12,308 research outputs found

    Cake Division with Minimal Cuts: Envy-Free Procedures for 3 Person, 4 Persons, and Beyond

    Get PDF
    The minimal number of parallel cuts required to divide a cake into n pieces is n-1. A new 3-person procedure, requiring 2 parallel cuts, is given that produces an envy- free division, whereby each person thinks he or she receives at least a tied- for- largest piece. An extension of this procedure leads to a 4-person division, us ing 3 parallel cuts, that makes at most one player envious. Finally, a 4-person envy-free procedure is given, but it requires up to 5 parallel cuts, and some pieces may be disconnected. All these procedures improve on extant procedures by using fewer moving knives, making fewer people envious, or using fewer cuts. While the 4-person, 5-cut procedure is complex, endowing people with more information about others' preferences, or allowing them to do things beyond stopping moving knives, may yield simpler procedures for making envy- free divisions with minimal cuts, which are known always to existFAIR DIVISION; CAKE CUTTING; ENVY-FREENESS; MAXIMIN

    Efficient Algorithms for Envy-Free Stick Division With Fewest Cuts

    Get PDF
    Given a set of n sticks of various (not necessarily different) lengths, what is the largest length so that we can cut k equally long pieces of this length from the given set of sticks? We analyze the structure of this problem and show that it essentially reduces to a single call of a selection algorithm; we thus obtain an optimal linear-time algorithm. This algorithm also solves the related envy-free stick-division problem, which Segal-Halevi, Hassidim, and Aumann (AAMAS, 2015) recently used as their central primitive operation for the first discrete and bounded envy-free cake cutting protocol with a proportionality guarantee when pieces can be put to waste.Comment: v3 adds more context about the proble

    Divide-and-conquer: A proportional, minimal-envy cake-cutting algorithm

    Get PDF
    We analyze a class of proportional cake-cutting algorithms that use a minimal number of cuts (n-1 if there are n players) to divide a cake that the players value along one dimension. While these algorithms may not produce an envy-free or efficient allocation--as these terms are used in the fair-division literature--one, divide-and-conquer (D&C), minimizes the maximum number of players that any single player can envy. It works by asking n ≥ 2 players successively to place marks on a cake--valued along a line--that divide it into equal halves (when n is even) or nearly equal halves (when n is odd), then halves of these halves, and so on. Among other properties, D&C ensures players of at least 1/n shares, as they each value the cake, if and only if they are truthful. However, D&C may not allow players to obtain proportional, connected pieces if they have unequal entitlements. Possible applications of D&C to land division are briefly discussed.mechanism design; fair division; divisible good; cake-cutting; divide-and-choose

    A Cryptographic Moving-Knife Cake-Cutting Protocol

    Full text link
    This paper proposes a cake-cutting protocol using cryptography when the cake is a heterogeneous good that is represented by an interval on a real line. Although the Dubins-Spanier moving-knife protocol with one knife achieves simple fairness, all players must execute the protocol synchronously. Thus, the protocol cannot be executed on asynchronous networks such as the Internet. We show that the moving-knife protocol can be executed asynchronously by a discrete protocol using a secure auction protocol. The number of cuts is n-1 where n is the number of players, which is the minimum.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    A Discrete and Bounded Envy-free Cake Cutting Protocol for Four Agents

    Full text link
    We consider the well-studied cake cutting problem in which the goal is to identify a fair allocation based on a minimal number of queries from the agents. The problem has attracted considerable attention within various branches of computer science, mathematics, and economics. Although, the elegant Selfridge-Conway envy-free protocol for three agents has been known since 1960, it has been a major open problem for the last fifty years to obtain a bounded envy-free protocol for more than three agents. We propose a discrete and bounded envy-free protocol for four agents

    Communication Complexity of Cake Cutting

    Full text link
    We study classic cake-cutting problems, but in discrete models rather than using infinite-precision real values, specifically, focusing on their communication complexity. Using general discrete simulations of classical infinite-precision protocols (Robertson-Webb and moving-knife), we roughly partition the various fair-allocation problems into 3 classes: "easy" (constant number of rounds of logarithmic many bits), "medium" (poly-logarithmic total communication), and "hard". Our main technical result concerns two of the "medium" problems (perfect allocation for 2 players and equitable allocation for any number of players) which we prove are not in the "easy" class. Our main open problem is to separate the "hard" from the "medium" classes.Comment: Added efficient communication protocol for the monotone crossing proble
    • …
    corecore