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Abstract

This thesis targets efficient solutions for optimal representation setups for evolutionary design
optimization problems. The representation maps the abstract parameters of an optimizer to a
meaningful variation of the design model, e.g., the shape of a car. Thereby, it determines the
convergence speed to and the quality of the final result. Thus, engineers are eager to employ
well-tuned representations to achieve high-quality design solutions. But, setting up optimal
representations is a cumbersome process because the setup procedure requires detailed knowl-
edge about the objective functions, e.g., a fluid dynamics simulation, and the parameters of
the employed representation itself. Thus, we target efficient routines to set up representations
automatically to support engineers from their tedious, partly manual work.

Inspired by the concept of evolvability, we present novel quality criteria for the evaluation of
linear deformations commonly applied as representations. We define and analyze the criteria
variability, regularity, and improvement potential which measure the expected quality and con-
vergence speed of an evolutionary design optimization process based on the linear deformation
setup. Moreover, we target the efficient optimization of deformation setups with respect to these
three criteria. In dynamic design optimization scenarios a suitable compromise between explo-
ration and exploitation is crucial for efficient solutions. We discuss the construction of optimal
compromises for these dynamic scenarios with our criteria because they characterize exploration
and exploitation.

As a result an engineer can initialize and adjust the deformation setup for improved convergence
speed of a design process and for enhanced quality of the design solutions with our methods.
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BFGS Gradient-based Broyden–Fletcher–Goldfarb–Shanno al-
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sorting genetic algorithm - II.
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RBF Deformation with radial basis function.
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Genotype Parameter space of an evolutionary algorithm.

Improvement potential Our mathematical criterion to measure how a representa-
tion exploits given information.

Phenotype The space of objects, e.g., designs, corresponding to cer-
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Regularity Our mathematical criterion to measure the convergence
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Representation Mapping from genotype to phenotype, i.e., linear defor-
mation which maps parameter variation to design varia-
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1 Introduction

The increasing complexity in modern industrial design processes requires advanced optimiza-
tion methods to come up with novel and high-quality solutions for successful business. For
example in automotive product design concurrent development processes are applied to deal
with different requirements, e.g., in physical domains such as aerodynamic or structural per-
formance criteria, manufacturing process layout, or according to design features specified by
current customer demands. Moreover, these requirements change over time and thus, an effi-
cient development process needs to allow a high degree of flexibility to cope with these dynamic
environments.

For the dynamically changing and highly interacting requirements of an industrial design pro-
cess we are looking for alternatives to the classical engineering paradigms, which can only
be applied for limited success [MBBY06]. These paradigms focus on specific, independent
sub-problems only, for instance optimization of representation parameters, modeling of quality
criteria, or the choice of the optimization routine. Moreover, classical engineering approaches
don’t focus on solutions for dynamically changing environments. In contrast, the concept of
complex system engineering suggests to consider relevant features simultaneously because they
are strongly linked and they interact with each other. Furthermore, complex system engineering
offers concepts to handle changing environments.

Biologically-inspired population-based evolutionary optimization algorithms are recommended
for complex systems [MBBY06]. They are robust to local optima, constraints or fitness criteria,
can easily be switched, and these criteria can be considered simultaneously. Thus evolutionary
algorithms are our preferred choice.

There are several possibilities to tune an evolutionary design optimization process. The most
common approach targets the configuration of the applied algorithms by, e.g., employing ef-
ficient mutation and selection operators or creating new algorithmic concepts. Other attempts
target the fitness models by replacing highly expensive models with surrogates which are easier
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1 Introduction

to evaluate. But, as pointed out by many researchers (e.g., [ITN10, ČLM13]), the representation
is a core factor for success in evolutionary optimization algorithms because it defines the design
space and how fast an optimizer can search it. Thus, designers are eager to employ efficient rep-
resentations for these biologically-inspired methods. This motivates our research on concepts
and approaches to improve representations and thereby improve the performance of evolutionary
design optimization.

The representation defines the mapping from the genotype space to the phenotype space in the
evolutionary context. Commonly employed representations for design optimization are linear
deformation methods, which map abstract model parameters (as the genotype) to meaningful
design variation (as the phenotype). Motivated by the successful application of linear defor-
mations with radial basis functions (RBFs) or free-form deformation (FFD), e.g., for car, train,
or airplane optimization scenarios [SMB12, MOS06, CBG+14, ZYSD16], we employ mainly
these methods as representations. In case of RBFs the parameters, which define the genotype–
phenotype mapping, are the location of centers and the choice of radial symmetric kernels. The
parameters of the FFD representation are a control grid and chosen spline basis functions. Be-
cause RBFs and FFD are linear, we express the deformation with a deformation matrix, which
encodes the information about the control points (centers or grid) and basis functions (kernels
or splines).

In a design optimization cycle the model or optimization parameters, e.g., weights of RBFs or
displacements of FFD grids, are optimized for improving the quality of the designs, which is
not our focus of research. We target an optimal deformation setup. This consists of choosing
an optimal distribution of control points and employing optimal basis functions. Moreover, we
target optimal numerical properties of the deformation matrix as a third objective.

The construction of optimal deformation setups/matrices requires suitable quality criteria. The
meta-attribute evolvability is motivated by complex system engineering [MBBY06]. Keeping
the system’s evolvability high throughout an optimization cycle on the one hand ensures the
adaptation to changing conditions and on the other hand promotes specialization, if needed.

Thus, we employ the concept of evolvability for the evaluation and optimization of deformation
setups in evolutionary design optimization like [Men11, LM12]. In Figure 1.1 we sketch a de-
sign process utilizing evolvability for an improved automotive design optimization. Based on
a car model and information about the current fitness environment (colored roof), the deforma-
tion (the center distribution of a RBF deformation operator in this example) is set up for high
evolvability. Afterwards, the design is optimized with an optimal setup resulting in superior
performance of the design optimization compared to setups of lower quality. During the de-
sign optimization information about the possibly changing fitness environment are extracted to
adapt the representation, if needed. With an improved deformation setup the design optimization
continues leading to high performance during the whole design process. Note that lower ranked
deformation setups for current fitness information might become superior later on if, e.g., a dras-
tic change of the fitness occurs. For example if the general shape of the car has to be modified
instead of the roof then the second setup in Figure 1.1 would be more promising.
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Figure 1.1: Overview of a (automotive) design process. The deformation setup (the centers
of a RBF deformation, red dots) is optimized for high evolvability according to given fitness
information (colored roof) before the design optimization is started. Employing setups with
lower evolvability would result in lower performance of the design optimization. During the
design optimization stage information about the possibly changing fitness environment is ex-
tracted, which can be utilized for the adaptation of the deformation setup. This would lead to an
alternating procedure switching between optimization/adaptation of the deformation setup and
design optimization.

The optimization of deformation setups for an enhanced (dynamic) design process requires the
solution of two major tasks, which are the main contributions of this thesis:

(1) The suitable definition of evolvability for linear deformations.

(2) The optimization of linear deformation setups for (dynamic) design optimization.
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Definition of
Evolvability Criteria
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Figure 1.2: Workflow of this thesis.

In essence we proceed as shown in Figure 1.2. First, we define quality criteria for linear de-
formations based on the concept of evolvability. These criteria characterize exploratory and
exploitative capabilities as well as numerical properties of the deformation setup. Then we show
that the quality criteria indeed estimate the performance of the deformation setups. They char-
acterize the expected quality of solutions as well as the convergence speed of their optimization.
Afterwards, we conduct and propose solutions for a Pareto optimization targeting optimal RBF
center distributions, which trade off between exploration and exploitation. Based on this op-
timization of compromise setups we analyze which optimal compromise should be chosen for
different dynamic design optimization scenarios. And finally, we optimize numerical properties
of the deformation setup.

Another, but minor contribution of this thesis is the comparison between the employed RBF and
FFD representations in particular with respect to their evolvability scores to support engineers
and designers in the process of choosing between the RBF and FFD methods.

We published our research on evolvability for evolutionary design optimization at major evo-
lutionary conferences, the congress on evolutionary computation (CEC) and the genetic and
evolutionary computation conference (GECCO), and the more specialized evolutionary multi-
objective optimization conference (EMO):

• Andreas Richter, Mario Botsch, and Stefan Menzel. Evolvability of representations in
complex system engineering: a survey. In Proceedings of IEEE Congress on Evolutionary
Computation, pages 1327–1335, 2015
• Andreas Richter, Jascha Achenbach, Stefan Menzel, and Mario Botsch. Evolvability as

a quality criterion for linear deformation representations in evolutionary optimization. In
Proceedings of IEEE Congress on Evolutionary Computation, pages 901–910, 2016
• Andreas Richter, Jascha Achenbach, Stefan Menzel, and Mario Botsch. Multi-objective

representation setups for deformation-based design optimization. In Proceedings of 9th
International Conference on Evolutionary Multi-Criterion Optimization, pages 514–528,
2017
• Andreas Richter, Stefan Menzel, and Mario Botsch. Preference-guided adaptation of de-

formation representations for evolutionary design optimization. In Proceedings of IEEE
Congress on Evolutionary Computation, pages 2110–2119, 2017
• Andreas Richter, Stefan Dresselhaus, Stefan Menzel, and Mario Botsch. Orthogonaliza-

tion of linear representations for efficient evolutionary design optimization. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 1356–1363, 2018

The second paper [RAMB16] is runner-up for the best student paper award at the CEC 2016.
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The remainder of this thesis is structured as follows. In Chapter 2, we start with the discussion
of our employed evolutionary framework for design optimization. Moreover, we present the
concepts behind the prominent linear deformation methods RBF, FFD, and shell deformation,
as examples of linear deformation representations, which we employ for our analysis. This
chapter guides us to a general notation for the linear deformation operator, that is expressed as a
deformation matrix.

Motivated by the concept of complex system engineering we continue with the discussion of the
concept of evolvability, its biological motivations, and already existing (mathematical) realiza-
tions in Chapter 3. Moreover, we discuss links to the well-known concepts of exploration and
exploitation. Our conclusion is a three-staged approach consisting of the aspects, variability,
regularity, and improvement potential. These three criteria are necessary in order to model a
comprehensive realization of evolvability.

We transform the concept of evolvability for deformation matrices as our representations in Chap-
ter 4. We propose easy-to-evaluate mathematical models for variability, regularity, and improve-
ment potential. These criteria quantify the expected convergence speed of an evolutionary opti-
mization and the quality of its results.

The evaluation of two test scenarios, 1D function approximation and 3D template fitting, in Chap-
ter 5 shows that these criteria are indeed suitable to measure the expected performance of a de-
sign optimization by evaluation of the deformation setup. This enables an optimization of the
deformation setup for performance improvement.

The discovered conflicting nature among the criteria regularity and improvement potential that
is closely related to the conflict between exploration and exploitation, emphasizes the construc-
tion of Pareto optimal setups. Because we motivate RBF deformations as the methods of our
choice, we analyze the optimization of the RBF center distribution in Chapter 6. We conduct and
compare a multi-objective optimization with a weighted single-objective optimization for Pareto
optimal solutions and evaluate the quality of the efficient heuristic, Lloyd and orthogonal least
squares sampling, as well as a deterministic gradient-based approach. Our approach of com-
bining the two heuristics results in enhanced algorithms for the construction of optimal center
distributions with respect to a chosen preference between regularity and improvement potential.

In Chapter 7, we target the optimal choice among the previously constructed compromises for
dynamic environments. The common assumption to focus on exploration for a strong change
in the environment and to employ exploitation for static dynamics is supported by our results.
We will show that a 50-50 focus between exploration and exploitation works well for noisy or
imprecise information.

In the last part of the thesis, we review our work, especially the definition of regularity and vari-
ability in Chapter 8. We propose an orthogonalization approach to tune any deformation setups
for optimal regularity and thereby for optimal convergence speed. We discuss the previously
drawn connection to exploration (of Chapter 6). And we propose an alternative definition for
variability, which is better suited to characterize exploratory capabilities than the previously pro-
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1 Introduction

posed variability measure. The results of the previously conducted preference analyses are still
valid for the new variability definition which we show in additional tests.

Finally, we summarize our findings and look at future research towards evolvability-optimal
deformations in Chapter 9. In essence, we support a designer or engineer with enhanced methods
to optimize linear deformation setups and thereby improve the performance of an evolutionary
design optimization process. Only little information has to be provided by users to apply our
automatic approaches in a black-box manner for, e.g, optimal RBF deformation setups.

6



2 Linear Deformations in
Evolutionary Design Optimization

Biologically-inspired evolutionary optimization routines [BFM00, MS08, Wei09] are commonly
applied for real-world design optimization problems like the optimization of turbine blades or
wings [MOS05, LSN15, KG15], car or train models [SMB12, ZYSD16]. Evolutionary algo-
rithms offer the required robustness and flexibility to handle noise and varying objectives (called
fitness functions). Hence, in our application, automotive shape optimization, we apply an evolu-
tionary optimization scheme, which we describe in the first section of this chapter. In particular
we motivate and employ the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES,
[Han06, AH12]).

In the automotive shape optimization the design model to be optimized is typically represented
by a surface polygon mesh, where the m mesh vertices x1, . . . ,xm represent points on the
discrete surface, which are connected by polygonal faces (usually triangles or quads). The vertex
positions xi could in theory be used as optimization parameters in an evolutionary optimization.
However, for non-trivial models the complexity of the model easily exceeds 1 million vertices,
thus making the direct optimization of vertex positions intractable.

However, even for highly complex shapes the actual shape deformations applied during opti-
mization are rather simple, low-frequency functions, which can therefore be controlled by a
small number of parameters. The representation is therefore a shape deformation operator o,
which maps deformation parameters (genotypes) to shape variations (phenotypes), which are
then evaluated by the fitness function (for an overview see Figure 2.1). Deformation techniques
frequently employed in design optimization are radial basis functions (RBFs [Wen04, SMB15])
and free-form deformation (FFD [SP86, HHK92]). In addition, we apply thin shell models,
which are used to describe surface deformation in computational mechanics or computer graph-
ics [BS08, BKP+10]. These chosen deformations are linear in the parameters, hence we express
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2 Linear Deformations in Evolutionary Design Optimization

them in matrix notation on the discrete shapes. Thus, the deformation operators result in defor-
mation matrices O as representations. In the second part we therefore describe the mathematical
framework of the employed linear deformations and the general matrix framework.

The deformation matrix has to be initialized before an evolutionary design optimization process
starts and during the optimization it can be adapted for enhanced performance. This initial-
ization or adaptation, respectively, is an own optimization process, which we call setting up
the deformation to clearly distinguish this process from the design optimization process itself.
Consequently, we call the deformation matrix deformation setup.

Note, because we evaluate methods to optimize deformation setups in test scenarios of different
dimensionality we utilize a general notation here and give details when we describe the scenarios
in Chapter 5. Visualized examples in this section are in R3 and hold for arbitrary dimension,
too.

2.1 Evolutionary Design Optimization

The biologically-inspired, randomized search principles of evolutionary optimization methods
induce robustness towards local optima and thereby allow a global search, such that these algo-
rithms are often denoted as global optimization. For basic literature and general concepts we
refer to [BFM00, Wei09]. The populations, which evolutionary algorithms are based on, offer
the potential of tracking different individuals (sets of parameters) and thereby they enable finding
equally fit but different solutions. This offers a high amount of flexibility especially in changing
fitness environments. The algorithms are free of analytic constraints for the mathematical mod-
els of the fitness environments, such that they can be employed for any, even discrete, fitness
function. In contrast, e.g., gradient solvers require smooth and differentiable functions. How-
ever, evolutionary algorithms are able to follow a fitness trend like a fitness gradient. Moreover,
they are capable of tracking different fitness functions at the same time.

But these advantages come at a cost. The randomized search requires many fitness evaluations
to recognize a fitness trend. Especially computational expensive functions, like aerodynamic
simulations for determining drag performance, result in a slow optimization process. Further-
more, the randomized search lacks guarantees for convergence which makes termination criteria
difficult to model. One simply does not know if a computed solution is (locally) optimal or if
it can be further improved but the algorithm requires more iterations to do so. Nonetheless, the
flexibility and robustness as advantages of evolutionary computation motivate its application for
design optimization tasks.

In principle these algorithms follow biological motivated processes, which we describe shortly.
First, the representation as the mapping between genotype (parameter space) and phenotype
(design space) is set up for an initial population of typical randomly generated phenotypes. This
population is initialized as the parent generation. Second, the mutation and/or crossover operator
vary the genotype of each individual partly random, which results in the new offspring. Then
this set of new genotypes is mapped back to a new set of phenotypes in the third step according

8



2.1 Evolutionary Design Optimization

Initial design

Result

Representation
setup

Mutation &
crossover

Genotype-
phenotype map

Fitness
evaluation

Selection

Final
selection

1. Optimal control points
2. Optimal matrix

Figure 2.1: Overview of evolutionary automotive design optimization: Our focus is on the
optimal initial representation setup, i.e., an optimal genotype→phenotype mapping, which is
determined by the distribution of control points (e.g., the RBF kernels shown in red) and defined
by the numerical properties of the resulting deformation matrix.

to the initially defined representation. Fourth, these newly generated phenotypes are evaluated
by a fitness functions (e.g. aerodynamic drag simulation). Finally, the phenotypes (including or
excluding the parent generation) are ranked and if a termination criterion is met an optimal result
is selected. Otherwise, the optimization process continues with a possibly randomized selection
of the ranked phenotypes as new parents whose genotypes are varied again by mutation and/or
crossover. For a dynamic optimization process, where e.g., the fitness function may change
(e.g., by inducing a change to the angle of attack in the aerodynamic drag simulation), the
representation can be reinitialized according to extracted knowledge during the fitness evaluation
stage. In Figure 2.1 we exemplarily sketch a design process without a dynamic interaction.
As mentioned before, our focus is on the optimal setup of the representation, i.e., the optimal
location of control points and optimal numerical properties of the deformation matrix of linear
deformations.

Among the different algorithms, e.g., genetic algorithms, or evolution strategies (to name a
few possible choices), we chose the Covariance matrix adaptation – evolution strategy (CMA-
ES) [Han06, AH12] because of its efficient search. The algorithm is recommended especially
for expensive fitness functions like an aerodynamic simulation. The reason of its success lies
in the modification of the mutation and recombination operator with the covariance matrix of
the population. Thereby, a population is pushed more rapidly towards a promising direction
for fitness improvements. For large problems (more than 1000 parameters) or problems where
specific domain knowledge can be utilized, the CMA-ES might not be the right tool [Han06,
AH12].
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2 Linear Deformations in Evolutionary Design Optimization

Offspring
Selection and

new mean
New offspring

direction

Figure 2.2: The procedure of CMA-ES: Offspring is sampled according to a covariance matrix
(left). Candidates are select and their mean is computed (center). The covariance matrix is
updated given the new mean and the selected candidates (right). As a consequence the fitness
(depicted as the dashed lines) of the population is improved.

In Figure 2.2 we depict the principle procedure of CMA-ES for the maximization of a linear
function exemplarily. The dashed lines are the function’s level sets. First, offspring is generated
according to a given covariance matrix (dashed ellipse) which can be seen as a mutation operator.
Then, candidates are selected of this offspring. Next, a new mean with these candidates is
calculated. This can be interpreted as a recombination step. Finally, the covariance matrix is
updated according to the new mean and the selected candidates. This matrix is employed to
sample new offspring in the next iteration. For the mathematical details and formulas, e.g.,
mutation and selection operators and probabilities, we refer to [Han06, AH12].

As basic parameters of (µ(+, )λ) CMA-ES a designer only has to chose the number of the parents
µ, the number of generated offspring λ, and the selection scheme (+, ), where (+) indicated a
selection among the parents and the offspring, and (,) indicates selection among the offspring
only. A typical employed operator for selection is non-elitist selection, i.e., the fittest individual
might not be selected as offspring. Furthermore, the CMA-ES sets an initial step size and adapts
it during an optimization run. But we set the initial step size in some examples manually for
improved performance. As a realization of the CMA-ES to evaluate linear deformations in
design optimization we use the shark 3.0 library [IHMG08].

Our focus is on the definition of evolvability-based quality criteria for deformation setups and
their optimization. For the optimization of these setups we employ the NSGA-II (elitist Non-
Dominated Sorting Genetic Algorithm-II, [DPAM02]) because this algorithm optimizes multiple
criteria very efficient. The algorithm follows the typical selection–crossover–mutation scheme
with typical crossover and mutation operators (elitism, binary crossover, real-parameter muta-
tion [SD94]). The selection operator is the main difference to alternative multi-objective algo-
rithms. We explain the operator briefly and refer to [DPAM02] for details.
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Figure 2.3: The selection scheme of NSGA-II: First, the dominance partitioning is computed
for the parent (P) and offspring (O) generation. Second, the crowding distance is computed for
the individuals. The new parent generation (P’) is generated according the partitioning with
binary tournament selection. If the individuals of a particular rank are to many for the size of
the parent generation then selection according to the crowding distance is applied.

In a fist step the dominance partitioning is computed to assign a rank to each individual of the
parent and offspring generation. Rank 1 is assigned to all non-dominated individuals. Then these
individuals are temporarily ignored and rank 2 is assigned to the new non-dominated individuals.
Further ranks are computed analogue (Figure 2.3, left).

In a second step a fitness value, i.e., the crowding distance, is computed for each individual. It is
defined as the average side length of the individual’s cuboid, which is bounded by its neighbors
as depicted with the dashed box in Figure 2.3 (right).

Finally, binary tournament selection according to the rank is applied for the new parent gener-
ation. If a set of individuals with identical rank would exceed the size of the parent generation,
tournament selection according to the crowding distance is applied for this set (Figure 2.3, bot-
tom).

In essence we employ the CMA-ES to solve design optimization problems for the evaluation of
our proposed evolvability-based quality criteria. In contrast, we use NSGA-II for the optimiza-
tion of deformation setups with respect to these criteria.
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2 Linear Deformations in Evolutionary Design Optimization

x′i = xi + orbf,im(xi)

X′ = X + ΦW

Figure 2.4: The linear RBF deformation orbf transforms the initial model X to X′ by trans-
lating each vertex xi of X by the displacement orbf (xi), which depends on chosen weights
W = (wT

1 , . . . ,w
T
n)T. In general each weight wj cannot be interpreted geometrically. We call

this approach indirect manipulation (im). The red dots depict the centers cj of the RBFs.

2.2 Radial Basis Functions

A deformation with RBFs is a kernel-based deformation, for which radial symmetric basis func-
tions (the kernels) are distributed at RBF centers. A designer can freely chose the amount n, the
shape, and the location of the kernels which gives an enormous flexibility in contrast to other
deformation methods like FFD or shell deformation.

The initial design X = (xT
1 , . . . ,x

T
m)T is deformed into a shape variant X′ = (x′T1 , . . . ,x

′T
m)T

by adding to each xi the displacement o(xi), which for RBFs has the form

o(x) =
n∑
j=1

ϕ(‖cj − x‖) wj =:
n∑
j=1

ϕj(x) wj . (2.1)

Here, ϕj(x) = ϕ(‖cj − x‖) denotes the j-th scalar-valued radial basis function, which is cen-
tered at cj ∈ Rd1 and weighted by wj ∈ Rd2 (see Figure 2.4). Hence, the deformation o maps
Rd1 to Rd2 . We analyze deformations from R2 to R and from R3 to R3 in our tests later on.

The choice of the kernel function ϕ : R → R has a significant influence on the resulting defor-
mation and the computation complexity [SMB12]. We employ and analyze globally-supported
triharmonic thin-plate splines, ϕtri, as well as compactly-supported Wendland functions, ϕW ,
with support radii s varying from rather local to more global:

ϕtri(r) =

{
r2 log(r) for 2D domains,
r3 for 3D domains.

ϕW (r) =

{(
1− r

s

)4 (4r
s + 1

)
for r < s,

0 otherwise.

ϕtri = r2 log(r) ϕW

Exemplary visualization of kernels
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2.2 Radial Basis Functions

x′i = xi + orbf,dm(xi)

X′ = X + Φ̂Ψ̂
∗
D

Figure 2.5: The linear RBF deformation orbf transforms the initial model X to X′ by translat-
ing each vertex xi of X by the displacement orbf (xi). The RBF-weights are solved such that the
deformation exactly prescribes chosen displacements dj at the centers cj , which we call direct
manipulation (dm). In this setting the centers are interpreted as handles.

The RBF deformation (and thus the deformed shape) is linear in the RBF weights wj . If we write
the initial and deformed shapes as matrices X = (xT

1 , . . . ,x
T
m)T and X′ = (x′T1 , . . . ,x

′T
m)T,

respectively, we can write the shape deformation in matrix notation

X′ = X + ΦW (2.2)

using a (m× n) RBF matrix (Φ)i,j = ϕj(xi) and the RBF weights W = (wT
1 , . . . ,w

T
n)T.

The global triharmonic kernel is a fundamental solution of the 3rd order Laplacian in R3 result-
ing in a smooth deformation at the cost of a dense deformation matrix Φ [SMB14, BKP+10]. In
contrast the Wendland kernels lack such a physical motivation. However, they result in smooth
deformations [Wen04] and they lead to an efficiently solvable sparse linear system. We utilize
these two kernels as representatives for global and compact kernels, respectively.

