2,382,244 research outputs found

    Sensitivity-based multistep MPC for embedded systems

    Get PDF
    In model predictive control (MPC), an optimization problem is solved every sampling instant to determine an optimal control for a physical system. We aim to accelerate this procedure for fast systems applications and address the challenge of implementing the resulting MPC scheme on an embedded system with limited computing power. We present the sensitivity-based multistep MPC, a strategy which considerably reduces the computing requirements in terms of floating point operations (FLOPs), compared to a standard MPC formulation, while fulfilling closed- loop performance expectations. We illustrate by applying the method to a DC-DC converter model and show how a designer can optimally trade off closed-loop performance considerations with computing requirements in order to fit the controller into a resource-constrained embedded system

    Survey of timing/synchronization of operating wideband digital communications networks

    Get PDF
    In order to benefit from experience gained from the synchronization of operational wideband digital networks, a survey was made of three such systems: Data Transmission Company, Western Union Telegraph Company, and the Computer Communications Group of the Trans-Canada Telephone System. The focus of the survey was on deployment and operational experience from a practical (as opposed to theoretical) viewpoint. The objective was to provide a report on the results of deployment how the systems performed, and wherein the performance differed from that predicted or intended in the design. It also attempted to determine how the various system designers would use the benefit of hindsight if they could design those same systems today

    Estimating the system order by subspace methods

    Get PDF
    This paper discusses how to determine the order of a state-space model. To do so, we start by revising existing approaches and find in them three basic shortcomings: i) some of them have a poor performance in short samples, ii) most of them are not robust and iii) none of them can accommodate seasonality. We tackle the first two issues by proposing new and refined criteria. The third issue is dealt with by decomposing the system into regular and seasonal sub-systems. The performance of all the procedures considered is analyzed through Monte Carlo simulations

    Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    Get PDF
    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor

    Geometric verification

    Get PDF
    Present LANDSAT data formats are reviewed to clarify how the geodetic location and registration capabilities were defined for P-tape products and RBV data. Since there is only one geometric model used in the master data processor, geometric location accuracy of P-tape products depends on the absolute accuracy of the model and registration accuracy is determined by the stability of the model. Due primarily to inaccuracies in data provided by the LANDSAT attitude management system, desired accuracies are obtained only by using ground control points and a correlation process. The verification of system performance with regards to geodetic location requires the capability to determine pixel positions of map points in a P-tape array. Verification of registration performance requires the capability to determine pixel positions of common points (not necessarily map points) in 2 or more P-tape arrays for a given world reference system scene. Techniques for registration verification can be more varied and automated since map data are not required. The verification of LACIE extractions is used as an example

    Applying Mean-field Approximation to Continuous Time Markov Chains

    Get PDF
    The mean-field analysis technique is used to perform analysis of a systems with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found the mean-field method useful for modelling large-scale computer and communication networks. Applying mean-field analysis from the computer science perspective requires the following major steps: (1) describing how the agents populations evolve by means of a system of differential equations, (2) finding the emergent deterministic behaviour of the system by solving such differential equations, and (3) analysing properties of this behaviour either by relying on simulation or by using logics. Depending on the system under analysis, performing these steps may become challenging. Often, modifications of the general idea are needed. In this tutorial we consider illustrating examples to discuss how the mean-field method is used in different application areas. Starting from the application of the classical technique, moving to cases where additional steps have to be used, such as systems with local communication. Finally we illustrate the application of the simulation and uid model checking analysis techniques
    • …
    corecore