3 research outputs found

    ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ ΠΊΠΎΠΌΠΏ'ΡŽΡ‚Π΅Ρ€Π½ΠΈΡ… систСм дистанційного трСнування Π½Π° основі Π°Π½Π°Π»Ρ–Π·Ρƒ Π²Ρ–Π΄Π΅ΠΎΠΏΠΎΡ‚ΠΎΠΊΡƒ

    Get PDF
    Basic construction principles of the remote training system were investigated. Operation of the system is based on the fact that the user tries to reproduce as accurately as repetitive movements, performed by the instructor. Algorithms for body movement image processing in the video stream were chosen so that the system was accessible to a wide range of users with home webcam and midrange computer. Point kinematic model of the human body movement was developed. The characteristic points of the human body in the video stream frames are determined based on the image skeletonization. According to the video stream data, for each characteristic point, its position, velocity and acceleration are calculated. Based on these data, a matrix of kinematic parameters for training and user movements is constructed. Quantitative comparison of two matrices is carried out using the Chebyshev and cosine similarity measures of vectors. Based on a comparison of the difference measures of vectors, recommendations are given to the user for correction of his movements. A prototype of the system was implemented as a software project. System testing has shown the correctness of its construction principles. Remote training system can be used in telemedicine for the rehabilitation of patients with musculoskeletal disorders, as well as remote sports training.РассмотрСны ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ построСния систСм дистанционной Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΡƒΡ‚Π΅ΠΌ Π°Π½Π°Π»ΠΈΠ·Π° Π²ΠΈΠ΄Π΅ΠΎΠΏΠΎΡ‚ΠΎΠΊΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ выполняСт ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒ систСмы ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Ρ…Β  инструктором. БистСма базируСтся Π½Π° Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ двиТСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Для ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ кинСматичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ двиТСния: ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΈΡ… ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Ρ‹Π΅ скорости ΠΈ ускорСния. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Π° ΠΏΡƒΡ‚Π΅ΠΌΒ  ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ систСмы.Розглянуто ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ систСм дистанційного трСнування людини ΡˆΠ»ΡΡ…ΠΎΠΌ Π°Π½Π°Π»Ρ–Π·Ρƒ Π²Ρ–Π΄Π΅ΠΎΠΏΠΎΡ‚ΠΎΠΊΡƒ Ρ€ΡƒΡ…Ρ–Π², які Π²ΠΈΠΊΠΎΠ½ΡƒΡ” користувач систСми Ρ‚Π° Ρ€ΡƒΡ…Ρ–Π², Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΈΡ… інструктором. БистСма Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° Π΄Π²ΠΎΡ…Π²ΠΈΠΌΡ–Ρ€Π½Ρ–ΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠ²Ρ–ΠΉ ΠΌΠΎΠ΄Π΅Π»Ρ– Ρ€ΡƒΡ…Ρƒ людини. Для ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΎΠ±Ρ‡ΠΈΡΠ»ΡŽΡŽΡ‚ΡŒΡΡ ΠΊΡ–Π½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Ρ€ΡƒΡ…Ρƒ: ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΈΡ… Ρ‚ΠΎΡ‡ΠΎΠΊ, Ρ—Ρ… ΠΌΠΈΡ‚Ρ‚Ρ”Π²Ρ– ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Ρ‚Π° прискорСння. Π’Ρ–Ρ€Π½Ρ–ΡΡ‚ΡŒ Π·Π°ΠΊΠ»Π°Π΄Π΅Π½ΠΈΡ… ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ–Π² ΠΏΠ΅Ρ€Π΅Π²Ρ–Ρ€Π΅Π½Π° ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΡ— Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— систСми

    ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ ΠΊΠΎΠΌΠΏ'ΡŽΡ‚Π΅Ρ€Π½ΠΈΡ… систСм дистанційного трСнування Π½Π° основі Π°Π½Π°Π»Ρ–Π·Ρƒ Π²Ρ–Π΄Π΅ΠΎΠΏΠΎΡ‚ΠΎΠΊΡƒ