In the above setting, the deformation o would be controlled by manipulating the “abstract” RBF
weights wj , which may result in unintuitive deformations especially for global kernels employed
in a manual, designer driven manipulation scenario. However, it has been shown in the context
of free-form deformation that so-called direct manipulation is more intuitive for the human
designer [HHK92] as well as more efficient in an evolutionary optimization [MOS06], due to the
more direct and stronger causal relation between optimization parameters and the resulting shape
deformation. In the RBF setting, a direct manipulation is controlled by distributing handles on
the object’s surface to allow for direct control by specifying displacements di ∈ Rd2 there. For
the interpolation of these displacements we place the RBF centers ci on the handles, such that
the following interpolation problem has to be solved for the weights:

di = o(ci) =
n∑
j=1

wj ϕj(ci) .

In general the solvability of this linear system is a serious problem as pointed out in [Sch07].
A positive definite deformation operator is key to guarantee solvability. For the Wendland ker-
nels this condition is automatically fulfilled, but for the triharmonic kernel a linear polynomial
π is added [Wen04, Sch07]. To allow a proper comparison of the deformation mehtods we add
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2 Linear Deformations in Evolutionary Design Optimization

the linear polynomial for Wendland kernels for direct manipulation, too. The resulting addi-
tional degrees of freedom are removed by additional homogeneous equations (*) leading to the
deformation

o(x) =
n∑
j=1

wj ϕj(x) +

d1+1∑
k=1

qkπk(x) (2.3)

subject to di =

n∑
j=1

wj ϕj(ci) and
n∑
j=1

wj πk(cj) = 0 (∗) .

Here, {πk}k=1,...,d1+1 spans the space of linear (trivariate) polynomials, e.g., π1(x) = 1, π2(x) =
x, π3(x) = y, π4(x) = z for x = (x, y, z). Moreover, the polynomial guarantees linear preci-
sion of the direct manipulation approach. We could simply add this feature to indirect manip-
ulation, too. But this would increase the number of parameters and thereby it would distort a
proper comparison of both methods. Finally, for direct manipulation the following linear system
has to be solved for the weights wj and polynomial coefficients qk:Ψ π

πT 0

 W

Q

 =

D

0

 =

I

0

D, (2.4)

with D = (dT
1 , . . . ,d

T
n)T, (Ψ)i,j = ϕj(ci), (π)j,k = πk(cj), and the ((d1 + 1)× d2) matrix

Q = (qT
1 , . . . ,q

T
d1+1)T. Equation (2.3) and (2.4) lead to the matrix representation of direct RBF

deformation:
X′ = X + Φ̂Ψ̂

∗
D (2.5)

with

Φ̂ =
(
Φ Π

)
, (Π)i,k = πk(xi) , and Ψ̂

∗
=

Ψ π

πT 0

−1 I

0

 .

Because an interpolation problem has to be solved for the handle displacements the matrix nota-
tion and computation of direct manipulation (Equation (2.5)) is more complicated than indirect
manipulation (Equation (2.2)). However, both approaches can be written in unified matrix nota-
tion because of their linearity:

X′ = X + O P , (2.6)

with a deformation matrix O, being Φ or Φ̂Ψ̂
∗
, and deformation parameters P, being either

weights W or handle displacements D. Note that the relation between indirect and direct ma-
nipulation becomes clear by omitting the polynomial term such that direct manipulation is given
by ΦΨ−1, the product between the indirect deformation matrix and the inverse interpolation ma-
trix. In this setting Ψ−1 can be interpreted as a preconditioning matrix, which indeed improves
the condition number of the deformation (which we show in Chapter 5).

To setup up an RBF deformation a designer simply has to chose the number of centers, their
location, the kernel function and indirect or direct manipulation. This deformation offers a high
amount of flexibility because the stated parameters can be chosen freely.
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2.3 Free-Form Deformation

x′i = xi + offd(xi)

X′ = X + N δC

Figure 2.6: For linear FFD the initial model X is embedded into a control grid and displace-
ments of the grid points δC result in the deformed model X′. Each grid point is connected to
spline basis functions, which form the deformation matrix N.

2.3 Free-Form Deformation

In contrast to kernel-based RBF deformation Free-Form Deformation (FFD) embeds the object
in a lattice of n1 · n2 · n3 control points (or control grid) and displacements of the control points
control the deformation of the object (Figure 2.6). These displacements δc of the grid points
are linked to tensor-product spline functions N : R → R. The deformation o : Rd1 → Rd2 is
written as:

o(x) = o(x, y, z) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

δcijkNi(u(x))Nj(v(y))Nk(w(z)) (2.7)

with u(x) = (u(x) , v(y) , w(z)) as the local coordinates of x with respect to the grid and ni
as the number of control points in one particular dimension [PT96]. Note for the parametriza-
tion of 2D domains the z coordinate, its local coordinate w, the control points δc··k and the
corresponding basis Nk are omitted (and analogue for any dimension of the domain). We define

δcl := δcijk, Nl(x) := Nl(u(x)) = Ni(u(x))Nj(v(x))Nk(w(x)) and n := n1 · n2 · n3

to write Equation (2.7) as (equivalent to [BKP+10]):

o(x) =

n∑
l=1

δclNl(x) .

Here, the linear structure of FFD becomes clear and we write the deformation in unified matrix
notation (Equation (2.6)) as:

X′ = X + N δC (2.8)

with δC = (δcT
1 , . . . , δc

T
n)T and the m× n deformation matrix (N)i,l = Nl(xi).

Although we are free to chose any spline N we utilize cubic B-splines functions with a uniform
knot vector because they are well established in state-of-the-art design optimization [SMB12,
ZYSD16]. To evaluate the spline N at a point xi we need its local coordinates ui = u(xi),
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2 Linear Deformations in Evolutionary Design Optimization

which have to be computed before a deformation is performed. This is a non-linear problem in
ui for arbitrary control grids for which we minimize:

min
ui

∥∥∥∥∥xi −
n∑
l=1

Nl(ui) cl

∥∥∥∥∥
2

.

We minimize these differences between the points xi and their representation in the FFD system
(following [MJ96]) with Newton’s method [Kel03] and an implementation from [Dre17].

The number of grid points, their location, and the type of the spline basis have to be chosen for
setting up FFD. This is conceptually equivalent to RBF deformation. But, in contrast FFD does
not offer the flexibility that RBF deformation does. The number of grid points n is restricted
by the dimensions of the grid, i.e., n can only be a product of the number of points in x,y (z)
direction. Moreover, feasibility of the control grid has to be guaranteed, i.e., the grid has to
be free of self-intersections. Hence, the distribution and optimization of grid points requires
additional constraints for automatic procedures. Furthermore, the degree of the utilized spline
is a lower bound for number of grid points in the particular dimension. E.g. cubic splines
require at least 4 control points per dimension. Because typically applied grids have a higher
resolution this is only a minor drawback. But, from a numerical point of view FFD is more
costly than RBF. Not only does the recursive evaluation of a spline requires more effort than the
evaluation of a polynomial kernel function, but also the computation of local FFD coordinates
is an optimization process itself, which is not required for RBFs. However, FFD’s advantage is
the sparsity of the deformation matrix and the intuitive control of the deformation for manual
deformation approaches.

