5 research outputs found

    Human behaviour recognition with segmented inertial data

    Get PDF
    The development and recent advancements of integrated inertial sensors has afforded substantive new possibilities for the acquisition and study of complex human motor skills and ultimately their imitation within robotic systems. This paper describes continuing work on kinetic models that are derived through unsupervised learning from a continuous stream of signals, including Euler angles and accelerations in three spatial dimensions, acquired from motions of a human arm. An intrinsic classification algorithm, MML (Minimum Message Length encoding) is used to segment the complex data, formulating a Gaussian Mixture Model of the dynamic modes it represents. Subsequent representation and analysis as FSM (Finite State Machines) has found distinguishing and consistent sequences of modes that persist across both, a variety of tasks as well as multiple candidates. An exemplary “standard” sequence for each behaviour can be abstracted from a corpus of suitable data and in turn utilised together with alignment techniques to identify behaviours of new sequences, as well as detail the homologous extent between each. The progress in contrast to previous work and future objectives are discussed

    The Meaning of Action:a review on action recognition and mapping

    Get PDF
    In this paper, we analyze the different approaches taken to date within the computer vision, robotics and artificial intelligence communities for the representation, recognition, synthesis and understanding of action. We deal with action at different levels of complexity and provide the reader with the necessary related literature references. We put the literature references further into context and outline a possible interpretation of action by taking into account the different aspects of action recognition, action synthesis and task-level planning

    Prediction of Intention during Interaction with iCub with Probabilistic Movement Primitives

    Get PDF
    International audienceThis paper describes our open-source software for predicting the intention of a user physically interacting with the humanoid robot iCub. Our goal is to allow the robot to infer the intention of the human partner during collaboration, by predicting the future intended trajectory: this capability is critical to design anticipatory behaviors that are crucial in human-robot collaborative scenarios, such as in co-manipulation, cooperative assembly or transportation. We propose an approach to endow the iCub with basic capabilities of intention recognition, based on Probabilistic Movement Primitives (ProMPs), a versatile method for representing, generalizing, and reproducing complex motor skills. The robot learns a set of motion primitives from several demonstrations, provided by the human via physical interaction. During training, we model the collaborative scenario using human demonstrations. During the reproduction of the collaborative task, we use the acquired knowledge to recognize the intention of the human partner. Using a few early observations of the state of the robot, we can not only infer the intention of the partner, but also complete the movement, even if the user breaks the physical interaction with the robot. We evaluate our approach in simulation and on the real iCub. In simulation, the iCub is driven by the user using the Geomagic Touch haptic device. In the real robot experiment, we directly interact with the iCub by grabbing and manually guiding the robot's arm. We realize two experiments on the real robot: one with simple reaching trajectories, and one inspired by collaborative object sorting. The software implementing our approach is open-source and available on the GitHub platform. Additionally, we provide tutorials and videos

    A fuzzy probabilistic inference methodology for constrained 3D human motion classification

    Get PDF
    Enormous uncertainties in unconstrained human motions lead to a fundamental challenge that many recognising algorithms have to face in practice: efficient and correct motion recognition is a demanding task, especially when human kinematic motions are subject to variations of execution in the spatial and temporal domains, heavily overlap with each other,and are occluded. Due to the lack of a good solution to these problems, many existing methods tend to be either effective but computationally intensive or efficient but vulnerable to misclassification. This thesis presents a novel inference engine for recognising occluded 3D human motion assisted by the recognition context. First, uncertainties are wrapped into a fuzzy membership function via a novel method called Fuzzy Quantile Generation which employs metrics derived from the probabilistic quantile function. Then, time-dependent and context-aware rules are produced via a genetic programming to smooth the qualitative outputs represented by fuzzy membership functions. Finally, occlusion in motion recognition is taken care of by introducing new procedures for feature selection and feature reconstruction. Experimental results demonstrate the effectiveness of the proposed framework on motion capture data from real boxers in terms of fuzzy membership generation, context-aware rule generation, and motion occlusion. Future work might involve the extension of Fuzzy Quantile Generation in order to automate the choice of a probability distribution, the enhancement of temporal pattern recognition with probabilistic paradigms, the optimisation of the occlusion module, and the adaptation of the present framework to different application domains.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore