6 research outputs found

    Evolving Generalised Maze Solvers

    Get PDF
    This paper presents a study of the efficacy of comparative controller design methods that aim to produce generalised problem solving behaviours. In this case study, the goal was to use neuro-evolution to evolve generalised maze solving behaviours. That is, evolved robot controllers that solve a broad range of mazes. To address this goal, this study compares objective, non-objective and hybrid approaches to direct the search of a neuro-evolution controller design method. The objective based approach was a fitness function, the non-objective based approach was novelty search, and the hybrid approach was a combination of both. Results indicate that, compared to the fitness function, the hybrid and novelty search evolve significantly more maze solving behaviours that generalise to larger and more difficult maze sets. Thus this research provides empirical evidence supporting novelty and hybrid novelty-objective search as approaches for potentially evolving generalised problem solvers

    How Evolvable in Novelty Search?

    Get PDF
    This research compares the efficacy of novelty versus objective based search for producing evolvable populations in the maze solving task. Populations of maze solving simulated robot controllers were evolved to solve a variety of different, relatively easy, mazes. This evolution took place using either novelty or objective-based search. Once a solution was found, the simulation environment was changed to one of a variety of more complex mazes. Here the population was evolved to find a solution to the new maze, once again with either novelty or objective based search. It was found that, regardless of whether the search in the second maze was directed by novelty or fitness, populations that had been evolved under a fitness paradigm in the first maze were more likely to find a solution to the second. These results suggest that populations of controllers adapted under novelty search are less evolvable compared to objective based search in the maze solving task

    Evolvability-guided Optimization of Linear Deformation Setups for Evolutionary Design Optimization

    Get PDF
    Richter A. Evolvability-guided Optimization of Linear Deformation Setups for Evolutionary Design Optimization. Bielefeld: Universität Bielefeld; 2019.Andreas Richter gratefully acknowledges the financial support from Honda Research Institute Europe (HRI-EU).This thesis targets efficient solutions for optimal representation setups for evolutionary design optimization problems. The representation maps the abstract parameters of an optimizer to a meaningful variation of the design model, e.g., the shape of a car. Thereby, it determines the convergence speed to and the quality of the final result. Thus, engineers are eager to employ well-tuned representations to achieve high-quality design solutions. But, setting up optimal representations is a cumbersome process because the setup procedure requires detailed knowledge about the objective functions, e.g., a fluid dynamics simulation, and the parameters of the employed representation itself. Thus, we target efficient routines to set up representations automatically to support engineers from their tedious, partly manual work. Inspired by the concept of evolvability, we present novel quality criteria for the evaluation of linear deformations commonly applied as representations. We define and analyze the criteria variability, regularity, and improvement potential which measure the expected quality and convergence speed of an evolutionary design optimization process based on the linear deformation setup. Moreover, we target the efficient optimization of deformation setups with respect to these three criteria. In dynamic design optimization scenarios a suitable compromise between exploration and exploitation is crucial for efficient solutions. We discuss the construction of optimal compromises for these dynamic scenarios with our criteria because they characterize exploration and exploitation. As a result an engineer can initialize and adjust the deformation setup for improved convergence speed of a design process and for enhanced quality of the design solutions with our methods

    Evolvability-guided Optimization of Linear Deformation Setups for Evolutionary Design Optimization

    Get PDF
    Richter A. Evolvability-guided Optimization of Linear Deformation Setups for Evolutionary Design Optimization. Bielefeld: Universität Bielefeld; 2019.Andreas Richter gratefully acknowledges the financial support from Honda Research Institute Europe (HRI-EU).This thesis targets efficient solutions for optimal representation setups for evolutionary design optimization problems. The representation maps the abstract parameters of an optimizer to a meaningful variation of the design model, e.g., the shape of a car. Thereby, it determines the convergence speed to and the quality of the final result. Thus, engineers are eager to employ well-tuned representations to achieve high-quality design solutions. But, setting up optimal representations is a cumbersome process because the setup procedure requires detailed knowledge about the objective functions, e.g., a fluid dynamics simulation, and the parameters of the employed representation itself. Thus, we target efficient routines to set up representations automatically to support engineers from their tedious, partly manual work. Inspired by the concept of evolvability, we present novel quality criteria for the evaluation of linear deformations commonly applied as representations. We define and analyze the criteria variability, regularity, and improvement potential which measure the expected quality and convergence speed of an evolutionary design optimization process based on the linear deformation setup. Moreover, we target the efficient optimization of deformation setups with respect to these three criteria. In dynamic design optimization scenarios a suitable compromise between exploration and exploitation is crucial for efficient solutions. We discuss the construction of optimal compromises for these dynamic scenarios with our criteria because they characterize exploration and exploitation. As a result an engineer can initialize and adjust the deformation setup for improved convergence speed of a design process and for enhanced quality of the design solutions with our methods

    How evolvable is novelty search?

    No full text
    corecore