Equivalent to RBFs there exists a direct version of FFD [HHK92] where handle displacements
are the parameters for design variation. In the RBF settings we simply placed the handles at the
center locations on the surface to obtain direct control. But this cannot be done for direct FFD
straight forward because the control grid is not restricted to the surface of the object. We would
have to specify the location and amount of handles, the location and amount of grid points, and
their connection to each other. Hence, we don’t evaluate and compare direct FFD.

2.4 Shell Deformations

To show the general character of our methods for optimal deformation setups we analyze a fur-
ther type of deformation, namely surface deformations. RBF and FFD deform the surrounding
space of an object and thereby the object itself. They are independent of the object’s discretiza-
tion. In contrast, surface deformations are purely defined on the surface of the object and depend
on its discretization. Exemplarily we describe and analyze a shell-based deformation, which
is commonly applied in computer graphics [BS08, BKP+10]. Similar to direct manipulation
of RBF the deformation is controlled by displacements of handles, i.e., chosen points of the
discrete surface (similar to Figure 2.5). Based on these displacements the remaining vertices
are deformed by minimizing physical energies. We choose the minimization of a bending en-
ergy, which results in smooth and plausible deformations. For the continuous calculus we refer
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2.4 Shell Deformations
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Figure 2.7: Visualization of the area corresponding to a vertex and the cotan weights for the
computation of the Laplacian.

to [BS08, BKP+10] and show the discrete version only. Given the displacements dj ∈ Rd2 for
n vertices selected as handles we compute the displacements of the remaining vertices di ∈ Rd2
by solving:

∆2di
!

= 0 (2.9)

with the bi-Laplacian ∆2di, which is recursively defined by

∆2di = ∆(∆di) = ∆

 1

2Ai

∑
vk∈N(vi)

(cotαi,k + cotβi,k) (dk − di)


Here, Ai is the corresponding area of vertex vi, N (vi) denotes the neighbors of vi, and cotα
and cotβ are the cotangent weights defined as shown in Figure 2.7 [BKP+10]. For given dis-
placements of the handles D = (dT

1 , . . . ,d
T
n)T Equation (2.9) is solved for the displacement of

the remaining vertices D̄ = (d̄T
1 , . . . , d̄

T
m−n)T which results in a linear system:I | 0

L

D

D̄

 =

D

0

 =

I

0

D .

The entries of L are computed according to Equation (2.9). Defining

L∗ :=

I | 0

L

−1I

0


leads to the unified matrix notation of the shell deformation:

X′ = X + L∗D (2.10)

equivalent to equation (2.6).

Although the shell deformation is as flexible as RBF with respect to the amount and location
of the control handles, the numerical robustness of the computation of the deformation matrix
L∗ significantly depends on the mesh quality of the surface. Despite this drawback we evaluate
the shell deformation to confirm the general character of our approach to measure the quality of
linear deformation setups as mentioned before.

17
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2.5 Summary

In this chapter we described our deformation-based design framework with a CMA-ES as the
evolutionary algorithm of our choice. Moreover, we described our employed deformation rep-
resentations which are RBFs, FFD, and shell deformation. These deformations are constituted
of linear combinations of simple basis functions to express complex deformations. Their linear-
ity allows to express them in general matrix notation. An optimization algorithm is initialized
with the deformation matrix O, which we refer to as deformation setup. The deformation pa-
rameters P (compare Equation (2.6)) are optimized according to a given fitness function, e.g.,
an aerodynamic drag simulation. The initialization of the deformation matrix/setup consists of
choosing

• the amount of parameters,

• locations where these parameters influence the design by specifying for instance the RBF
center, FFD control point, or RBF/shell handle distribution,

• and how parameter variation deforms the design by choosing the RBF kernel function,
FFD spline basis, or the energy to be minimized for shells.

Each of these three points and additional numerical properties of the deformation matrix/setup
influence the performance of an evolutionary optimization process. Thus, an optimal evolu-
tionary design process requires an optimal setup for increased performance. To determine and
improve the setup’s quality automatically for an optimization run we require quality criteria. In
the next chapter we motivate three quality criteria based on the concept of evolvability, which is
a recommended meta-attribute in complex system engineering [MBBY06].
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The capabilities to come up with novel and enhanced solutions for industrial design processes
are restricted by “old-fashioned” classical engineering approaches. A modern design opti-
mization requires advanced concepts like complex system engineering for high-performing de-
signs [MBBY06]. This concept motivates the adaptation of representations during the design
process with meta-attributes where evolvability is regarded as a key feature [MBBY06, UD11].
Hence, keeping the representation’s evolvability high during the optimization process improves
its performance.

We discuss the concept of complex system engineering first in order to motivate and characterize
evolvability. Additionally, we describe key features and modelling approaches.

There is no unique definition of evolvability not even in the biological context, where the term
stems from. Thus, we give an overview of different interpretations of evolvability in biology,
and then bridge the gap from biological simulations to the optimization of technical problems.
Note, that in [Mor17] a quite general summary of evolvability is proposed as well but without
precise suggestions for applications to representations. In contrast, our interpretation leads to a
model for evolvability based on three attributes: variability, regularity, and improvement poten-
tial. These attributes characterize the exploratory capabilities, the expected convergence speed,
and the exploitation of given knowledge of the representation. Hence, these three attributes pro-
vide the basis for our mathematical model to quantify the expected performance of deformation
representations in an evolutionary design optimization process.

Our interpretation of evolvability might seem too narrow at the first glance because further
prominent aspects like robustness and modularity are not directly incorporated. But that is
not the case, as we point out in an additional discussion of further aspects and topics related
to evolvability in this chapter.

Because evolvability comprises the concepts of exploration and exploitation, which are promi-
nent in evolutionary computation, we analyze various definitions in the end of this chapter.
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3 The General Concept of Evolvability

This chapter is based on our publication [RBM15] and guides us to evolvability-motivated qual-
ity criteria ready to be applied to linear shape deformation operators as representations for design
optimization.

3.1 Complex System Engineering

A system is a construct or collection of different elements that together produce results not
obtainable by the elements alone [HFK+06]. Creating and linking these elements is the task of
an engineer in order to fulfill the customer’s needs throughout the entire life cycle of the system.

