impact of sequential probe order on anony-

mous identification error (FDMR and FDNMR), is verified by comparing rates of FDMR

and FDNMR for three distinct “classes” of probe orders (Figure 4.9). Further, a method to

organize the sequential probe order based on the Doddington’s Zoo user-classification scheme

is described, which leads to an estimate of “worst-case” error.

Since the FDMR and FDNMR (a) varies as a function of the observed probe order, and

(b) cannot be characterized by traditional measures, a model capable of estimating FDMR

and FDNMR is presented using combinatorial analysis. Experimental analysis demonstrates

that the error model is a significantly better representation of the error dynamics of an
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anonymous identification system, in comparison to FMR, FNMR, FPIR and FNIR (Section

4.3.2).

The anonymous identification framework, and in particular, the impact a dynamic match-

ing framework has on error is applicable to researchers studying the re-identification and

de-duplication problems. Researchers in these fields should consider the consequences of a

dynamic matching process and at a minimum be cautious when reporting traditional error

rates to describe the matching accuracy of algorithms in these fields.
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Chapter 5

Relating the ROC and CMC Curves

via the Biometric Menagerie

5.1 Introduction

5.1.1 Academic Performance Evaluations

In the academic literature, the matching accuracy of a biometric system is typically

quantified through measures such as the Receiver Operating Characteristic (ROC) curve

and Cumulative Match Characteristic (CMC) curve (Figure 1.2).1 The ROC curve, mea-

suring verification performance (Chapter 1, Section 1.1.4), is based on aggregate statistics

of match scores corresponding to all identities, while the CMC curve, measuring closed-set

identification performance (Chapter 1, Section 1.1.4), is based on the relative ordering of

match scores corresponding to each identity.

In general, most operational biometric identification applications, including a biometric

surveillance system operate in the open-set mode [13, 14]. However, in the academic litera-

ture, most performance evaluations are conducted in the closed-set mode [8, 23, 24, 38, 164].

One such reason this may be the case is that academic researchers are often limited by the

amount of data available for testing, or resources available to procure data. As such, a

closed-set evaluation offers maximum utility. Additionally, it enhances the reproducibility

1In this chapter, the terms “CMC curve” and “ROC curve” will be interchangeably used with the terms
“CMC” and “ROC”, respectively.
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of a study, as no bias can be claimed by omitting difficult or problematic samples. Of-

ten, researchers studying distance-based biometric matching algorithms (such as human gait

recognition) concentrate explicitly on the identification problem. In such studies it is com-

mon for matching performance to be reported via the CMC curve, without the associated

ROC curve [92, 93, 94, 97, 98, 102, 104, 112, 121]. This is also common in studies in biomet-

ric “re-identification” [58, 59, 61]. If the data expressed in the ROC curve is an extension

of the data of the CMC curve (i.e., the curves are “correlated”), then there is no issue with

reporting a single curve. However, if the data in the CMC curve is not associated to a par-

ticular ROC curve (i.e., the curves are not “correlated”), then reporting only identification

accuracy (via the CMC curve) may not denote a comprehensive evaluation of the matcher.

5.1.2 The Relationship Between the ROC and CMC

In Chapter 1, Section 1.1.4, it is stated that the ROC (aggregate-based) and CMC (rank-

based) curves are estimated from the same set of match scores. Thus, it is not unreasonable

to expect some degree of “correlation” between the two curves. This topic has received some

attention in the literature, yielding mixed conclusions.

Phillips et al. [19], first developed a measure for estimating the CMC curve directly

from the ROC curve. The measure was found to consistently underestimate the values of an

experimentally derived CMC [5]. Later, Bolle et al., argued that the CMC is directly related

to the ROC and can be used to deduce the performance of a 1:1 verification system [4].

Additionally, Bolle et al. developed a mathematical model for estimating the CMC based

on the ROC when the database consists of one reference entity per identity. This measure is

given in Equation (5.1). Note in Equation (5.1), K denotes the number of ranks in the CMC

curve, N denotes the number of identities, FMR(x) refers to the False Match Rate evaluated

at a decision threshold of x, and fG(x) denotes the genuine match score distribution.

CMC(K) =
K
∑

k=1

(

N − 1

k − 1

)
∫ ∞

0
[FMR(x)]k−1fG(x)[1− FMR(x)]N−kds K = 1, 2, . . . , N (5.1)

Similarly, Hube also argued in favor of a direct relationship between the ROC and CMC,

developing a different model for estimating the CMC from the ROC [5], also with the as-
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sumption of one reference entity per identity. This measure is provided in Equation (5.2).

In Equation (5.2), the variables K, N , and FMR(:), retain their previous definitions, and

FNMR(:) refers to the False Non-match Rate evaluated at some decision threshold.

CMC(K) = 1− FNMR(FMR =
k

N
) K = 1, 2, . . . , N (5.2)

In the recent past, however, the notion that the ROC and CMC are directly related has

been challenged. Gorodnichy first presented an argument stating that aggregate-based met-

rics such as the FMR, FNMR, and ROC fail to appropriately evaluate operational systems

characterized by large sample size and non-static populations, or systems performing iden-

tification at a distance (e.g., systems without a controlled biometric acquisition protocol)

[165, 166]. Further, Gorodnichy argues that verification systems should be evaluated (and

developed) as 1:N identification systems [166], stating that measures for identification (i.e.,

ranked statistics) reveal more information regarding the relationships between users involved

in a biometric system.

Based on the conclusions drawn from Bolle et al. [4], Hube [5], Gordnichy [165, 166], it

is clear that support in the literature for a direct relationship between the ROC and CMC

curves is mixed. In Figure 5.1, the CMC prediction models of Bolle et al. [4]. and Hube

[5] are compared on two different sets of match scores generated by two different matching

algorithms. The first set of match scores represents gait scores generated using the Gait

Curves matching algorithm (Chapter 2, Section 2.2) on a subset of the CASIA B dataset

[129]. The CASIA B dataset consists of N = 124 identities and NG = 10 videos per identity,

pertaining to “normal walk” (six videos), “with bag” (two videos) and “with coat” (two

videos). Here the subset used denotes the first two samples of “normal walk”.2 The second

set of match scores are fingerprint (left-index) scores from the WVU Multimodal Dataset

[6]. These scores were generated using VeriFinger, a commercial fingerprint algorithm. Here,

N = 240 andNG = 2. Note that the intent of Figure 5.1 is not to show the performance of the

matchers, but rather to analyze the ability of the two models to predict the experimentally

obtained CMC curve. The data in Figure 5.1 suggests the prediction models of Bolle et al.

2For more information on the CASIA B dataset, refer to Chapter Chapter 2, Section 2.5.1.
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Figure 5.1: Output of the CMC prediction models (from ROC curve data) by Bolle et al. [4]
and Hube [5] on match scores obtained from the Gait Curves algorithm in Chapter 2 (left),
and match scores obtained from VeriFinger, a fingerprint matcher (right). Note that neither
model perfectly predicts the CMC curve for both sets of match scores.

or Hube do not accurately estimate the CMC curve in all cases.

Although the data in Figure 5.1 demonstrates that there may be some degree of “corre-

lation” between the ROC curve and CMC curve, it is clear that neither model completely

predicted the empirical CMC curve based solely on the ROC data. One reason this might be

the case is that aggregate-based statistics do not account for the unique manner in which dif-

ferent individuals contribute towards the overall performance of a biometric system. In other

words, the genuine and impostor score distributions pertaining to two different individuals

can be significantly different from the overall genuine and impostor match score distribu-

tions, fG(x) and fI(x). Such differences cannot be captured in aggregate statistics. Visually,

this is depicted in Figure 5.2, where a subset of three individual genuine and impostor score

distributions are shown using the left-index match scores from the WVU Multimodal Dataset

[6]. Note that each of the three genuine and impostor distributions are distinct from one

another, and that the accumulation of these subsets result in the aggregate distributions,

fG(x) and fI(x).

Doddington et al. [7] first discussed the notion that different identities contribute dif-

ferently towards overall biometric system performance by introducing a scheme to classify

identities based on their propensity to generate a false match or false non-match error in

speaker recognition [7]. This observation is referred to as the Biometric Menagerie in the
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Figure 5.2: Visual example depicting the contribution of individual identities towards the
overall genuine and impostor match score distributions, fG(x) and fI(x). Note that genuine
and impostor score distributions corresponding to an identity may be unique (left) and
the aggregation of these individual distributions comprises the global genuine and impostor
match score distributions (right). Here, the individual match score distributions are based
on fingerprint scores (L1) computed on the WVU Multimodal Dataset [6].

literature [167]. If each identity contributes to the performance of a biometric system dif-

ferently, it may be possible that for a single pair of genuine and impostor match score

distributions, multiple rank-based statistics (e.g., CMC curves) can be generated. Further,

these differences in rank-based statistics may result in multiple CMC curves with large dif-

ferences in cumulative rank-K accuracy. In general, it may be theoretically possible for a set

of match scores to exhibit “good” or “poor” performances via the ROC and CMC curves,

depending on how the match scores are distributed among each identity.

5.1.3 Chapter Motivation

Thus, in this chapter, the aim is to demonstrate that the ROC and CMC curves may not

be directly related while also accounting for the unique per-identity statistics of individuals

(i.e., the role of the Biometric Menagerie). This can be accomplished in two ways: (a)

Empirically, with a sufficiently large number of match scores collected experimentally from

multiple datasets and matching algorithms, or (b) analytically, via modeling the inter- and

intra-class relationships in match scores, such that “faux identities” can be created from

an input set of empirical match scores. This chapter focuses on the latter (e.g., modeling
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per-identity statistics), as it may not be feasible to procure the amount of empirical data

necessary to derive meaningful conclusions regarding the differences in aggregate-based and

rank-based statistics. On the other hand, by modeling the inter- and intra-class relationships

in match scores, it is possible to demonstrate that a fixed set of match scores can be reassigned

differently among N identities. This reassignment of existing match scores to faux identities

is accomplished by utilizing the “Doddington Zoo” user classification scheme. As such, it is

possible to demonstrate that a variety of distinct ranked statistics (i.e., CMC curves) can be

accompanied by the same aggregate statistics (i.e., ROC curves).

Thus, the contributions of this chapter are as follows:

• Introduce a framework for categorizing a biometric evaluation into one of four out-

comes, based on the performance exhibited by the associated ROC and CMC curves

(Section 5.2.1).

• Given a set of real match scores pertaining to multiple identities, a method for reassign-

ing the scores to faux identities is described. Faux identities are created to represent

varying types of intra-class and inter-class statistics, based on the Doddington Zoo

phenomenon (Section 5.3).

• The validity of the proposed score reassignment model is asserted by recreating the

intra- and inter-class statistics present in empirically obtained match scores (Section

5.4.2).

• Experimentally demonstrate that the score reassignment model can be used to generate

a set of faux identities whereby a “good” ROC curve can be accompanied by a “poor”

CMC curve (and vice-versa), while maintaining distinct per-identity statistics (Section

5.4.3).

