184,946 research outputs found

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object

    Get PDF
    A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated Q2 activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approac

    A human body model for dynamic response analysis of an integrated human-seat-controller-high speed marine craft interaction system

    No full text
    Small boats are increasingly being operated at high speed in rough weather by organisations carrying out essential missions such as the military and rescue services. Crew and passengers on these boats are exposed to continuous vibration and impacts leading to reduced crew effectiveness, fatigue and the possibility of injury. In addition to this marine craft will soon fall under the jurisdiction of the European Union Directive 2002/44/EC on the protection of workers from vibration.To assess the possibility of injury and mitigate it at the design stage of a vessel a design tool is needed to assess the vibration levels on/in the human body while the boat operates in dynamic environments. A review of current human body models is presented and a new human body model, which allows for estimates of muscle activity, is proposed. This model is supplemented by a numerical approach using finite element methods to assess the dynamic response of the integrated human-seat-controller-boat interaction system excited by wave loads or boat motions measured in full scale boat operation tests. The vibration control actuators are arranged between the seat and boat to reduce vibrations transmitted to the human body from the boat to obtain a comfortable ride condition

    Quasi-static imaged-based immersed boundary-finite element model of human left ventricle in diastole

    Get PDF
    SUMMARY: Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart

    A human body model for dynamic response analysis of an integrated human-seat-controller-high speed marine craft interaction system

    Get PDF
    Small boats are increasingly being operated at high speed in rough weather by organisations carrying out essential missions such as the military and rescue services. Crew and passengers on these boats are exposed to continuous vibration and impacts leading to reduced crew effectiveness, fatigue and the possibility of injury. In addition to this marine craft will soon fall under the jurisdiction of the European Union Directive 2002/44/EC on the protection of workers from vibration.To assess the possibility of injury and mitigate it at the design stage of a vessel a design tool is needed to assess the vibration levels on/in the human body while the boat operates in dynamic environments. A review of current human body models is presented and a new human body model, which allows for estimates of muscle activity, is proposed. This model is supplemented by a numerical approach using finite element methods to assess the dynamic response of the integrated human-seat-controller-boat interaction system excited by wave loads or boat motions measured in full scale boat operation tests. The vibration control actuators are arranged between the seat and boat to reduce vibrations transmitted to the human body from the boat to obtain a comfortable ride condition

    Fracture simulation for zirconia toughened alumina microstructure

    Get PDF
    Purpose - The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures. Design/methodology/approach - A two-dimensional finite element model is developed with an actual Al2O3Al{_2}O{_3} - 10 vol% ZrO2ZrO{_2} microstructure. A bilinear, time-independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro-void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models. Findings - Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro-void brings about the increase of crack density rate. Social implications - This paper is the first step for predicting the lifetime of ceramic implants. The social implications would appear in the next few years about health issues. Originality/value - This proposed finite element method allows describing fracture and fatigue behaviours of alumina-zirconia microstructures for hip prosthesis, provided that a microstructure image is available
    • 

    corecore