Complexity arises through many different objectives or conflicting interests, (nonlinear) interac-
tions of components, large design spaces, feedback loops, or adaptive processes [FS11, CJS13].
Varying fields of research are involved, such as engineering (dynamical systems and their con-
trol), computer science (modeling and simulation), biology (self-organized systems), or physics
(physical models) [UD11]. Complex systems are based on simple, maybe different, but sepa-
rated components. They are combined and linked together in order to achieve multiple, unpre-
dictable, and time-varying goals. The system should be able to change the representation or even
the fundamental structure. Examples are communication or transportation networks, financial
markets, organisms, or insect colonies [MBBY06].

In classical engineering the designer gathers information to specify the problem as precisely
as possible. Uncertainty is eliminated as much as possible. As a consequence many pieces of
information are needed, e.g., about the conditions of the environment and the task that should
be performed. This requires specialized knowledge and competence of the designer, who has to
model the functionality and the overall process. The typical approach is to simplify a system as
much as possible. Only if the designer tested the specialized system well enough, it is completely
fixed and reproduced. This leaves no space for a later adaptation other than intentionally planned
by the designer. The classical goal is to obtain a single specialized solution that can be reliably
reproduced. The required predictability, transparency, and controllability inevitably prevents
self-adaptation and thereby, reduces the chance to discover inspiring novel solutions [MBBY06].

Complex systems, in contrast, have to operate in unknown, uncertain, unforeseeable, dynamic
environments. The focus is set on the adaptation potential to handle these demands. The re-
quired flexibility is gained by simple, local, and linked processes, which in concert solve the
global problem. The designer models these simple processes and their connection, and thereby
produces a “blueprint” [UD11]. The system is responsible for the setup of the processes and
their re-evaluation and adaptation during the life time of the system (self-organization and evo-
lution). Thus, the goal in complex system engineering is to develop a method that enables the
system to autonomously interact with its environment; or as it is stated in Mina et al. [MBBY06]:
“becoming” is “being”.

For this approach the following two main characteristics are important: self-organization and
evolution [MBBY06, FS11]. Self-organization is a large-scale and local organization of many
simple components. The term large-scale describes the interaction of differently conceptualized
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3.1 Complex System Engineering

components with varying complexity. Like many other concepts, self-organization is inspired
by nature, e.g., in molecules many atoms form a large structure through local forces. Although
human-designed systems usually (and intentionally) ignore this feature, we unconsciously use
self-organization in engineering problems: Small teams are built to solve sub-problems, new
links between solutions are created, or problems are adjusted to new conditions. The result is
that non-trivial, large-scale optimization can be produced by simple local processes [MBBY06],
thereby leading to adaptive behavior without external command.

As stated in [MBBY06] engineering complex systems requires evolutionary processes for the
integration of self-organization. The system is designed to solve unpredictable problems on its
own with little information about the environment. The appropriate connection of components
has to be re-adjusted or even the functionality of components has to extend over time to accom-
plish the varying goals. The evolutionary selection–mutation–recombination scheme handles
these demands. The random mutation and recombination may vary the components and their
linkage and the fittest configurations are selected with respect to the current problem (environ-
ment) by algorithms that implement these biological concepts. We want to state that evolution-
ary processes are not restricted to complex systems but advantageous in general engineering
approaches.

The designer has to accept uncertainty as a system feature. It should be seen as a chance to
generate a variety of unexpected new solutions. Depending on additional information designers
have the freedom to choose some of them. An unrestricted dimension of the design space is
seen as a benefit since it increases the variation of design solutions. Hence any limitation of
the design space has to be modeled carefully. A three-stage approach is proposed by Frei and
Serugendo [FS11], where desired, allowed, and possible areas are specified. This induces a user-
defined expectation, which cannot be set by the system itself. The engineer has to implement
concepts that keep the system running within the specific area but this at the same time restricts
the development of the system. Thus, a trade-off has to be found, since the system should still
be able to adapt its behavior.

Modularity as well as weak linkage are further concepts. Separated (modular) components can
be modeled and exchanged easily if their dependencies are limited (weak linkage). The individ-
ual components/processes have to be fully functional even under changing conditions and have
to be sufficiently flexible to achieve goals varying over time. This concept is referred to as robust
optimization [BS07]; it can be used as one design methodology in complex system engineering.
Another concept is multi-functionality, also known as degeneracy [Whi10]: Multiple processes
may perform the same task in one environment (redundancy), but work on different tasks under
new conditions (flexibility).

Besides self-organization further self-*-properties may be added as characteristic properties of
complex systems. Frei and Serugendo [FS11] propose self-(re)configuration (parameter ad-
justment over time) or self-repair (ability to correct failures). The major aspects of complex
systems—modularity, simplicity and linkage of components, self-*-properties, or design space
models—are examined in greater detail in [OSL11, UNS12].
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Given that particular research area, the important challenges for complex system engineering are
that:

• The simple components may be defined in a classical manner but their connections have
to be set flexibly.

• The design space has to be modeled carefully for the (partly random) system evolution to
find varying solutions.

• The focus has to be on the optimal setup instead of the “optimal” solution.

• Convergence criteria are non-trivial to model, since the system’s progress is unpredictable.

But how is evolvability involved in this process?

As the system has to reflect on itself, it requires meta-attributes to quantify the potential of its
current configuration. These criteria are robustness, degeneracy, or adaptability, and they can be
subsumed under the concept of evolvability. Evolvability improves or guarantees the progress of
the system’s development. It classifies the behavior of the system; it quantifies the design space
that can be reached by the current representation; it guarantees the performance improvement
of the system. In essence, evolvability covers the survivability, the solution variety, the potential
for improvement, and the evolution speed in one single meta-attribute, and therefore is a key
quality criterion.

With this comprehensive quality criterion we aim at measuring, optimizing, and adapting rep-
resentation setups of complex systems based on customer demands, optimization targets, or
environmental restrictions. But defining and measuring evolvability is a difficult challenge. In
the next section we present a comprehensive analysis of biological and technical approaches in
order to collect different aspects and modeling techniques for complex system engineering.

3.2 Evolvability

New offspring, which is produced via mutation and recombination in evolution, should ideally
be able to survive in the current environment and it should also be able to adapt flexibly to envi-
ronmental changes since this improves the evolutionary development. In general, evolvability is
meant to characterize the developmental potential or capability of individuals in the evolutionary
process.