• Experimentally validate that match scores sharing common aggregate statistics (ROC

curves) can have differing ranked statistics (CMC curves) (Section 5.4.4).
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5.2 Outcomes of A Performance Test

5.2.1 Performance Outcomes

Assume for the sake of argument that the matching performance depicted by the ROC

curve and the CMC curve can be treated as two independent outcomes. That is, provided a

hypothetical set of match scores, derived from some genuine and impostor score distribution,

suppose it is possible to generate an ROC curve exhibiting “good” or “poor” performance

and a CMC curve exhibiting “good” or “poor” performance, and vice-versa. The basis for

this assumption is based on the data in Figure 5.1, where neither of the CMC prediction

models were able to correctly predict the empirical CMC from ROC data. Although this is

not necessarily evidence of statistical independence, it is reasonable to suggest that the two

curves are not absolutely correlated. Therefore, if the information expressed within the ROC

and CMC curves can be summarized as being “good” or “poor”, the following outcomes may

occur:

Good Verification Good Identification (GVGI): A performance test is clas-
sified as good verification good identification (GVGI) when the properties of the
ROC and CMC indicate excellent performance. Here, the system is adequately
able to perform both verification and identification tasks. Such an outcome is
perhaps the most desirable for a biometric system.

Good Verification Poor Identification (GVPI): A performance test is clas-
sified as good verification poor identification (GVPI) when the properties of the
ROC indicate good performance, while the CMC demonstrates poor identifi-
cation accuracy. Such a system is adept at verification tasks, but is generally
unreliable at performing identification.

Poor Verification Good Identification (PVGI): A performance test is clas-
sified as poor verification good identification (PVGI) when the properties of the
ROC indicate poor performance, while the CMC demonstrates good identifica-
tion accuracy. Such a system is capable of performing identification, but not
verification.

Poor Verification Poor Identification (PVPI): A performance test is clas-
sified as poor verification poor identification (PVPI) when the properties of both
the ROC and CMC indicate poor performance. Such a system is not capable of
performing verification or identification tasks adequately.
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5.3 Modeling Match Score Relationships

In an operational biometric system, or in empirically collected biometric data, it is likely

that each identity contributes uniquely towards the overall performance of the system [7, 160].

Evidence of this can be found in empirically derived match scores (Figure 5.2). In this section,

a model is developed for characterizing inter- and intra-class relationships between match

scores. The model functions by assigning match scores from to faux identities, whereby

the per-identity statistics for each faux identity (i.e., the local level) are distinct from the

statistics of the population (i.e., the global level). As such, the manner in which match

scores are distributed among each faux identity can impact the manner in which they are

sorted, which in turn can affect the outcome expressed by the CMC curve.

5.3.1 Model Framework

As previously stated, the model for characterizing match score relationships functions

by assigning match scores to faux identities. Here, a faux identity is defined as an identity,

n, whose individual genuine and impostor match score distributions, fn
G(x) and f

n
I (x), have

been sampled (without replacement) from xGen and xImp. Note that xGen and xImp denote

sets of genuine and impostor scores generated by a biometric matcher on a dataset of N

real identities. For example, xGen and xImp may be the fingerprint match scores illustrated

in the bottom of Figure 5.2. Thus, faux identities can be created from real and empirically

obtained match score data. By creating a set of faux identities, it is possible to generate

multiple sets of N faux identities, with each set sharing the same aggregate fG(x) and fI(x)

but with differing rank statistics.

In defining each faux identity, an assumption is made that the range of genuine and

impostor scores for each faux identity is smaller than the range of the overall distributions,

fG(x) and fI(x). In other words, if a genuine match score distribution, fG(x), is nonzero

in the interval [α, β], the nonzero range of an individual genuine match score distribution,

fn
G(x), is in [αn, βn] where (βn−αn) < (β−α). The “tightness” of [αn, βn] can be defined by

the variance in match scores on a per-identity basis. Define these per-identity variances as

σ2
n−n and σn−m, where σn−n denotes the average variance in genuine scores for each identity
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Table 5.1: Summary of assumptions for FDMR and FDNMR estimation.

Assumption Description
Per-identity Match The range of values for per-identity genuine and match scores is
Score Distributions smaller than the range of genuine and impostor scores for all

identities. Mathematically, this is described by:
max(fn

G(x))−min(f
n
G(x))≪ max(fG(x))−min(fG(x)) and

max(fn
I (x))−min(f

n
I (x))≪ max(fI(x))−min(fI(x)) ∀n.

Model Integrity Exceptions to the above condition are permitted when no match
scores can be assigned to a faux identity within its initial range.

and σn−m denotes the average variance in impostor scores for each pair of identities. Note

that the intent of this assumption is to ensure created faux identities do not share the

same individual genuine and impostor match score distribution as the aggregate genuine

and impostor score distributions. In addition, this assumption allows for a more plausible

representation of inter- and intra-class relationships in match scores (in contrast to sampling

match scores randomly). A summary of these assumptions is provided in Table 5.1.

The output following the creation of each faux identity is S, which denotes a table of

size NTxNT , wherein each column (or row) of S contains match score information for one

“faux” biometric sample, matched against NG − 1 samples from the same “faux” identity

and NT − NG samples from the remaining N − 1 “faux” identities. Note that this exercise

preserves the aggregate score statistics; what changes is the set of match scores pertaining

to every identity.

5.3.2 Modeling Inter- and Intra-class Variations

The model for reassigning match scores to faux identities is inspired by the “Doddington’s

Zoo” user-classification scheme, which characterizes identities based on their contribution

towards the FMR and FNMR [7]. The Doddington’s Zoo classification scheme consists of four

classes: Sheep, Goats, Lambs, and Wolves. Sheep are defined as “well behaved” individuals

who are easily recognized and do not incorrectly match with others. Goats are individuals

who are intrinsically difficult to recognize and contribute to false non-match errors. Lambs

are individuals whose biometric data can often be confused with other identities, resulting in

false match errors. Finally, wolves are defined as individuals who willfully and successfully
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Figure 5.3: Visual illustrating the general concept of the proposed model for defining inter-
and intra- class relationships in match scores, which creates faux identities based on the
“Doddington’s Zoo” framework [7].

spoof the biometric data of other individuals, increasing the rate of false match errors.

Studies have also demonstrated that a single identity can share multiple classes, an example

being an individual exhibiting both goat and lamb characteristics [160].

In terms of match scores, sheep can be loosely characterized as having “high” genuine

scores and “low” impostor scores. Meanwhile, goats can be loosely characterized as having

“low” genuine scores. Finally, lambs (and wolves) can be loosely characterized as having

“high” impostor scores. These simple characterizations formulate the basis of the model for

reassigning scores to faux identities, and is visually depicted in Figure 5.3.

The score reassignment model consists of two stages: initialization and sampling. Dur-

ing initialization, each of N identities are assigned a label, χn (n = 1, 2, . . . , N), χn ∈

{Sheep,Goat, Lamb}. The number of faux identities corresponding to each label is pre-

specified (see Section 5.4). Next, each identity is assigned match scores (from the original

score set) based on the properties of a “Sheep”, “Goat”, or “Lamb”. Sampled match scores

are drawn (without replacement) from the original scores xGen and xImp, and stored in x̂n
Gen

and x̂n
Imp, which are the reassigned genuine and impostor scores for the nth faux identity.

Finally, a table of match scores of size NTxNT is created (denoted by S). Each row in S

stores the NG − 1 assigned genuine scores and NT − NG assigned impostor scores for each

sample of a given faux identity.

Assignment of genuine scores to each faux identity is a relatively straightforward process.
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For each faux identity,
(

NG

2

)

genuine scores are drawn without replacement3 from xGen and

stored in S. Depending on the label of the faux identity, a target range from which scores

will be sampled, is first defined. This range is assumed to be between [µGen + σGen, 1],

[0, µGen−σGen], and [0, µGen+σGen] for “Sheep”, “Goats”, and “Lambs”, respectively. Denote

the subset of genuine scores within this range as xrng. If xrng is a null set, the target range

is opened (i.e., increased) by scaling the lower and upper bounds of xrng by a factor of δ

(0 < δ < 1.0) until xrng contains at least one element. Next, one element (i.e., score) from

xrng is sampled and stored in S. Denote the value of this score as x. The remaining
(

NG

2

)

−1

scores are sampled from the range x± ǫGen, where ǫGen is a scaling parameter. As with the

range used to sample x, if no match scores are found within x ± ǫGen, the range is opened

by scaling ǫGen by δ. This process for sampling genuine scores is summarized in Alg. 5.1.

Note that this sampling method ensures that (a) sampled genuine scores for each identity

are consistent, and (b) the genuine scores for a “Sheep” are distinct from those of a “Goat”,

and a “Lamb” (when possible).

Assignment of impostor scores to each faux identity captures the inter-class relationships

between identities. As such, assignment of impostor scores is viewed as being between pairs

of identities (and therefore labels), rather than for a single identity. This results in one

of six possible scenarios, viz. “Sheep-Sheep”, “Sheep-Goat”, “Sheep-Lamb”, “Goat-Goat”,

“Goat-Lamb”, and “Lamb-Lamb”.

When sampling impostor scores between a pair of identities, NG
2 impostor scores are

sampled from xImp, of which a single score, x, is first drawn from a target range, xrng. xrng

is dependent on the labels denoting the pair of identities. Denote x̂n
Gen and x̂m

Gen as the set

of assigned genuine scores for the nth and mth identities (i.e., the genuine scores assigned

following implementation of Alg. 5.1). When both of the labels are a “Sheep” or “Goat”,

xrng is limited to [0, min{max{x̂n
Gen}, max{x̂

m
Gen}}), the minimum of the maximum genuine

score observed for both identities. This constraint attempts to ensure that sampled impostor

scores for a “Sheep” or a “Goat” will always be less than their corresponding genuine scores,

preventing the occurrence of a false match error.

When one of the labels is a “Lamb”, the only constraint emplaced is that xrng is below

3equiprobable sampling
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Algorithm 5.1: Reassigning Genuine Scores
Input: Vector xGen, containing the genuine scores.

Table S, where sampled genuine scores are stored.
Vector χ, a set containing the labels of each identity
(e.g., “Sheep”, “Goat”, “Lamb”).

Define: δ, ǫGen: Scaling parameters.
Output: Table S populated with genuine scores.
\\ begin algorithm
Step 1: For each identity, note the assigned label.
Step 2a: Draw a genuine score (without replacement), x,

xGen, from within subset xrng, where
xrng = [µGen + σGen, 1], if χn = Sheep.
xrng = [0, µGen − σGen], if χn = Goat.
xrng = [0, µGen + σGen], if χn = Lamb.

Step 2b: If xrng is a null set, and xrng = [a, b],
set a = δ · a, b = b

δ
and repeat Step 2a.

Step 3a: Draw
(

NG

2

)

− 1 scores (without replacement)
from xGen within x± ǫGen.

Step 3b: If less than
(

NG

2

)

− 1 scores can be drawn
set ǫGen = ǫGen

δ
and repeat Step 3a.

Step 4: Store the sampled genuine scores in S.
return S
\\ end algorithm

the maximum genuine score for the paired identity. That is, if χn = Lamb, and χm =

Sheep, xrng = [0, max{x̂m
Gen}). When max{x̂m

Gen} > max{x̂n
Gen}, this enables (but does not

guarantee) the possibility of drawing an impostor score which can generate a false match (at

rank-1) for the identity denoted as a “Lamb”, but not the “Sheep”. Should χn = χm = Lamb,

no constraints are emplaced on xrng, enabling (but not guaranteeing) the possibility of a false

match (at rank-1) to occur for both faux identities.

As with the sampling of genuine scores, if xrng is a null set, xrng is opened fully to [0, 1].

