39,925 research outputs found

    Shuffling with a Croupier: Nat-Aware Peer-Sampling

    Get PDF
    Despite much recent research on peer-to-peer (P2P) protocols for the Internet, there have been relatively few practical protocols designed to explicitly account for Network Address Translation gateways (NATs). Those P2P protocols that do handle NATs circumvent them using relaying and hole-punching techniques to route packets to nodes residing behind NATs. In this paper, we present Croupier, a peer sampling service (PSS) that provides uniform random samples of nodes in the presence of NATs in the network. It is the first NAT-aware PSS that works without the use of relaying or hole-punching. By removing the need for relaying and hole-punching, we decrease the complexity and overhead of our protocol as well as increase its robustness to churn and failure. We evaluated Croupier in simulation, and, in comparison with existing NAT-aware PSS’, our results show similar randomness properties, but improved robustness in the presence of both high percentages of nodes behind NATs and massive node failures. Croupier also has substantially lower protocol overhead

    A Cost-based Optimizer for Gradient Descent Optimization

    Full text link
    As the use of machine learning (ML) permeates into diverse application domains, there is an urgent need to support a declarative framework for ML. Ideally, a user will specify an ML task in a high-level and easy-to-use language and the framework will invoke the appropriate algorithms and system configurations to execute it. An important observation towards designing such a framework is that many ML tasks can be expressed as mathematical optimization problems, which take a specific form. Furthermore, these optimization problems can be efficiently solved using variations of the gradient descent (GD) algorithm. Thus, to decouple a user specification of an ML task from its execution, a key component is a GD optimizer. We propose a cost-based GD optimizer that selects the best GD plan for a given ML task. To build our optimizer, we introduce a set of abstract operators for expressing GD algorithms and propose a novel approach to estimate the number of iterations a GD algorithm requires to converge. Extensive experiments on real and synthetic datasets show that our optimizer not only chooses the best GD plan but also allows for optimizations that achieve orders of magnitude performance speed-up.Comment: Accepted at SIGMOD 201

    Gozar: NAT-friendly Peer Sampling with One-Hop Distributed NAT Traversal

    Get PDF
    Gossip-based peer sampling protocols have been widely used as a building block for many large-scale distributed applications. However, Network Address Translation gateways (NATs) cause most existing gossiping protocols to break down, as nodes cannot establish direct connections to nodes behind NATs (private nodes). In addition, most of the existing NAT traversal algorithms for establishing connectivity to private nodes rely on third party servers running at a well-known, public IP addresses. In this paper, we present Gozar, a gossip-based peer sampling service that: (i) provides uniform random samples in the presence of NATs, and (ii) enables direct connectivity to sampled nodes using a fully distributed NAT traversal service, where connection messages require only a single hop to connect to private nodes. We show in simulation that Gozar preserves the randomness properties of a gossip-based peer sampling service. We show the robustness of Gozar when a large fraction of nodes reside behind NATs and also in catastrophic failure scenarios. For example, if 80% of nodes are behind NATs, and 80% of the nodes fail, more than 92% of the remaining nodes stay connected. In addition, we compare Gozar with existing NAT-friendly gossip-based peer sampling services, Nylon and ARRG. We show that Gozar is the only system that supports one-hop NAT traversal, and its overhead is roughly half of Nylon’s

    Prochlo: Strong Privacy for Analytics in the Crowd

    Full text link
    The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. (cont.; see the paper

    Lattice-Based proof of a shuffle

    Get PDF
    In this paper we present the first fully post-quantum proof of a shuffle for RLWE encryption schemes. Shuffles are commonly used to construct mixing networks (mix-nets), a key element to ensure anonymity in many applications such as electronic voting systems. They should preserve anonymity even against an attack using quantum computers in order to guarantee long-term privacy. The proof presented in this paper is built over RLWE commitments which are perfectly binding and computationally hiding under the RLWE assumption, thus achieving security in a post-quantum scenario. Furthermore we provide a new definition for a secure mixing node (mix-node) and prove that our construction satisfies this definition.Peer ReviewedPostprint (author's final draft
    corecore