8,938 research outputs found

    Tractor cabin ergonomics analyses by means of Kinect motion capture technology

    Get PDF
    Kinect is the de facto standard for real-time depth sensing and motion capture cameras. The sensor is here proposed for exploiting body tracking during driving operations. The motion capture system was developed taking advantage of the Microsoft software development kit (SDK), and implemented for real-time monitoring of body movements of a beginner and an expert tractor drivers, on different tracks (straight and with curves) and with different driving conditions (manual and assisted steering). Tests show how analyses can be done not only in terms of absolute movements, but also in terms of relative shifts, allowing for quantification of angular displacements or rotations

    Patterns of past and recent conversion of indigenous grasslands in the South Island, New Zealand

    Get PDF
    We used recent satellite imagery to quantify the extent, type, and rate of conversion of remaining indigenous grasslands in the inland eastern South Island of New Zealand in recent years. We describe the pattern of conversion in relation to national classifications of land use capability and land environments, and ecological and administrative districts and regions. We show that although large areas of indigenous grasslands remain, grassland loss has been ongoing. Indigenous grassland was reduced in the study area by 3% (70 200 ha) between 1990 and 2008. Almost two-thirds of post-1990 conversion occurred in threatened environments with less than 30% of indigenous cover remaining, primarily in the Waitaki, Mackenzie and Central Otago administrative districts. This conversion occurred primarily on non-arable land. In the Mackenzie and Waitaki districts the rate of conversion in 2001-2008 was approximately twice that in 1990-2001. Opportunities to protect more of the full range of indigenous grasslands lie with the continuing tenure review process in these districts

    Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL)

    Get PDF
    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop

    Multistage, multiband and sequential imagery to identify and quantify non-forest vegetation resources

    Get PDF
    Earth Resources photographs from Apollo 6, 7, and 9 and photographs taken during Gemini 4, were used in the research along with high altitude and conventional aerial photography. A unified land use and resource analysis system was devised and used to develop a mapping legend. The natural vegetation, land use, macrorelief, and landforms of northern Maricopa County, Arizona, were analyzed and inventoried. This inventory was interpreted in relation to the critical problem of urban expansion and agricultural production in the study area. The central thrust of the research program has been to develop methods for use of space and small-scale, high-altitude aerial photography to develop information for land use planning and resource allocation decisions

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Remote Sensing to Detect and Monitor Trees in Various Environments: Case Studies in Chile

    Get PDF
    Today, the presence of green areas in cities plays an important role for the well-being of its inhabitants and its sustainable development. Modern cities need green spaces for environmental, psychological, esthetic, economic, and social reasons. In this meaning, Chilean cities, although Chile is still considered by the United Nations1 as a developing economy, are no exception. Given the importance of this common good, it is necessary to optimize its permanent care. An incident factor in the deterioration of vegetation in urban and rural areas is stress, which can be of biotic or abiotic origin. One way to systematize care of trees is by the application of multispectral sensors and modern digital image processing. Once plantations or trees are spectrally characterized, one can proceed to develop plant health mitigation programs. This article shows the potential of remote sensing for tree stress detection, in the central south of Chile. Focus is given on rural areas as forestry for the Chilean economy is of great importance. These approaches can easily be adapted to urban scenarios

    Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry

    Get PDF
    Three-dimensional (3D) image mapping of real-world scenarios has a great potential to provide the user with a more accurate scene understanding. This will enable, among others, unsupervised automatic sampling of meaningful material classes from the target area for adaptive semi-supervised deep learning techniques. This path is already being taken by the recent and fast-developing research in computational fields, however, some issues related to computationally expensive processes in the integration of multi-source sensing data remain. Recent studies focused on Earth observation and characterization are enhanced by the proliferation of Unmanned Aerial Vehicles (UAV) and sensors able to capture massive datasets with a high spatial resolution. In this scope, many approaches have been presented for 3D modeling, remote sensing, image processing and mapping, and multi-source data fusion. This survey aims to present a summary of previous work according to the most relevant contributions for the reconstruction and analysis of 3D models of real scenarios using multispectral, thermal and hyperspectral imagery. Surveyed applications are focused on agriculture and forestry since these fields concentrate most applications and are widely studied. Many challenges are currently being overcome by recent methods based on the reconstruction of multi-sensorial 3D scenarios. In parallel, the processing of large image datasets has recently been accelerated by General-Purpose Graphics Processing Unit (GPGPU) approaches that are also summarized in this work. Finally, as a conclusion, some open issues and future research directions are presented.European Commission 1381202-GEU PYC20-RE-005-UJA IEG-2021Junta de Andalucia 1381202-GEU PYC20-RE-005-UJA IEG-2021Instituto de Estudios GiennesesEuropean CommissionSpanish Government UIDB/04033/2020DATI-Digital Agriculture TechnologiesPortuguese Foundation for Science and Technology 1381202-GEU FPU19/0010

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided
    corecore