Once a valid range of xrng is identified, one impostor score is drawn from xImp and stored in

S. The remaining NG
2−1 impostor scores are sampled from a range of x± ǫImp, where ǫImp

is a scaling parameter. If no match scores are found within x± ǫImp, the range is opened by

scaling ǫImp by δ. This process for drawing impostor scores is summarized in Alg. 5.2. Note

that this sampling method ensures that (a) the impostor scores between pairs of identities

are consistent, and (b) the error dynamics for a “Sheep”, “Goat”, and “Lamb” are upheld
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Algorithm 5.2: Reassigning Impostor Scores
Input: Vector xImp, containing the impostor scores.

Table S, where sampled genuine scores are stored (from
Alg. 5.1) and sampled impostor scores will be stored.

Vector χ, containing the labels of each identity
(e.g., “Sheep”, “Goat”, “Lamb”).

x̂n
Gen, x̂

m
Gen, Assigned genuine scores for identities n, m.

Define: δ, ǫImp: Scaling parameters.
Output: Table S populated with genuine and impostor scores.
\\ begin algorithm
Step 1: For all combinations of n and m (n = 1, . . . , N ,
m = n + 1, . . . , N), note χn and χm.

Step 2: Draw an impostor score, x from xImp, within
interval xrng, where
xrng = [0, min{max{x̂n

Gen}, max{x̂
m
Gen}}),

if χn = Sheep or Goat, χm = Sheep or Goat.
xrng = [0, max{x̂n

Gen}),
if χn = Sheep or Goat, χm = Lamb.

xrng = [0, max{x̂m
Gen}),

if χn = Lamb, χm = Sheep or Goat.
xrng = [0, 1], if χn = χm = Lamb.

Step 3: If xrng is a null set, xrng = [0, 1].
Step 4a: Draw NG

2 − 1 scores from xImp within x± ǫImp.
Step 4b: If less than NG

2 − 1 scores can be drawn
set ǫImp =

ǫImp

δ
, and repeat Step 4a.

Step 5: Store the sampled impostor scores in S.
return S
\\ end algorithm

(when possible).

5.4 Experimental Results

5.4.1 Datasets and Experimental Design

Experiments are conducted to demonstrate the following:

• Demonstrate the model for reassigning match scores (Section 5.3.2) is able to create

viable representations of how match scores could be distributed among identities. This

is accomplished by using the model to “recreate” the per-identity statistics of empirical

match scores.
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• Using the model for reassigning match scores, demonstrate that it is at least theoreti-

cally possible to observe the performance outcomes: GVGI, GVPI, and PVGI (Section

5.2.1) using synthetic match scores.

• Using the model for reassigning match scores, explore whether empirically obtained

match scores denoting a GVGI outcome, could otherwise be reassigned to generate a

GVPI outcome. Similarly, explore whether a PVGI outcome could be reassigned to

generate a PVPI outcome.

Experiments in this chapter are computed using match scores pertaining to the face and

gait modalities, as well as a set of synthetic match scores. Face scores were extracted from

the WVU Multimodal Dataset [6] using the commercial software VeriLook, and are the same

match scores used in Chapter 4. Recall from Chapter 4, Section 4.3.1, the face subset of

the WVU Multimodal Dataset consists of NG = 5 frontal face images for N = 240 unique

individuals. Gait match scores were collected using the Gait Curves algorithm (Chapter 2,

Section 2.2) on the CASIA B Dataset [129]. The CASIA B dataset (previously described in

Chapter 2, Section 2.5.1) is a multi-camera dataset for human gait recognition, containing

N = 124 individuals walking “normally” (six sequences), “with a coat” (two sequences),

and “with a backpack” (two sequences) from 11 different viewpoints. For the purposes of

this experiment, only the instances where an individual is walking “normally” and whose

viewpoint is perpendicular to the optical axis of the camera are considered (i.e., NG = 6,

individual is viewed as traversing the horizontal axis of the image plane).

Synthetic match scores are sampled from a parametric normal distribution with parame-

ters µGen, σ
2
Gen, µImp, σ

2
Imp, and normalized between [0,1]. Note, the assumption that match

scores can be sampled from a normal distribution is made strictly to define a means for which

hypothetical distributions of match scores can be understood. In general, the probability

distributions of fG(x) and fI(x) can take on any function and can vary on an algorithmic

basis [168]. Although the usage of synthetic match scores may not be ideal, the

usage of such data is done strictly to support a theoretical analysis regarding the

relationship between the ROC and CMC curves. To be consistent with the empirical

data, synthetic scores denote N = 240 identities with NG = 5 samples per identity.



Brian M. DeCann Chapter 5. Relating the ROC and CMC Curves 142

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Score

P
r(

S
co

re
)

Gait Scores

 

 

Genuine Scores
Imposter Scores

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Score

P
r(

S
co

re
)

Face Scores

 

 

Genuine Scores
Imposter Scores

Figure 5.4: Genuine and impostor score distributions, fG(x) and fI(x), for the face and gait
scores used in this evaluation.

For this analysis, aggregate statistics (i.e., the performance expressed in the ROC curve)

are expressed by the area underneath the ROC curve (denoted by AUC). Rank statistics

(i.e., the performance expressed in the CMC curve) are expressed via the Weighted Rank-M

identification accuracy, which is a weighted sum of the identification accuracies corresponding

to the firstM ranks in the CMC curve. Here, M is defined as 5% of the number of identities,

N . The weight of the ith rank, wi, i = 1, 2, . . . ,M , is defined by 1
i
, and normalized such that

‖w‖2 = 1. A weighted strategy is chosen such that performance can be quantified relative

to N .

In Figure 5.4, a visualization of fG(x) and fI(x) is presented for the face and gait scores.

A baseline evaluation consisting of AUC, weighted rank-M , predicted weighted rank-M (via

the models of Bolle et al. [4] and Hube [5]) and the empirically obtained proportions of

“Sheep”, “Goats”, and “Lambs” is provided in Table 5.2. The strategy used to obtain

empirical proportions of “Sheep”, “Goats”, and “Lambs” is the same as the one defined by

Ross et al. [160].4 Note that in Figure 5.4 and Table 5.2, the performance values for both

modalities are similar, but the genuine and impostor distributions, fG(x) and fI(x), for the

gait scores share a larger range of nonzero values.

4It should be noted that this scheme will always classify at least 30% of identities as having properties of
a “Goat”, or “Lamb”, regardless of whether these identities contribute to adverse recognition performance.
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Table 5.2: Baseline AUC, Weighted Rank-M , estimated Weighted Rank-M , and the empiri-
cally obtained proportion of “Sheep”, “Goats”, and “Lambs” for the face and gait datasets.

Measure Face Scores Gait Scores
AUC (Empirical) 0.999 0.980
Weighted Rank-M (Empirical) 1.0 0.978
Weighted Rank-M (Bolle et al.[4]) 0.991 0.895
Weighted Rank-M (Hube [5]) 0.991 0.878
Proportion of {Sheep, Goat, Lamb} (%) {62, 28, 10} {66, 24, 10}
(Ross et al. [160])

5.4.2 Model Viability

Provided the basis of the match score reassignment model (Section 5.3.2) is to create

plausible representations of the intra- and inter-class match scores. As such, it is necessary

to verify whether the score reassignment model can accomplish this. Arguably, one criteria

for success is whether the model can recreate or mimic the inter- and intra-class relationships

present in empirically collected match scores.

To evaluate this, the model (i.e., score reassignment process) is used to recreate the inter-

and intra-class relationships of the face and gait scores defined in Section 5.4.1. When cre-

ating faux identities, the proportion of identities labeled as “Sheep”, “Goats”, and “Lambs”

is set to {90%, 05%, 05%}, for face scores and {75%, 10%, 15%} gait scores, respectively.

This information is used to generate χn.
5 The parameters δ, ǫGen, and ǫImp are set to 0.98,

3.2σGen, and 1.7σImp, for face scores and 0.98, 3.5σGen, and 0.77σImp for gait scores.

For both the actual (empirical) and created faux identities, the mean variance in match

scores within a single identity (σ2
n−n) and between pairs of identities (σ2

n−m) is computed. If

the respective variances are the same for both the original data and the recreated data, it

is reasonable to conclude that the relationships have been successfully recreated. Since the

created faux identities are generated from the match scores of actual identities, the aggregate

statistics (i.e., ROC curves) will be equal.

In addition, it is necessary to demonstrate the score reassignment process is capable of

producing consistent outputs (i.e., the same input parameters produce a similar output). As

5The basis for choosing these proportions is strictly towards the design of the faux identities and should
not be interpreted as the ratio of “Sheep”, “Goats”, and “Lambs” identified in the respective datasets via a
match score classification scheme.
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Table 5.3: Evaluating the viability of the reassigning model on the face scores in the WVU
Multimodal Dataset.

Measure Original Face Scores Reassigned Scores
AUC 0.999 0.999
Weighted Rank-M 1.0 0.999
σ2
Gen 2.1e-2 2.1e-2

Mean σ2
n−n 1.3e-2 1.5e-2

Rejects Null Hypothesis N/A Yes
p-value N/A 0
σ2
Imp 6.2e-3 6.2e-3

Mean σ2
n−m 3.9e-3 3.8e-3

Rejects Null Hypothesis N/A Yes
p-value N/A 0

such, the score reassignment process is repeated 250 times, and the average value of σ2
n−n

and σ2
n−m is computed. Further, a T-test is performed to evaluate whether the output the

score reassignment process generates values of σ2
n−n and σ2

n−m in some distribution whose

mean is the actual values of σ2
n−n and σ2

n−m, respectively. This denotes a rejection of the

null hypothesis. Also computed is the corresponding p value, which denotes the probability

the observed output of the faux data is outside the actual (empirical) values of σ2
n−n and

σ2
n−m. These results are tabulated in Tables 5.3 and 5.4 for face and gait scores, respectively.

Note that the data for AUC, Rank-M , σ2
n−n, and σ

2
n−m, are approximately the same in both

columns (empirical and faux). In addition, note that the result of the T-test suggests a

rejection of the null hypothesis and that the output of the score reassignment process (at

the stated inputs), results in an output whose expected values of σ2
n−n, and σ

2
n−m denote the

actual values obtained empirically.

5.4.3 Evaluating Theoretical Performance Outcomes

In this experiment, an evaluation is performed to ascertain whether the outcomes defined

in Section 5.2.1 (e.g., GVGI, GVPI, PVGI) can, on a theoretical level, occur on match score

data that could denote empirical match score data. This experiment assumes (in some

sense) that the score reassignment process is capable of generating plausible representations

of empirical match scores (via Tables 5.3 and 5.4 in the prior experiment) in comparison to
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Table 5.4: Evaluating the viability of the reassigning model on the gait scores in the CASIA
B Dataset.

Measure Original Gait Scores Reassigned Scores
AUC 0.980 0.980
Weighted Rank-M 0.978 0.994
σ2
Gen 3.8e-4 3.8e-4

Mean σ2
n−n 4.2e-4 4.4e-4

Rejects Null Hypothesis N/A Yes
p-value N/A 0
σ2
Imp 4.4e-3 4.4e-3

Mean σ2
n−m 1.7e-3 1.9e-3

Rejects Null Hypothesis N/A Yes
p-value N/A 0

random assignment of scores to faux identities. With this assumption, the score reassignment

process can be used to either validate or deny whether it is theoretically possible to observe

a set of match scores whose respective ROC and CMC curves denote a GVGI, GVPI, or

PVGI outcome.

