5,664 research outputs found

    Scheduling for today’s computer systems: bridging theory and practice

    Get PDF
    Scheduling is a fundamental technique for improving performance in computer systems. From web servers to routers to operating systems, how the bottleneck device is scheduled has an enormous impact on the performance of the system as a whole. Given the immense literature studying scheduling, it is easy to think that we already understand enough about scheduling. But, modern computer system designs have highlighted a number of disconnects between traditional analytic results and the needs of system designers. In particular, the idealized policies, metrics, and models used by analytic researchers do not match the policies, metrics, and scenarios that appear in real systems. The goal of this thesis is to take a step towards modernizing the theory of scheduling in order to provide results that apply to today’s computer systems, and thus ease the burden on system designers. To accomplish this goal, we provide new results that help to bridge each of the disconnects mentioned above. We will move beyond the study of idealized policies by introducing a new analytic framework where the focus is on scheduling heuristics and techniques rather than individual policies. By moving beyond the study of individual policies, our results apply to the complex hybrid policies that are often used in practice. For example, our results enable designers to understand how the policies that favor small job sizes are affected by the fact that real systems only have estimates of job sizes. In addition, we move beyond the study of mean response time and provide results characterizing the distribution of response time and the fairness of scheduling policies. These results allow us to understand how scheduling affects QoS guarantees and whether favoring small job sizes results in large job sizes being treated unfairly. Finally, we move beyond the simplified models traditionally used in scheduling research and provide results characterizing the effectiveness of scheduling in multiserver systems and when users are interactive. These results allow us to answer questions about the how to design multiserver systems and how to choose a workload generator when evaluating new scheduling designs

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Socially Aware V2X Localized QoS

    Full text link
    Vehicle-to-everything (V2X) is a core 5G technology. V2X and its enabler, Device-to-Device (D2D), are essential for the Internet of Things (IoT) and the Internet of Vehicles (IoV). V2X enables vehicles to communicate with other vehicles (V2V), networks (V2N), and infrastructure (V2I). While V2X enables ubiquitous vehicular connectivity, the impact of bursty data on the network's overall Quality of Service (QoS), such as when a vehicle accident occurs, is often ignored. In this work, we study both 4G and 5G V2X utilizing Evolved Universal Terrestrial Radio Access New Radio (E-UTRA-NR) and propose the use of socially aware 5G NR Dual Connectivity (en-DC) for traffic differentiation. We also propose localized QoS, wherein high-priority QoS flows traverse 5G road side units (RSUs) and normal-priority QoS flows traverse 4G Base Station (BS). We formulate a max-min fair QoS-aware Non-Orthogonal Multiple Access (NOMA) resource allocation scheme, QoS reclassify. QoS reclassify enables localized QoS and traffic steering to mitigate bursty network traffic's impact on the network's overall QoS. We then solve QoS reclassify via Integer Linear Programming (ILP) and derive its approximation. We demonstrate that both optimal and approximation QoS reclassify resource allocation schemes in our socially aware QoS management methodology outperform socially unaware legacy 4G V2X algorithms (no localized QoS support, no traffic steering) and socially aware 5G V2X (no localized QoS support, yet utilizes traffic steering). Our proposed QoS reclassify scheme's QoS flow end-to-end latency requires only  15%\approx~15\% of the time legacy 4G V2X requires.Comment: This work has been submitted to IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Under review by IEEE Internet of Things journa

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Enabling heterogeneous network function chaining

    Get PDF
    Today's data center operators deploy network policies in both physical (e.g., middleboxes, switches) and virtualized (e.g., virtual machines on general purpose servers) network function boxes (NFBs), which reside in different points of the network, to exploit their efficiency and agility respectively. Nevertheless, such heterogeneity has resulted in a great number of independent network nodes that can dynamically generate and implement inconsistent and conflicting network policies, making correct policy implementation a difficult problem to solve. Since these nodes have varying capabilities, services running atop are also faced with profound performance unpredictability. In this paper, we propose a Heterogeneous netwOrk Policy Enforcement (HOPE) scheme to overcome these challenges. HOPE guarantees that network functions (NFs) that implement a policy chain are optimally placed onto heterogeneous NFBs such that the network cost of the policy is minimized. We first experimentally demonstrate that the processing capacity of NFBs is the dominant performance factor. This observation is then used to formulate the Heterogeneous Network Policy Placement problem, which is shown to be NP-Hard. To solve the problem efficiently, an online algorithm is proposed. Our experimental results demonstrate that HOPE achieves the same optimality as Branch-and-bound optimization but is 3 orders of magnitude more efficient
    corecore