234 research outputs found

    The Support of Integer Optimal Solutions

    Get PDF
    The support of a vector is the number of nonzero-components. We show that given an integral m×nm\times n matrix AA, the integer linear optimization problem max{cTx:Ax=b,x0,xZn}\max\left\{\boldsymbol{c}^T\boldsymbol{x} : A\boldsymbol{x} = \boldsymbol{b}, \, \boldsymbol{x}\ge\boldsymbol{0}, \,\boldsymbol{x}\in\mathbb{Z}^n\right\} has an optimal solution whose support is bounded by 2mlog(2mA)2m \, \log (2 \sqrt{m} \| A \|_\infty), where A \| A \|_\infty is the largest absolute value of an entry of AA. Compared to previous bounds, the one presented here is independent on the objective function. We furthermore provide a nearly matching asymptotic lower bound on the support of optimal solutions

    Fusion of Head and Full-Body Detectors for Multi-Object Tracking

    Full text link
    In order to track all persons in a scene, the tracking-by-detection paradigm has proven to be a very effective approach. Yet, relying solely on a single detector is also a major limitation, as useful image information might be ignored. Consequently, this work demonstrates how to fuse two detectors into a tracking system. To obtain the trajectories, we propose to formulate tracking as a weighted graph labeling problem, resulting in a binary quadratic program. As such problems are NP-hard, the solution can only be approximated. Based on the Frank-Wolfe algorithm, we present a new solver that is crucial to handle such difficult problems. Evaluation on pedestrian tracking is provided for multiple scenarios, showing superior results over single detector tracking and standard QP-solvers. Finally, our tracker ranks 2nd on the MOT16 benchmark and 1st on the new MOT17 benchmark, outperforming over 90 trackers.Comment: 10 pages, 4 figures; Winner of the MOT17 challenge; CVPRW 201

    Scheduling Kernels via Configuration LP

    Get PDF
    Makespan minimization (on parallel identical or unrelated machines) is arguably the most natural and studied scheduling problem. A common approach in practical algorithm design is to reduce the size of a given instance by a fast preprocessing step while being able to recover key information even after this reduction. This notion is formally studied as kernelization (or simply, kernel) - a polynomial time procedure which yields an equivalent instance whose size is bounded in terms of some given parameter. It follows from known results that makespan minimization parameterized by the longest job processing time p_max has a kernelization yielding a reduced instance whose size is exponential in p_max. Can this be reduced to polynomial in p_max? We answer this affirmatively not only for makespan minimization, but also for the (more complicated) objective of minimizing the weighted sum of completion times, also in the setting of unrelated machines when the number of machine kinds is a parameter. Our algorithm first solves the Configuration LP and based on its solution constructs a solution of an intermediate problem, called huge N-fold integer programming. This solution is further reduced in size by a series of steps, until its encoding length is polynomial in the parameters. Then, we show that huge N-fold IP is in NP, which implies that there is a polynomial reduction back to our scheduling problem, yielding a kernel. Our technique is highly novel in the context of kernelization, and our structural theorem about the Configuration LP is of independent interest. Moreover, we show a polynomial kernel for huge N-fold IP conditional on whether the so-called separation subproblem can be solved in polynomial time. Considering that integer programming does not admit polynomial kernels except for quite restricted cases, our "conditional kernel" provides new insight

    Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm

    Full text link
    We study the fixed-support Wasserstein barycenter problem (FS-WBP), which consists in computing the Wasserstein barycenter of mm discrete probability measures supported on a finite metric space of size nn. We show first that the constraint matrix arising from the standard linear programming (LP) representation of the FS-WBP is \textit{not totally unimodular} when m3m \geq 3 and n3n \geq 3. This result resolves an open question pertaining to the relationship between the FS-WBP and the minimum-cost flow (MCF) problem since it proves that the FS-WBP in the standard LP form is not an MCF problem when m3m \geq 3 and n3n \geq 3. We also develop a provably fast \textit{deterministic} variant of the celebrated iterative Bregman projection (IBP) algorithm, named \textsc{FastIBP}, with a complexity bound of O~(mn7/3ε4/3)\tilde{O}(mn^{7/3}\varepsilon^{-4/3}), where ε(0,1)\varepsilon \in (0, 1) is the desired tolerance. This complexity bound is better than the best known complexity bound of O~(mn2ε2)\tilde{O}(mn^2\varepsilon^{-2}) for the IBP algorithm in terms of ε\varepsilon, and that of O~(mn5/2ε1)\tilde{O}(mn^{5/2}\varepsilon^{-1}) from accelerated alternating minimization algorithm or accelerated primal-dual adaptive gradient algorithm in terms of nn. Finally, we conduct extensive experiments with both synthetic data and real images and demonstrate the favorable performance of the \textsc{FastIBP} algorithm in practice.Comment: Accepted by NeurIPS 2020; fix some confusing parts in the proof and improve the empirical evaluatio

    Near-Linear Time Algorithm for n-fold ILPs via Color Coding

    Get PDF
    We study an important case of ILPs max {c^Tx | Ax = b, l <= x <= u, x in Z^{n t}} with n * t variables and lower and upper bounds l, u in Z^{nt}. In n-fold ILPs non-zero entries only appear in the first r rows of the matrix A and in small blocks of size s x t along the diagonal underneath. Despite this restriction many optimization problems can be expressed in this form. It is known that n-fold ILPs can be solved in FPT time regarding the parameters s, r, and Delta, where Delta is the greatest absolute value of an entry in A. The state-of-the-art technique is a local search algorithm that subsequently moves in an improving direction. Both, the number of iterations and the search for such an improving direction take time Omega(n), leading to a quadratic running time in n. We introduce a technique based on Color Coding, which allows us to compute these improving directions in logarithmic time after a single initialization step. This leads to the first algorithm for n-fold ILPs with a running time that is near-linear in the number nt of variables, namely (rs Delta)^{O(r^2s + s^2)} L^2 * nt log^{O(1)}(nt), where L is the encoding length of the largest integer in the input. In contrast to the algorithms in recent literature, we do not need to solve the LP relaxation in order to handle unbounded variables. Instead, we give a structural lemma to introduce appropriate bounds. If, on the other hand, we are given such an LP solution, the running time can be decreased by a factor of L

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations
    corecore