To facilitate this, faux identities are created from synthetically generated match scores.

Synthetic match scores are sampled from a parametric normal distribution with parameters

µGen, σ
2
Gen, µImp, and σ

2
Imp (as defined in Section 5.4.1).

For the purposes of this experiment, the performance expressed by the ROC curve (e.g.,

verification performance) is defined to be “good” if the AUC is above 98% and “poor” if

the AUC is below 75%. The performance expressed by the CMC curve (e.g., identification

performance) is then defined as “good” if the weighted rank-M identification accuracy is

greater than 90% and “poor” if the rank-M accuracy is below 50%. Note this definition

neglects the situation where the AUC or rank-M accuracy is between the ranges specified

as “good” or “poor”. This two tiered threshold is necessary to suggest a “poor” outcome

is sufficiently poor and not “almost good” (or vice-versa). A summary of these outcomes is

provided in Table 5.5.

Here, the parameters used to generate the genuine and impostor match score distribu-

tions, in conjunction with the score reassignment parameters used, are as follows:

• GVGI: N = 240, NG = 5, ǫGen = 0.25σGen, ǫImp = 0.25σImp, δ = 0.98, µGen = 0.500,
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Table 5.5: Range of AUC (row) and rank-M (column) identification rate resulting in a PVPI,
PVGI, GVPI and GVGI outcome. Outcomes outside these definitions are denoted by “***”.

AUC / Rank-M 0.00-0.50 0.50-0.90 0.90-1.00
0.00-0.75 PVPI *** PVGI
0.75-0.98 *** *** ***
0.98-1.00 GVPI *** GVGI

σ2
Gen = 3.4e − 3, µImp = 0.120, σ2

Imp = 0.011. Proportion of “Sheep”, “Goat”, and

“Lamb” = {96% ,2% ,2%}, respectively.

• GVPI: N = 240, NG = 5, ǫGen = 0.25σGen, ǫImp = 0.25σImp, δ = 0.98, µGen = 0.500,

σ2
Gen = 3.4e− 3, µImp = 0.120, σ2

Imp = 2.42e− 2. Proportion of “Sheep”, “Goat”, and

“Lamb” = {15% ,35% ,50%}, respectively.

• GVPI: N = 240, NG = 5, ǫGen = 0.9σGen, ǫImp = 0.25σImp, δ = 0.98, µGen = 0.500,

σ2
Gen = 0.190, µImp = 0.230, σ2

Imp = 6.60e − 3. Proportion of “Sheep”, “Goat”, and

“Lamb” = {96%, 2%, 2%}, respectively.

Results are presented in Figures 5.5-5.7, which depict (a) a visual of the genuine and

impostor score distribution and the associated AUC value, and (b) a scatter of the maximum

genuine score and impostor score assigned to each “sample” of each faux identity when match

scores are assigned with, and without regard to inter- and intra-class variations, along with

the corresponding weighted rank-M value. Visualization in this way aids in depicting the

rank statistics of match scores.6 The data in Figures 5.5-5.7 illustrate that each of the stated

performance outcomes are theoretically possible, even when intra- and inter-class match score

statistics are considered.

5.4.4 Evaluating Empirical Score Distributions

Whereas the previous experiment utilized synthetic match scores to justify the theoretical

existence of a GVGI, GVPI, or PVGI outcome, in this experiment, the score reassignment

model for creating faux identities is implemented on empirical match score distributions to

6For a biometric sample, when its maximum impostor score exceeds its maximum genuine score, then a
rank-1 identification error will occur.



Brian M. DeCann Chapter 5. Relating the ROC and CMC Curves 147

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.6

0.7

0.8

0.9

1

Max Genuine Score / Template

M
ax

 Im
po

st
or

 S
co

re
 / 

T
em

pl
at

e Rank−M = 0.987

 

 

Error Boundary
Unmodeled

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Score

P
r(

S
co

re
)

AUC = 0.999

 

 

Genuine Scores
Imposter Scores

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.6

0.7

0.8

0.9

1

Max Genuine Score / Template

M
ax

 Im
po

st
or

 S
co

re
 / 

T
em

pl
at

e Rank−M = 0.979

 

 

Error Boundary
Sheep (96%)
Goat (2%)
Lamb (2%)

Figure 5.5: Example of a synthesized GVGI result (AUC > 0.98, Rank-M > 0.90), where
intra- and inter-class relationships are not considered (left) and modeled (right). Note that
the model is able to reproduce the intended result (i.e., a high Rank-M accuracy).

Table 5.6: AUC and Weighted Rank-M values after match score reassignment for different
proportions of “Sheep”, “Goats”, and “Lambs” using face scores. Note that in this case, the
weighted rank-M accuracy does not change much.

Sheep (%) Goats (%) Lambs (%) AUC Weighted Rank-M
100 0 0 0.999 1.0
82 10 8 0.999 1.0
50 26 24 0.999 0.997
15 10 75 0.999 0.997

generate alternative realizations of intra- and inter-class relationships from the same set of

scores. The intent of this experiment is to demonstrate that two sets of match scores sharing

the same aggregate statistics (e.g., CMC curves) can result in different ranked statistics (i.e.,

CMC curves) on empirical data. To enable this, the model is run with multiple proportions of

“Sheep”, “Goats”, and “Lambs”. Parameters for δ, ǫGen, and ǫImp, are set to 0.98, 0.25σGen,

and 0.25σImp, respectively, for both face and gait scores. These results are tabulated in

Tables 5.6 and 5.7.

In addition, one proportion of “Sheep”, “Goats”, and “Lambs” that might result in a

decrease in rank-M performance is highlighted. Ideally, the decrease would be significant

enough such that both GVGI and GVPI outcomes could be observed from the same match
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Figure 5.6: Example of a synthesized GVPI result (AUC > 0.98, Rank-M < 0.50), where
intra- and inter-class relationships are not considered (left) and modeled (right). Note that
the model is able to reproduce the intended result (i.e., a low Rank-M accuracy).

Table 5.7: AUC and Weighted Rank-M values after match score reassignment for different
proportions of “Sheep”, “Goats”, and “Lambs” using gait scores. Note that in this case, the
rank-M accuracy changes significantly.

Sheep (%) Goats (%) Lambs (%) AUC Weighted Rank-M
100 0 0 0.980 1.0
82 10 8 0.980 0.966
50 26 24 0.980 0.915
15 10 75 0.980 0.800

score data. This is accomplished by reducing the number of “Sheep” or “well-behaved” faux

identities in χn. The highlighted proportions for face and gait scores are {50%, 26%, 24%}

and {15%, 10%, 75%} for “Sheep”, “Goats”, and “Lambs”, respectively and are illustrated

visually in Figures 5.8 and 5.9, which, similar to Figures 5.5-5.7 plot the maximum impostor

score against the maximum genuine score for each biometric sample for the empirical and

reassigned face and gait scores. In addition, Figure 5.10 illustrates the actual ROC and CMC

curves generated from the empirical and reassigned match score data for both face and gait

scores.
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Figure 5.7: Example of a synthesized PVGI result (AUC < 0.75, Rank-M > 0.90), where
intra- and inter-class relationships are not considered (left) and modeled (right). Note that
the model is able to reproduce the intended result (i.e., a high Rank-M accuracy).

5.4.5 Discussion

The first experiment (Section 5.4.2) demonstrates that the proposed score reassignment

model is able to generate “viable” representations of intra- and inter-class relationships be-

tween identities via their match scores. This is important, as in order to effectively model the

per-identity statistics in match scores, it must be demonstrated that such a model is creat-

ing meaningful relationships. Further, such a model must demonstrate that the per-identity

statistics generated are not equal to the aggregate genuine and impostor score variances. In

addition, a measure of “viability” is important to show that the analysis may be relevant

to real-world problems. Viability is confirmed via the data in Tables 5.3 and 5.4, as the

weighted rank-M accuracy and average intra-class variance per identity (σ2
n−n), and inter-

class variance between pairs of identities (σ2
n−m) are approximately equal to the original face

and gait scores (with equal values of AUC). In addition, Figures 5.8 and 5.9 demonstrate the

model is behaving as stated (Section 5.3.2), since “Goats” and “Lambs” are seen contribut-

ing to rank-based error by having at least one of the following properties: (a) low genuine

scores and (b) high impostor scores.

In the second experiment (Section 5.4.3), the score reassignment model for creating faux
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Figure 5.8: Comparing weighted rank-M accuracies before (above) and after (below) the
score reassignment process for the face dataset. Note that here, although it is possible to
generate a different realization of ranked match scores, the resulting rank-M accuracy does
not significantly vary (1 and 0.989091).

identities is implemented on a set of synthetic match scores, in order to evaluate whether

on a theoretical level, if it is possible to observe an ROC curve and CMC curve whose

respective performances correspond to one of the three “interesting” outcomes defined in

Section 5.2.1 (e.g., GVGI, GVPI, PVGI). The results demonstrate that it is theoretically

possible to generate each of these outcomes. The primary limitation of this experiment is

that it is conducted on synthetic data. However, in this case, the benefit of synthetic data

is that it allows for the rapid generation of a large number of hypothetical match score

distribution, which is beneficial for a theoretical analysis.

The third experiment (Section 5.4.4) serves to address the primary limitation of the sec-

ond, by invoking the score reassignment model on empirical data, in order to query whether

differing ranked-based statistics (CMC curves) can be observed from match score distribu-

tions with similar aggregate-based statistics (ROC curves) and if so, whether the differences

can be significant. In Figure 5.8 (involving face scores), when varying the proportion of

“Sheep”, “Goats”, and “Lambs”, while a difference in ranked statistics can be observed, the
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Figure 5.9: Comparing weighted rank-M accuracies before (above) and after (below) the
score reassignment process for the gait dataset. Note that here, it is possible to generate a
different realization of ranked match scores with a significantly different weighted rank-M
accuracy (0.978 and 0.8). This suggests that multiple CMC curves can be accompanied with
the same ROC curve.

resulting weighted rank-M accuracy was not significantly different than that of the original

data nor the predicted values (Table 5.2). However, in Figure 5.9 (involving gait scores),

while varying the proportion of “Sheep”, “Goats”, and “Lambs”, a realization with a signif-

icantly lower weighted rank-M accuracy (weighted rank-M = 0.8) was discovered, which is

enough to categorize the reassigned outcome as a GVPI. These observations are also evident

in the CMC curves from Figure 5.10.

The overarching question(s) then become: Why was this phenomena observed with the

gait scores and not the face scores? What is unique to a set of match scores that enables the

possibility of a GVPI outcome (as in Figure 5.6 and Figure 5.9) or a PVGI outcome (as in

Figure 5.7). The answer has to do with the extent of overlap between fG(x) and fI(x) (i.e.,

the range of x for which both fG(x) and fI(x) are non-zero). If fG(x) and fI(x) have less

overlap, although match scores can be arranged differently between identities, this is unlikely

to change the ordered ranking of match scores in the CMC curve. However, if fG(x) and

fI(x) are reasonably overlapped, then it cannot be guaranteed that aggregate-based
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Figure 5.10: ROC and CMC curves for the original and reassigned face (left) and gait (right)
match scores. Note that for both sets of match scores, the ROC data is the same, while the
CMC data is different for the original and reassigned scores.

statistics will correlate with rank-based statistics. This property becomes particularly

important when biometric systems increase in scale, as fG(x) and fI(x) cannot be certain

to conform to any distribution [168], and also in unconstrained biometric systems, which

may yield larger intra- and inter-class variances as a consequence of uncontrolled biometric

acquisition. Thus, researchers in the biometric community should report the ROC curve if

a CMC curve is used as a measure of reporting matching performance. Similarly, the ROC

curve should not be used as a stand-alone performance measure of a biometric matcher

operating in identification mode. This recommendation is especially important for academic

performance evaluations, as CMC curves are more likely to be reported.