    Get PDF
    Basic construction principles of the remote training system were investigated. Operation of the system is based on the fact that the user tries to reproduce as accurately as repetitive movements, performed by the instructor. Algorithms for body movement image processing in the video stream were chosen so that the system was accessible to a wide range of users with home webcam and midrange computer. Point kinematic model of the human body movement was developed. The characteristic points of the human body in the video stream frames are determined based on the image skeletonization. According to the video stream data, for each characteristic point, its position, velocity and acceleration are calculated. Based on these data, a matrix of kinematic parameters for training and user movements is constructed. Quantitative comparison of two matrices is carried out using the Chebyshev and cosine similarity measures of vectors. Based on a comparison of the difference measures of vectors, recommendations are given to the user for correction of his movements. A prototype of the system was implemented as a software project. System testing has shown the correctness of its construction principles. Remote training system can be used in telemedicine for the rehabilitation of patients with musculoskeletal disorders, as well as remote sports training.РассмотрСны ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ построСния систСм дистанционной Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΡƒΡ‚Π΅ΠΌ Π°Π½Π°Π»ΠΈΠ·Π° Π²ΠΈΠ΄Π΅ΠΎΠΏΠΎΡ‚ΠΎΠΊΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ выполняСт ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒ систСмы ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Ρ…Β  инструктором. БистСма базируСтся Π½Π° Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ двиТСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Для ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ кинСматичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ двиТСния: ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΈΡ… ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Ρ‹Π΅ скорости ΠΈ ускорСния. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Π° ΠΏΡƒΡ‚Π΅ΠΌΒ  ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ систСмы.Розглянуто ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ систСм дистанційного трСнування людини ΡˆΠ»ΡΡ…ΠΎΠΌ Π°Π½Π°Π»Ρ–Π·Ρƒ Π²Ρ–Π΄Π΅ΠΎΠΏΠΎΡ‚ΠΎΠΊΡƒ Ρ€ΡƒΡ…Ρ–Π², які Π²ΠΈΠΊΠΎΠ½ΡƒΡ” користувач систСми Ρ‚Π° Ρ€ΡƒΡ…Ρ–Π², Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΈΡ… інструктором. БистСма Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° Π΄Π²ΠΎΡ…Π²ΠΈΠΌΡ–Ρ€Π½Ρ–ΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠ²Ρ–ΠΉ ΠΌΠΎΠ΄Π΅Π»Ρ– Ρ€ΡƒΡ…Ρƒ людини. Для ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΎΠ±Ρ‡ΠΈΡΠ»ΡŽΡŽΡ‚ΡŒΡΡ ΠΊΡ–Π½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Ρ€ΡƒΡ…Ρƒ: ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΈΡ… Ρ‚ΠΎΡ‡ΠΎΠΊ, Ρ—Ρ… ΠΌΠΈΡ‚Ρ‚Ρ”Π²Ρ– ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Ρ‚Π° прискорСння. Π’Ρ–Ρ€Π½Ρ–ΡΡ‚ΡŒ Π·Π°ΠΊΠ»Π°Π΄Π΅Π½ΠΈΡ… ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ–Π² ΠΏΠ΅Ρ€Π΅Π²Ρ–Ρ€Π΅Π½Π° ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΡ— Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— систСми

    Recognition of human activities and expressions in video sequences using shape context descriptor

    Get PDF
    The recognition of objects and classes of objects is of importance in the field of computer vision due to its applicability in areas such as video surveillance, medical imaging and retrieval of images and videos from large databases on the Internet. Effective recognition of object classes is still a challenge in vision; hence, there is much interest to improve the rate of recognition in order to keep up with the rising demands of the fields where these techniques are being applied. This thesis investigates the recognition of activities and expressions in video sequences using a new descriptor called the spatiotemporal shape context. The shape context is a well-known algorithm that describes the shape of an object based upon the mutual distribution of points in the contour of the object; however, it falls short when the distinctive property of an object is not just its shape but also its movement across frames in a video sequence. Since actions and expressions tend to have a motion component that enhances the capability of distinguishing them, the shape based information from the shape context proves insufficient. This thesis proposes new 3D and 4D spatiotemporal shape context descriptors that incorporate into the original shape context changes in motion across frames. Results of classification of actions and expressions demonstrate that the spatiotemporal shape context is better than the original shape context at enhancing recognition of classes in the activity and expression domains
    corecore