5.5 Summary

In this chapter, an analysis was performed regarding the relationship between the ROC

curve, which traditionally denotes verification performance, and the CMC curve, which tra-

ditionally denotes identification performance (in particular, in academic performance eval-



Brian M. DeCann Chapter 5. Relating the ROC and CMC Curves 153

uations). Our analysis discusses that although there are models to predict the CMC from

the ROC data [4, 5], such models may not always be accurate as the data in the ROC curve

is based on the match scores generated from every identity (i.e aggregate-based), while the

CMC data is based on the match scores on a per-identity basis (i.e., rank-based). As such, it

is possible that (a) an ROC indicating “good” performance can be accompanied by a CMC

curve indicating “poor” performance (and vice-versa), and (b) a single ROC curve can be

accompanied by multiple CMC curves, where depending on the extent of overlap between

the genuine and impostor match score distributions, the per-identity statistics expressed in

the CMC curve vary such that large differences of performance can be observed (i.e., both

“good” and “poor” CMC performance).

To facilitate this, terminology mapping the performance of the ROC curve and CMC

curve to one of four possible outcomes is developed. These terms include: GVGI (Good

Verification Good Identification), GVPI (Good Verification Poor Identification), PVGI (Poor

Verification Good Identification), and PVPI (Poor Verification Poor Identification).

Next, a model for characterizing the inter- and intra-class relationships found in match

scores (e.g., the Biometric Menagerie) is defined. The model is used to generate faux iden-

tities from an input set of match scores, where the created faux identities can be defined

to have differing per-identity statistics (e.g., CMC data) while sharing the same aggregate

statistics (e.g., ROC data) as the input.

The ability of the model to generate “plausible” representations of match scores is eval-

uated by recreating the per-identity statistics of empirically collected face and gait scores.

Next, the model is used on synthetic data to theoretically validate the occurrence of a GVGI,

GVPI, and PVGI outcome. Finally, the model is again implemented on empirically collected

face and gait scores to probe whether the match scores can be re-distributed such that a

large variance in CMC data can be observed from the same ROC data.

The results of this study suggest that aggregate-based statistics (i.e., the ROC curve) may

not be directly related to rank-based statistics (i.e., the CMC curve). In particular, a single

ROC curve can be associated with multiple CMC curves. Consequently, when reporting

the CMC curve as an indication of identification performance (as is common in academic

evaluations), the ROC curve should also be presented, in order to have a more comprehensive
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understanding of the matching performance.
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Chapter 6

De-duplication Error in Biometric

Systems

6.1 Introduction

6.1.1 Identity Duplication in Biometric Systems

In a biometric system, it is possible for a single individual to be associated with multiple

identities or labels. This is referred to as identity duplication.1 In a dynamic enrollment

framework, such as in the Anonymous Identification framework (Chapter 4), this may occur

as a result of decision error by the system, whereby multiple identity profiles are generated

containing the same identity. In an overt (traditional) enrollment framework, a duplicate

identity may be created by a malicious individual who intends to derive multiple benefits

from the system (e.g., a welfare disbursement system). Alternatively, a duplication may be

a result of unintentional oversight by the system administrator during enrollment.

The process of detecting and managing duplicate entries associated with a single indi-

vidual is referred to as de-duplication. The de-duplication task occurs during the enrollment

phase of a biometric system, wherein the input biometric sample is compared against the

previously enrolled data by a biometric matcher in order to determine if a duplicate reference

entity exists. If a duplicate entity is found, then the current input sample is flagged by the

1This phenomenon is independent of whether the system is operating with a traditional enrollment, in
the Anonymous Identification framework (Chapter 4), overtly, or covertly.
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system.2 In the simplest case, the input biometric data is not stored in the system. If no

duplicates exist, then the input biometric sample is associated with a new label (i.e., identity

profile) and stored in the system. A simple illustration of de-duplication is given in Figure

6.1.

Figure 6.1: Simple illustration of the input (left) and output (right) of a de-duplication task.
Note that the output set contains one sample per identity (i.e., no duplicates). Face images
are from the FRGC dataset [3].

The de-duplication task has gained considerable attention as of late, particularly in the

context of national scale ID programs such as the UID program in India [154], and in

maintenance of large scale forensic or government databases [75]. However, the application

itself has not been rigorously studied in the literature. In particular, there has not been any

work pertaining to the types of errors in a de-duplication task, their potential consequences,

and whether they can be appropriately estimated.

As discussed in Chapter 1, errors in classical biometric recognition are quantified us-

ing the False Match Rate (FMR), False Non-match Rate (FNMR), and Receiver Operating

Characteristic (ROC) curve (in the verification scenario); the False Positive Identification

Rate (FPIR) and False Negative Identification Rate (FNIR) (in the open-set identification

scenario); or the Cumulative Match Characteristic (CMC) curve (in the closed-set identifi-

cation scenario). However, these measures may not adequately model de-duplication error.

2The response to a flag for a duplicate can vary according to system needs.
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Figure 6.2: Example illustrating the effect of sample order on the outcome of a de-duplication
process. Note that the probability of a sample being “de-duplicated” depends on both the
“non-duplicate” sample list and its position in the sequence when it is tested for a duplicate.

In the traditional biometric verification and identification problems, the occurrence of a

matching error is assumed to be a static event and cannot impact future matches. This

concept was previously discussed in Chapter 4. However, in the de-duplication problem, the

reference database (with “non-duplicate” entries) has the potential to expand following each

test for a duplicate (in particular, when a duplicate is not found). Consequently, the order

in which biometric samples are observed during enrollment can impact the error rate of the

de-duplication task. This is not unlike the challenges of measuring Anonymous Identification

error (Chapter 4).3 In Figure 6.2, an example is presented demonstrating how two different

sample orders can affect which samples are de-duplicated.

6.1.2 Chapter Motivation

The motivation for this chapter is to formally introduce and analyze errors in biometric

de-duplication, and determine whether these errors can be reliably estimated via traditional

measures (e.g., FPIR, FNIR, etc.). Thus, the contributions of this chapter are the (a) Intro-

3The difference between Anonymous Identification and de-duplication is that in de-duplication samples
are added to the reference database only when a matching reference entity is not found. In Anonymous
identification, samples are added to the reference database regardless of whether a match is found.
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duction and definition of biometric de-duplication errors (Section 6.2); (b) An investigation

regarding whether traditional biometric error measures can first be leveraged to estimate

de-duplication errors in a simplified problem space (Section 6.2.2); and (c) An evaluation re-

garding whether the designed measures accurately estimate constrained de-duplication error,

and a discussion of confounding factors, if present (Section 6.4).

6.2 Understanding De-duplication

6.2.1 The De-duplication Task

Consider a set of N individuals, where each individual has provided NG biometric sam-

ples. Denote the total number of ordered samples as NT , where NT = N ·NG. Assuming a

perfect biometric matcher, a de-duplication task would reduce the total number of samples

to N , such that each individual is represented by exactly one sample. Note that this is done

as follows:

Suppose a set of NT biometric samples, Ginit = {s1, s2, . . . , sNT
}, is to be de-duplicated.

Additionally, define Gout as the set of non-duplicate samples remaining after the de-duplication

task. Let Nout =| Gout |. Initially, Gout is initialized to the empty set and Nout = 0. When

the first sample, s1, is checked against Gout for a duplicate, there are no samples to match

against and s1 is placed in Gout. For all remaining samples, the kth sample (k = 2, 3, . . . , NT )

is matched against all the entries in Gout. A de-duplication occurs if the similarity match

score generated between the kth sample and the ith element in Gout (i = 1, 2, . . . , Nout) exceeds

a value of γ, where γ denotes a decision threshold. In the event of a de-duplication, the kth

sample is flagged for further action. Here, assume the sample is discarded (i.e., removed from

the sample set). If a de-duplication does not occur, a non-duplication occurs and sample sk

is added to Gout and the value of Nout is increased by one. This process is summarized in

Alg. 6.1.

Note that this scheme represents one approach towards performing the de-duplication

task. In particular, the action taken following the flag for a duplicate, which can vary

according to operator needs. Other actions taken may involve, for example, consolidating
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Algorithm 6.1: Biometric De-duplication
Input : Biometric samples s1, s2, . . . , sNT

Output : Non-duplicate set of samples, Gout
Define: S(s1, s2) as the similarity score between s1 and s2

Nout as the number of elements in Gout
γ as a decision threshold with a value in the range [0, 1]

Initialize:
Gout = {s1} \\ the first sample is placed in Gout.

//Begin algorithm
for k = 2 to NT do \\ iterate through the rest of the samples.
duplicate found = FALSE
for i = 1 to Nout do

\\ compare sk, to the contents of Gout.
χ = S(sk, si) \\ compute similarity between sk and sj.
if χ > γ then
duplicate found = TRUE
break \\ A match (i.e., duplicate) was found.

end if
end for
if duplicate found == FALSE then
Gout = Gout ∪ sk
\\ if no duplicates are found, add the sample to
the non-duplicate sample set.

end if
end for

//End algorithm
Return Gout

information from the probe and its matching sample to update the stored identity profile.

6.2.2 De-duplication Errors

The de-duplication task incurs type-1 (false match) and type-2 (false non-match) errors.

These errors are defined as follows:

False de-duplication (FDD): A sample incorrectly matches to an identity in
the non-duplicate set, Gout. As a result, the input data is not added to Gout and
the identity of an individual input may not be present in the non-duplicated set.

False non-duplication (FND): A sample, which has a matching identity in
Gout, is incorrectly not matched to any sample in Gout. As a result, the same
individual may have multiple identities.
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Table 6.1: Summary of assumptions for FDMR and FDNMR estimation.

Assumption Description
Matching Scenario The matching scenarios defined for estimating de-duplication

denote basic matching scenarios.
Uniform Sampling The probability of observing any sample belonging to any

identity is uniform.
Initial Knowledge It is not known initially whether any samples are duplicates.
Matching Algorithm The rank-1 matching identity returned from the matching

algorithm corresponds to the identifier associated with the
reference sample from which the maximum match score is
generated.

The consequences of these errors can impact the outcome of the de-duplication task in

different ways. For example, a large incidence of false de-duplication errors will result in

a majority of identities not being represented in Gout. The operational impact of this error

might be that several individuals will be unable to utilize services or receive resources, having

been inadvertently deleted from the list of individuals.

The result of a false non-duplication, on the other hand, is that a single individual is

represented by multiple identities in the system. Thus, a single individual may then be able

to “double-dip” and procure services or resources intended for a single person.

6.3 Estimating De-duplication Errors

Given that these errors persist in the de-duplication task, it is necessary to determine

whether they can be estimated. In the traditional biometric literature, these errors are often

measured through the false match rate (FMR), false non-match rate (FNMR), false positive

identification rate (FPIR), and false negative identification rate (FNIR). In this section, two

simplified de-duplication test scenarios are defined such that on the surface, appear to enable

direct usage of the FMR, FNMR, FPIR, and FNIR for estimating de-duplication error rates.

A summary of assumptions used to estimate these error rates is provided Table 6.1.
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6.3.1 False de-duplication

Suppose NT samples representing N identities are to undergo a de-duplication test (as

defined in Section 6.2.1). Additionally, suppose each identity is represented in the initial set

of samples, Ginit, exactly once (i.e., NG = 1, NT = N). Under these conditions, when each

sample is tested for a duplicate, no genuine matches will exist in the non-duplicate set, Gout.

Further, the probability of error cannot be confounded by a false non-match. Therefore, the

probability of observing a false de-duplication error (under these conditions) depends on the

probability of generating at least one of Nout impostor scores exceeding γ.

FMR-based Estimation

In the classical verification task [10], the FMR can be loosely interpreted as the proba-

bility that a generated impostor score exceeds a decision threshold (γ). Thus, an argument

can be made that the FMR raised to the power m denotes the probability that m impostor

match scores exceed a decision threshold. Conversely (1−FMR) raised to the power m de-

notes the probability that m impostor match scores are less than a decision threshold [19].

This formulates the basis for estimating false de-duplication error via the FMR. As such,

the probability of observing a false de-duplication error when Gout contains Nout elements is

the complement of the probability that all generated match scores are less than a decision

threshold and is defined in Equation (6.1).

P (FDD|Nout) = 1− (1− FMR)Nout (6.1)

FPIR-based Estimation

In the classical identification task [10], a probe biometric sample is matched against a

database of N labeled identities. The system computes match scores for every identity in

the database and orders them from highest (similarity) to lowest. The output is a set of L

identities whose match scores exceed a certain decision threshold. In open-set identification,

the actual identity of the probe may or may not exist in the database (common with the de-

duplication problem). Traditionally, the performance of open-set identification is measured
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through the FPIR and FNIR as demonstrated in the evaluation tests conducted by NIST

[13, 14]. The FPIR is defined as the proportion of probe samples that do not have a matching

identity in the database but whose match scores with one or more database entries exceed

γ. Thus, the FPIR (in this case) is equal to the probability that at least one generated

impostor score exceeds γ, which corresponds to the probability of false de-duplication. This

is expressed formally in Equation (6.2).

P (FDD|Nout) = FPIR(Nout) (6.2)

6.3.2 False Non-duplication

Again, suppose NT samples representing N identities is to undergo a de-duplication

test. Here, let NG = 2 and constrain γ such that the false match rate is negligible (i.e.,

FMR ≈ 0). Note these constraints are more stringent than in the previous section, but are

introduced in order to mitigate any confounding effects from prior errors (i.e., errors made in

the de-duplication process prior to encountering the current sample). For example, NG > 1

is required to produce genuine scores (and thus the false non-duplication error), however,

in the general case, NG − 1 genuine scores can theoretically be generated for a given test

sample, as a result of previous false non-duplication errors. Establishing NG = 2 eliminates

this artifact, as each test sample can at most generate one genuine score. Similarly, FMR

≈ 0 is introduced such that a prior false de-duplication error does not impact whether a

genuine matching sample to the current test sample was erroneously discarded.4 Thus, in

the interest of simplicity, the problem is constrained to prevent this artifact and isolate the

non-duplication error. Thus, the false non-duplication error (in this case) reduces to the

probability a matching sample to sk was previously observed, multiplied by the probability

a generated genuine score is less than γ.

The probability that a generated genuine score is less than γ can be approximated using

the FNMR and FNIR. By definition, the FNMR is defined as the proportion of genuine scores

that are lower than a threshold, γ. Loosely interpreted, the FNMR denotes the probability

4The challenge in measuring this probability is that it also depends on whether the erroneous matching
samples were also observed and not subject to false de-duplication errors.
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that a generated genuine match score is less than a decision threshold. The FNIR is defined

as the proportion of times a probe that does have a matching entry in the database generates

a genuine score less than γ or is observed at a rank greater than R (R = 1, 2, . . . , N).5 When

R = 1, the FNIR denotes the probability a probe with a genuine matching identity in the

database is incorrectly not matched due to one of two conditions: (a) the generation of a

genuine match score less than γ or (b) a better match was found with another identity in the

database. Note the second condition suggests that there are impostor scores greater than γ.

However, with the assumption that FMR ≈ 0, this is not likely to bias the probability that

a genuine score is less than γ.

FNMR-based Estimation

Regarding whether a genuine matching sample to sk has been previously observed, if

the samples are tested uniformly, this probability will simply be k
NT

. However, due to true

de-duplication events, k 6= Nout. Thus, it is necessary to derive an estimate of k, given Nout.

Let P (k,m) denote the probability Nout is equal to m after testing k samples. Then, the

expected value of Nout after testing k samples, E[Nout|k] is the sum of products of m and

P (k,m) for m = 1, 2, . . . , NT :

E[Nout|k] =
k

∑

m=1

mP (k,m). (6.3)

However, the principal interest is in computing E[k|Nout], the expected value of k, given

Nout. Define ρm = {ρm1 , ρ
m
2 , . . .} as the set of values of k for which P (k,m) is non-zero for

a specific m. In other words, for Nout = m, this set denotes the range of potential sample

indexes and
∑

k∈ρm P (ρ
m, m) = 1.0. In addition, define |ρm| as the number of elements in

this set. The expected value of k, given Nout can be computed as the average of ρmi , for

i = 1, 2, . . . , |ρm|. This is given in Equation (6.4).

E[k|Nout] =

|ρm|
∑

i=1

ρmi
|ρm|

, Nout = 1, 2, . . . , NT (6.4)

5Here, R denotes the length of the candidate list returned by an identification system.
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The probability, P (k,m) can be derived iteratively, for m = 1, 2, . . . , k. In a de-

duplication test, after the first sample is observed, it is added to Gout and Nout = 1. Thus,

P (k = 1, m = 1) = 1.0. After the second sample is tested, one match score is generated,

which can be either genuine or impostor. Denote the probability the match score can be clas-

sified as genuine as PGen, and the probability the match score can be classified as impostor

as PImp. Note these probabilities must be “assumed” depending on the problem space. Con-

cerning the outcome following the second sample (k = 2), Nout = 1 occurs if (a) the match

score is genuine and correctly de-duplicated, or (b) the match score is impostor and falsely

de-duplicated. The latter is assumed not to occur with FMR ≈ 0. Thus, P (k = 2, m = 1)

can be estimated using the FNMR, where a correct de-duplication event (i.e., a match was

correctly found) is estimated as 1-FNMR (probability a genuine score exceeds γ), scaled by

the probability the match score is genuine, PGen. The other outcome, Nout = 2 at k = 2,

occurs if (a) the match score is genuine and falsely non-duplicated, or (b) the match score

is impostor and correctly non-duplicated. Here, the probability of the former is defined by

PGen multiplied by the FNMR, while that of the latter is defined by PImp. This process can

be repeated to compute P (k,m) for k = 1, 2, . . . , NT and m = 1, 2, . . . , k, enabling imple-

mentation of Equation (6.3). Thus, the probability of observing a false non-duplication is

the product of the FNMR and E[k|Nout], divided by NT and is summarized in Equation

(6.5).

P (FND|Nout) =
FNMR · E[k|Nout]

NT

(6.5)

FNIR-based Estimation

The FNIR can be substituted for the FNMR in the derivation of E[k|Nout] (Equation

(6.4)), and P (k,m), as a measure for estimating the false non-duplication rate under the

stated assumptions. This is summarized in Equation (6.6).

P (FND|Nout) =
FNIR(Nout) · E[k|Nout]

NT

(6.6)
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6.4 Experimental Results

6.4.1 Datasets and Evaluation

Experiments are conducted to (a) demonstrate the effect the sequential testing order has

on de-duplication error and (b) evaluate whether traditional error measures can describe de-

duplication error in the constrained scenarios presented in Section 6.3.1 and Section 6.3.2.

To enable this, similarity match scores were generated from a subset of the Facial Recogni-

tion Technology (FERET) database [8]. In particular, the subsets for regular frontal facial

expression (code “fa”) and alternative frontal facial expression (code “fb”) are used. These

subsets contain N = 1009 identities, with NG = 2 samples per identity. Match scores were

obtained using the commercial software VeriLook, similarly used in a study by Gyaourova

and Ross [169].

In the presented experiments, two mutually exclusive partitions of 504 identities are

randomly selected for training and testing. These partitions are divided into two further

subsets, denoted by the labels “A”, “B”, “C”, or “D”. In subsets “A” and “B”, only one

sample per identity is utilized (from FERET code “fa”). In subsets “C” and “D”, both

samples per identity are utilized. These partitions are summarized in Table 6.2.

Table 6.2: Data partitions from the FERET database [8].

Partition # Samples # Identities Code(s)
Partition A (Test) 504 504 “fa”
Partition B (Train) 504 504 “fa”
Partition C (Test) 1008 504 “fa” and “fb”
Partition D (Train) 1008 504 “fa” and “fb”

Samples in partitions “B” and “D” are used to generate estimates of the false match rate

(FMR), the false positive identification rate (FPIR), and where applicable, the false non-

match rate (FNMR), and the false negative identification rate (FNIR). Samples in partitions

“A” and “C” are used to generate the empirical error rates after executing the de-duplication

algorithm specified in Section 6.2.1.
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6.4.2 De-duplication Error and Testing Order

In this experiment, the observed false de-duplication error rate is computed for different

sequential orders of test data. The intent of this experiment is to demonstrate that de-

duplication error is dynamic, and can vary depending on the explicit order in which samples

are tested.

To demonstrate this, a de-duplication test (as defined in Section 6.2.1) is performed using

samples from Partition “C” (Table 6.2). In total, 10,000 tests are performed using the same

test data but ordered differently. In each test, the average observed false de-duplication rate

and false non-duplication rate is computed for a set of five decision thresholds, γ. The values

of γ used in this experiment are those which correspond to a false match rate approximately

equal to 0.25, 0.1, 0.01, 0.001, and 0.0001.

These results are illustrated in Figures 6.3 and 6.4 in the form of a box plot. The width

of each box denotes the upper and lower quartile of observed false de-duplication error. The

lines extending beyond each box denote the full range of observed false de-duplication error.

Outliers are designated by a “+”. In order to reduce redundancy in the results, data from

FMR = 0.0001 and FMR = 0.25 are neglected in Figures 6.3 and 6.4, respectively. These

figures demonstrate that de-duplication error is dynamic and varies (between 3-10% for FDD

and 0-0.3% for FND) depending on the order samples are tested for a duplicate.

6.4.3 Estimating De-duplication Error

In this experiment, the ability to estimate false de-duplication and false non-duplication

error under the simplified conditions described in Section 6.2.2 is evaluated. This is ac-

complished by comparing the observed false de-duplication error rate to the FMR-based

and FPIR-based measures, as presented in Section 6.3.1. Similarly, observed false non-

duplication error is compared with the FNMR-based and FNIR-based measures presented in

Section 6.3.2. In addition, estimates of FMR, FNMR, and FNIR are included for additional

comparison (where appropriate).

Here, parameters for the false de-duplication error models are estimated using Partition

“B” and the empirically observed false de-duplication error is computed on Partition “A”. In
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Figure 6.3: Boxplot of the average false de-duplication error for selected values of γ. Note
that the error rate varies depending on the order samples are tested.

addition, observed and estimated error rates correspond to a decision threshold, γ, resulting

in FMR ≈ 0.01. The parameters of the false non-duplication error models are estimated

from Partition “D” and the empirically observed false non-duplication error is computed

from Partition “C”. Here, observed and estimated error rates correspond to a value of γ

resulting in FMR ≈ 1
NT

. To remove sampling bias, 100 different combinations of Partitions

“A”, “B”, “C”, and “D” are computed and the resulting errors are averaged. These results

are illustrated in Figures 6.5 and 6.6, where the false de-duplication error (Figure 6.5) and

false non-duplication error (Figure 6.6) is shown in the form of a bargraph for set values of

Nout at the stated value of γ. Note that since the data in Figures 6.5-6.6 is computed from

different values of NT and γ, the maximum value of Nout will be different (due to true and

false de-duplication events).

6.4.4 Discussion

The above experiments highlight two major points. First, that de-duplication (and its

errors) are dynamic and largely influenced by (a) the sequential order in which samples are

tested for a duplicate (Figures 6.3-6.4) and (b) the number of elements in the non-duplicated

sample set, Gout (Figures 6.5-6.6). This effect is peculiar to recognition tasks where matching
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Figure 6.4: Boxplot of the average false non-duplication error for selected values of γ. Note
that the error rate varies depending on the order samples are tested.

outcomes can influence the future composition of the reference database as discussed previ-

ously in Chapter 4. Second, that de-duplication errors are complex and difficult to predict.

In the defined “simple case” for the false de-duplication error (NT = N), the FMR and

FPIR estimators denote noticeable bias (Figure 6.5). This is an interesting result, as the

assumptions built into the problem appear to directly correlate with the definition of the

FPIR. Therefore the logical question is: “What is the source of the bias?”, for which two

sources are identified.

The first source is related to the fact that classical error measures (in particular, the

FMR and FNMR) denote aggregated match score statistics, which may not provide accurate

representations of error on a per-identity level. In other words, these measures are based

on a global analysis of error, while at a per-identity level, the error rate of an individual

identity may differ from the FMR, FNMR, FPIR and FNIR. An example of this phenomenon

is the Doddington’s Zoo classification system of individuals in a biometric system based

on their individual contributions towards the FMR and FNMR [7]. For example, in the

Doddington’s Zoo framework, “lambs” denote identities whose biometric feature set overlaps

significantly with others. Such identities are likely to generate false de-duplication errors,

and depending on when such identities are observed and the proportion of them that exist
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Figure 6.5: Comparison of the FMR-based and FPIR-based error models to the observed
false de-duplication rate. Note in this case, the error models denote a biased estimation of
the false de-duplication error.

in Gout, the observed false de-duplication error rate can vary drastically. Similarly, “goats”

denote identities whose biometric feature set does not match well against itself. Such users

are likely to generate false non-duplication errors, which can also impact the observed error

rate.

The second, and perhaps more significant source concerns a specific assumption built into

the definition of FPIR and FNIR (and to a lesser extent, the FMR and FNMR). That being,

these measures generally assume a probe can be compared against a database containing any

combination of the other NT − 1 samples. For example, the FPIR is computed by selecting

some subset of samples (1 to NT − 1) to define the “enrolled database”, and the samples

that do not have a corresponding match in the database are tested for a matching error.

Note that there is no restriction on how the “enrolled database” is created. In other words,

any possible combination of Ngal samples (1 ≤ Ngal ≤ NT − 1) is valid. However, in de-

duplication, some combinations of samples to comprise Gout are outside the set of possible

outcomes (i.e., cannot occur).

To demonstrate this effect, consider the following “toy-example”. Let θ denote a set of

three biometric samples (θ = {s1, s2, s3}), where each sample denotes a different identity.
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Figure 6.6: Comparison of the FNMR-based and FNIR-based error models to the observed
false non-duplication rate. Note in the case (with constraints), the error models appear to
accurately estimate false non-duplication error.

Assume that s1 and s3 “match” (incorrectly) to s2 (and vice-versa). To compute the FPIR

Ngal (1 ≤ Ngal ≤ 2) samples are chosen to denote the database and the remaining samples

are used to test for an error. Let G denote the set of hypothetical database combinations,

which are: G =
{

{s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}
}

. However, in a de-duplication

test, the gallery combinations {s1, s2} and {s2, s3} cannot occur, as the pair of samples match

to one another and a de-duplication event will prevent these combinations from manifesting.

Thus, the sample space for estimating the FPIR is not the same as the sample

space for estimating the false de-duplication rate.

Although there is not an apparent bias in the estimation of the false non-duplication error

rate, this should not be interpreted as FNIR and FNMR being ideal estimators. In the general

case (NG > 2, FMR > 0), the false de-duplication error (which was effectively mitigated for

the data in Figure 6.6) can reduce the probability that a test sample has a matching identity

in Gout. Consequently, if the stated false non-duplication measures are adopted, a biasing

artifact will be induced and the model will fail. Figure 6.7 demonstrates this by repeating

the false non-duplication error experiment (Section 6.4.3), where the decision threshold is

set such that FMR > 0 (FMR = 0.006).
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Figure 6.7: Comparison of the FNMR-based and FNIR-based error models to the observed
false non-duplication rate. Note in the case (less constrained, FMR = 0.006), the error
models fail to accurately estimate false non-duplication error.

Similarly, the false de-duplication error can be affected by prior false non-duplication er-

rors. Therefore, given that the false de-duplication error cannot be estimated via traditional

measures in the simple case, and that both de-duplication errors influence one another in

the general case, it is likely traditional error measures will not provide reliable estimations of

generalized de-duplication error. However, if the problem is re-defined such that the interest

is in quantifying the error rate given N non-duplicate samples (in closed-set), then it is likely

the observed error rate would converge to traditional error measures.

6.5 Summary

This chapter formally introduces the errors involved in the biometric de-duplication task,

their operational impact, and the conditions required to generate a de-duplication error.

Next, a simple experiment is performed that establishes a pair of constrained matching

scenarios, which isolate the false match error and false non-match from one another, such that

the FMR, FNMR, FPIR, and FNIR can be best leveraged for simple error prediction. The

results indicate that under the constrained conditions, the FMR and FPIR result in a biased

estimation of false de-duplication error, while the FNMR and FNIR can act as an unbiased
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estimation of false non-duplication error. The observed bias in false de-duplication error is

due to implicit assumptions present in estimating the FMR, FNMR, FPIR, and FNIR that

do not hold for the de-duplication task. In addition, once the matching scenario for false non-

duplication was relaxed such that false match errors had a non-zero probability of occurrence

(i.e., more realistic case), the error model broke down considerably. Therefore, traditional

error measures may not be completely reliable when used to describe de-duplication error in

the general case.
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Chapter 7

Summary and Conclusions

7.1 Summary

This dissertation discusses two components of an automated biometric surveillance sys-

tem. The first component, denoted as “Methods and Modalities”, refers to the imaging

hardware and algorithms for performing human recognition. In this dissertation, an argu-

ment is made encouraging the use of the short-wave infrared spectrum (SWIR) for data

acquisition and human gait as a biometric trait for recognition. The SWIR spectrum is

discussed as an operationally advantageous image-spectrum as it (a) is undetectable to the

human eye, (b) has natural illumination sources (outdoor) in both day and night, and (c)

has some tolerance to obscurants such as smoke and fog (which impede visible spectrum

imaging). Human gait recognition is discussed as a potential candidate for a biometric

surveillance system as it (a) is believed to be unique to the individual, (b) can be collected

unobtrusively, and (c) can be captured in low resolution video-data. To this end, a novel

gait recognition algorithm is proposed and evaluated on a new gait database, which utilizes

SWIR image data and an outdoor, unconstrained setting. In addition, a cluster analysis of

gait recognition algorithms is performed, demonstrating that gait matching algorithms are

capable of grouping individuals into physically distinct groups based on their gait patterns.

The established groups were found to be dependent on the matching algorithm utilized. The

results of this component suggests that human gait recognition can act as a capable recog-

nition modality in a biometric surveillance system. The biometric can be utilized to infer
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identity via recognition or to profile observed identities into groups.

The second component, denoted by “Performance Models and Analysis”, refers to the

measures used to describe matching error in various recognition tasks. In this disserta-

tion, the recognition tasks denote those applicable to a biometric surveillance system or

an identification-at-a-distance system. One such task involves matching of identities that

have not been enrolled into the system. This can be accomplished by dynamically enrolling

unrecognized sample data to the reference database. This is defined as Anonymous Identifi-

cation. However, the dynamic creation of new reference data based on a matching outcome

introduces errors that are different from classical open-set or closed-set identification and

an error model is thus introduced to estimate these errors. Another recognition task rele-

vant to surveillance as well as large-scale systems involves the de-duplication problem, whose

matching outcome can also alter the contents of the reference database. Error models using

traditional error measures (e.g., False Positive Identification Rate (FPIR), False Negative

Identification Rate (FNIR), False Match Rate (FMR), and False Non-match Rate (FNMR))

were developed and were found to provide an inaccurate representation of an empirically

derived de-duplication error rate. Finally, a model is developed for understanding the re-

lationship between ROC and CMC curves, which are typically used to denote matching

performance in academic literature. The model characterizes the inter- and intra-class re-

lationships between identities and is used to develop sets of faux identities from empirical

match scores. At the global level, sets of faux identities share the same match score data,

but the values are distributed differently to each identity. The benefit of performing such an

analysis is to determine whether large differences in the CMC curve (which reflects a mea-

surement of local match score relationships) can be explained from the same match score

data contributing to a single ROC curve (which reflects a measurement of global match

score statistics). The results indicate that the interactions between different identities could

result in a CMC curve whose suggested performance differs from that of the ROC curve.

As such, researchers should present both ROC and CMC curves to better characterize the

performance of a matching algorithm.
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7.2 Contributions

In summary, the contributions of this dissertation are summarized by the following points.

In Chapter 2, a method for performing automated gait recognition was presented. In

addition, a novel dataset for evaluation of gait recognition algorithms was introduced. De-

fined as the Gait Curves matching algorithm and the WVU Outdoor SWIR Gait (WOSG)

dataset, the matching algorithm and dataset offer the following contributions:

• The Gait Curves matching algorithm denotes a unique, shape-based approach to quan-

tifying human gait patterns. The feature data can be further utilized for backpack

detection and silhouette restoration.

• The WVU Outdoor SWIR Gait dataset is unique as it is the first gait dataset to utilize

the short-wave infrared (SWIR) spectrum and whose collection was performed in an

environmentally unconstrained setting, which is likely to mimic surveillance data.

In Chapter 3, a cluster analysis of gait recognition algorithms was performed. The cluster

analysis offers the following contributions:

• Three algorithms for gait recognition (Gait Curves, Gait Energy Image [91], and Frieze

Patterns [101]) were found to group identities differently. As such, not all matchers

assess gait similarly.

• Formed clusters can be described by physical attributes of individuals. In particular,

body area and gender were found to contribute significantly towards how a pair of gait

patterns are assessed for similarity.

In Chapter 4, a matching scheme for biometric surveillance systems is introduced. Defined

as Anonymous identification, the matching scheme offers the following contributions:

• In Anonymous Identification, the system dynamically enrolls unrecognized identities

into the reference database, enabling the possibility of future recognition.
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• An error model is introduced to provide an estimation of errors in an Anonymous

Identification system. The error model provides a better representation of Anonymous

Identification error, compared to False Positive Identification Rate and False Negative

Identification Rate, which are common error measures for identification systems.

• The matching scheme and error model are useful for understanding biometric recogni-

tion problems where the matching outcome can alter the composition of the reference

database, as in the re-identification and de-duplication problems.

In Chapter 5, an analysis studying the relationship between the Receiver Operating

Characteristic (ROC) curve and Cumulative Match Characteristic (CMC) curve is presented.

The analysis offers the following contributions:

• A model for characterizing identity-specific relationships in match scores is developed.

The model is capable of generating faux identities from a set of empirical match scores.

Created faux identities share the same match scores as in the empirical data (i.e., same

global statistics, or ROC curves), but distributed differently (i.e., different per-identity

statistics, or CMC curves).

• Utilizing the model, it is possible to show that a range of CMC curves can be associ-

ated with a single ROC curve. As such, researchers should utilize both curves when

reporting performance of a matching algorithm.

In Chapter 6 an analysis was performed testing whether traditional error measures can

be utilized to predict de-duplication errors. The analysis offers the following contributions:

• Formal introduction of de-duplication errors, noting that their occurrence impacts the

composition of the reference dataset.

• Development of techniques that utilize the False Match Rate, False Non-match Rate,

False Positive Identification Rate, and False Negative Identification Rate to estimate

de-duplication error in a simplified matching setting. The results demonstrate that

these measures are not adequate representations of de-duplication error.
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7.3 Future Work

Although this dissertation presents a number of contributions, the results presented in

this dissertation are not without their own challenges, thus offering opportunities for further

research. Such opportunities exist within both the “Methods and Modalities” and “Perfor-

mance Models and Analysis” components.

7.3.1 Segmentation in Unconstrained Video Sequences

Arguably, the primary reason that the Gait Curves (as well as the additional baseline

gait matching algorithms) performed poorly on the WVU Outdoor SWIR Gait (WOSG)

dataset is that the silhouettes extracted from the video data were of much lower quality

than those extracted in existing gait datasets. This argument was validated experimentally

in Chapter 2, Section 2.5.2, where the silhouette quality metric developed by Liu et al. [109]

was implemented on silhouettes produced on the CASIA B, CASIA C, and WOSG datasets,

using a simple background subtraction scheme for silhouette extraction. The results showed

that the quality of the silhouettes produced in the WOSG dataset (most challenging) were

much lower than those of the CASIA B and CASIA C datasets.

Though it is important to develop methods that are robust to covariates and extraneous

variables such as carrying condition, viewpoint, and walking speed, as suggested by Liu and

Sarkar [108], it is also naive to presume that robust silhouette extraction is not a critical

component in an operational gait recognition system. As with any biometric modality, the

matching process is certain to be less than ideal if the data passed to a feature extraction

algorithm is noisy or otherwise corrupted. Though advanced segmentation methods have

been developed in the literature, the majority of these algorithms are developed specifically

for image data in the visible spectrum, rather than the infrared spectrum. In particular,

many of these algorithms rely on multiple channels of image data (i.e., as in RGB data),

an example being the “Codebook” model for background subtraction by Kim et al. [114].

Given the operational advantages of using SWIR image data (natural illumination sources,

nighttime operation, etc.), it is essential to develop segmentation methods explicitly for

SWIR images, or methods specific to single channel video and images.
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7.3.2 Clustering of Gait: Additional Datasets and Evaluation

As stated in Chapter 3, Section 3.3.7, one limitation of the cluster analysis was that

it was performed on a single dataset. It would be beneficial to perform the analysis on

several datasets to see whether the metadata variables (gender, body area, cadence, stride,

and height) contribute similarly to the formation of clusters. Such a study would aid in

confirming the results presented in Chapter 3.

However, the cluster analysis is best suited towards high quality silhouette data. The

reason high quality data is required is that research has demonstrated that lower quality

silhouettes can match together based on erroneous foreground pixels (e.g., shadows), and

not the actual “gait pattern” [108]. This means that datasets such as the CASIA C gait

dataset [130] and the WVU Outdoor SWIR gait dataset (Chapter 2, Section 2.3) would not

be appropriate for such an analysis. Other datasets, involving the use of treadmills might be

beneficial for a clustering analysis as they denote data collected in a static lab environment.

Examples include the Soton Large dataset [127] and the Osaka Treadmill dataset [134]. In

particular, the “A” subset of the Osaka Treadmill dataset compares gait at different walking

speeds. It would be interesting to perform clustering on this subset to see if cadence and

stride play a prominent role in cluster generation. It is likely that the Gait Curves algorithm

(Chapter 3, Section 2.2) would result in clusters that show increased correlation with stride

and cadence, as this algorithm was found to show a reduced matching performance when

comparing samples of varying walking speed (Figure 2.13).

7.3.3 Empirical ROC and CMC Analysis

One of the reasons for the development of a simulation model for characterizing match

scores (Chapter 5) was that it is a resource intensive task to generate empirical match scores

from multiple recognition schemes and modalities, in order to perform a comprehensive

analysis relating the two curves. However, if a large number of empirical ROC and CMC

curves could be extracted for a large number of matching algorithms, the analysis would be

extremely relevant to the field.
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7.4 Conclusions and Recommendations

This dissertation provides a foundation towards the design and development of a bio-

metric surveillance system and should be of interest to researchers across the biometric

community. Researchers studying biometric surveillance systems should not dismiss gait

recognition as a candidate recognition modality. Though it can be argued that it is not

possible to perform a standard enrollment of gait, clustering of unlabeled gait patterns can

still aid in providing some information regarding observed individuals. Researchers study-

ing gait recognition problems must consider the silhouette extraction process and advanced

segmentation algorithms for gait recognition to proceed as a biometric modality. The WVU

Outdoor SWIR Gait dataset illustrates how challenging the localization and segmentation

problems can be, and that algorithms noted for acceptable matching performance can fail

with poor quality data. Beyond gait recognition, researchers studying biometric surveillance

systems, or the biometric “re-identification” problem must be aware of how such systems will

function in an operational setting. In particular, questions such as how the system assembles

its reference database or how the system discerns whether an observed identity has been seen

before, must be considered. Finally, researchers in general should be cautious when reporting

or observing reports on de-duplication error that utilize traditional error rates. Similarly,

researchers utilizing CMC curves should report the corresponding ROC curve, as the curves

cannot be assured to be directly related.
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Appendix A

Clustering Extension: Indexing Gait

A.1 The Indexing Problem

In the biometric literature, the indexing problem denotes a runtime optimization problem,

wherein the reference data in the database is assigned a second identifier (i.e., a cluster label),

which is used to reduce the search space (i.e., the number of match scores computed) for a

given probe [137]. In other words, when the system observes a probe, a clustering algorithm

identifies a subset of the reference data to match against (i.e., a candidate list), reducing

the time required to produce a match report. This process is important for large biometric

systems that require a fast matching time (e.g., high throughput).

Indexing performance is typically measured via two measures: Hit Rate (HR) and Pen-

etration Rate (PR). The hit rate reflects the probability that a probe, which has a reference

entity in the database, has the reference entity returned in the candidate list. This is sum-

marized in Equation (A.1), where Nhit denotes the number of probes for which a correctly

matching reference entity is present in the candidate list and Nprobe is the number of probes.

Hit Rate =
Nhit

Nprobe

(A.1)

The penetration rate denotes the average percentage of the reference database comprising

the candidate list returned for each probe. This is summarized in Equation (A.2), where

Li denotes the size of the returned candidate list and Nref is the total number of reference

samples. Note, in the context of the previous experiments, Nref = Ctrain.
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Figure A.1: Indexing performance using k-means clustering. Left) Gait Curve Matching.
Center) Gait Energy Image (GEI). Right) Frieze Pattern Matching.

Penetration Rate =
1

Nprobe

Nprobe
∑

i=1

Li

Nref

(A.2)

Similar to the false match rate and false non-match rate, the hit rate and penetration rate

are inversely related. For example, with one cluster, the candidate list will always contain

the matching reference sample, at the cost of searching the entire database. As the number of

clusters increase, the penetration rate and hit rate generally decrease. An effective indexing

scheme will aim to maximize hit rate while minimizing penetration rate.

A.2 Indexing Performance

In this experiment, an extension of the cluster analysis in Chapter 3 is presented to

denote indexing performance. Here, hit rates and penetration rates are computed for c =

1, 3, 5, . . . , 105 clusters according to the protocol outlined in Chapter 3, Section 3.3.3. Since

the observed hit rate and penetration rate is a function of the samples comprising Ctrain,

cluster generation is repeated 100 times. The mean hit rate and penetration rate for the k-

means clustering algorithm is presented in Figure A.1, respectively. Also included in Figure

A.1 is the mean value adjusted ± one standard deviation.

In addition to hit rate and penetration rate, some researchers have attempted to quantify

the hit rate and penetration rate trade-off as a single valued measure. For example, Gadde

et. al. define ζ [170], which combines both the hit and penetration rate as follows:
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ζ =
√

Hit Rate · (1− Penetration Rate). (A.3)

In Figure A.2, ζ is computed for both the k-means clustering algorithm for, c = 1, 3, 5, . . . , 105.

These plots aid in visualizing the indexing performance across the different matching algo-

rithms (e.g., Gait Curves, GEI, Frieze Patterns).
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Appendix B

Supplemental Anonymous

Identification Analysis

B.1 Effect of Sequential Probe Order on Observed FDMR

and FDNMR

Here, a more detailed analysis regarding the effect of sequential probe order as it pertains

to the false dynamic match rate and false dynamic match rate is provided. Recall in Chapter

4, Section 4.3.2, the observed FDMR and FDNMR were evaluated for the probe orders: ran-

dom draw, increment probe, increment subject, and a specified version of increment subject,

where individuals that are more prone to falsely match to others are encountered first. In

Figures B.1 and B.2 the mean observed error rates (denoted by a circle (o)) for these probe

orders is shown for the full range of γ for face scores. Additionally, the standard deviation

of observed FDMR and FDNMR (denoted by dots (·) is also provided, demonstrating that

the error for each “class” of probe orders is also dynamic.

B.2 Predicting FDNMR and FDNMR

Here, an experiment is provided demonstrating the ability of the prediction model to

perform on sequestered data. That is, estimating the FDMR and FDNMR on data that is

not used to generate the observed error rates. To enable this, bootstrapping of the original
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Figure B.1: Comparison of FDMR, FMR, and FPIR for face scores. Each circle (o) denotes
the mean FDMR at that threshold. Dots (·) indicate one standard deviation from the mean.
Note that each type of probe order exhibits different ranges of error.

test data into smaller subsets is performed. Each bootstrapped subset consists of 300 sampled

probes, pertaining toM = 60 identities. By performing several predictions and observations

on bootstrapped data, an estimation of the model performance on data not explicitly used

in training can be established. This is illustrated in Figure B.3 for face scores. Note that

in this experiment, predicted error rates were generated using the procedure described in

Sub-Experiment B, only with 300 probes. Observed error rates were generated using the

procedure described in Sub-Experiment A, using random draw to order the probes and

P = 2, 500.
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