There is no unique precise definition of evolvability. In biology, where the term evolvability
originates from, many different definitions have been proposed. Evolvability has been defined
as the ability of a genotype to produce heritable phenotypic variation [WA96, KG98, Wag08],
as the potential of a population for producing novel mutations for their use in the evolution of
adaptations [Pig08], or as a quantity to explain lineages of populations in the tree of life [Bro13].
These are only some of the many different biological concepts. In general, evolvability describes
the quality of biological evolution or the evolutionary capabilities of an individual or a popula-
tion. It evaluates potential future benefits [KG98, Bro09]. Influencing factors are, e.g., the
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genotype-phenotype relation, the variety of phenotypes, or the speed of a phenotype to improve
its fitness in natural (changing) environments.

Deriving from these approaches, and in agreement with Sterelny [Ste04], we understand evolv-
ability as a combination of the three attributes:

• regularity, which describes the quality of an individual or a population independent of the
current environment to speed up the evolutionary process,

• variability, which aims at a rich design space (phenotype),

• improvement potential, which ensures the phenotype’s ability to improve in changing con-
ditions.

Note that we replaced the term heritability from Sterelny [Ste04] by regularity in order to avoid
conceptual conflicts, as heritability itself can be considered as a measure for the evolutionary
potential (see the heritability vs. evolvability discussions in [Hou92, HPH11, HMK16]). In the
following we discuss the concept of evolvability by analyzing the individual attributes step by
step.

3.2.1 Regularity

Formulating a suitable fitness function for the development of complex systems is a difficult
and cumbersome process, since one cannot incorporate every individual quality aspect into the
fitness criterion. This would inflate the fitness function, increase the computational cost of its
evaluation, and would thereby slow down the overall optimization tremendously. Therefore, one
should try to prevent the generation of infeasible (mortal) offspring before the environment (i.e.,
the optimization) evaluates it. We understand regularity as a stability attribute that reduces this
infeasibility and thereby speeds up the evolutionary process. For instance, in automotive design
processes a poor distribution of e.g. RBF handles easily results in (infeasible) self-intersections.
Therefore such configurations should be avoided. In the context of system engineering the re-
striction to feasible (regular) offspring is a limitation of the design space on the one hand, but on
the other hand regularity can be interpreted as a safety guard.

The regularity of phenotypes oftentimes is not employed as an individual attribute, but rather in-
corporated into the attribute robustness (e.g. [FW06]), which we discuss later in this chapter. We
explicitly emphasize and follow the approach of Sterelny [Ste04], where regularity is declared as
an extra trait, but also as a part of a more complex evolvability concept. The regularity criterion
has to avoid problems that do not depend on the fitness function and which cannot be handled
by the variability criterion. Sterelny [Ste04] describes it as an anti-outlaw condition. A concrete
example is given in [LM12], where control lattices for free-form deformation are constructed
such that control points are well separated. This reduces the chance of flipping of control points
and thereby avoids infeasible self-intersections of the deformed object.

We cannot give a more precise definition of regularity because it strongly depends on the rep-
resentation and the actual optimization scenario. The designer has to define this attribute as an
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3 The General Concept of Evolvability

environmental-independent criterion. We incorporate it in our definition of evolvability in order
to speed up an optimization process.

3.2.2 Variability

As we have shown before, complex systems operate in uncertain, dynamic environments. There-
fore a criterion that measures and preserves the flexibility of the representation, independent of
the environment, has to be incorporated in the definition of evolvability. This criterion should
furthermore characterize the ability and potential to extensively explore the design space (phe-
notype). In biology, there are many different synonyms for this concept, such as innovation,
variation/variability, or even evolvability itself, as for example in [WA96, Wag05, Wag08]. Vari-
ability describes the future potential of obtaining varying phenotypes [WA96].

Wagner’s approach of analyzing RNA networks [Wag08] reveals interesting properties and lim-
itations of variability measures. This approach can be considered as a representative for a
whole class of biological approaches that are based on the concept of neutrality [Wag05, PM11,
PMW14, WBM14, PW14, GSAL16, CWMC18]. Two genotypes are neutral if they map to the
same phenotype, and they are neighboring when they are connected via a single point mutation
(a mutation that changes just one parameter). The first variability definition of Wagner [Wag08]
is based on the neighborhood of a genotype (local definition), while the second definition char-
acterizes the neighborhood of all neutral genotypes of a given phenotype (global definition).
Both approaches compute the diversity of the phenotype and are purely discrete. The second
one even requires global information of the phenotype. For complex systems this is a major
drawback, since they have to operate with little information, and therefore cannot analyze the
whole parameter space or design space. In the automotive scenario both spaces are continuous,
which makes the definition of a neighborhood cumbersome and imprecise.

Jin and Trommler [JT10] solve this problem by replacing single point mutations by arbitrary
mutations and by measuring the ratio of phenotype diversity to genotype variation. This requires
a proper definition of distance metrics for both genotypes (parameter space) and phenotypes
(design space). Lehmann and Menzel [Men11, LM12] transfer this idea to a shape matching
optimization using free-form deformation. Their variability criterion, defined as the ratio of
phenotype variation to genotype variation, characterizes the quality of different representation
setups and is used to improve the performance of the optimization. As the computation of this
criterion requires global information, it is not really suitable for complex systems. Moreover, we
advise against a definition of the ratio of phenotype variation to genotype variation in general
because a mapping with high variability would map slight genotype variation to large phenotype
variations and this contradicts the goal of numerical stability.

A possible solution can be derived from an approach called novelty search, which replaces the
fitness selection criterion of evolutionary algorithms by a variability criterion. Example applica-
tions for maze navigation and biped robot experiments are described in [LS11a, IJH+13, SN14,
VC14, LWS16]. In [MLC16] the novelty search is extended to evolvability search. We do not
discuss particular algorithmic details here, but we briefly describe the idea for deriving vari-
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ability: The variability of each individual of an offspring is measured by a novelty/evolvability
metric, which evaluates the dissimilarities to each other individual in the population resulting
in a highly diverse population. In order to decide whether a concrete goal has been reached,
one has to perform an additional objective-oriented evaluation. In a general (non-evolutionary)
optimization context, this approach can be seen as the generation and the evaluation of local
samples for different representation setups which can be costly [MLC16].

The ability to extensively explore the design space is measured by the variability criterion, which
characterizes the genotype-phenotype mapping. We promote a definition following the basic
goal to reach each possible phenotype. Since global information is not available in complex
systems, one has to fall back to local methods for computing variability.

3.2.3 Improvement Potential

During the development of a complex system some parts may already be (close-to) optimal in
the current state, while other parts need further adaptation to specific demands or changing con-
ditions. For instance, in an automotive design process the roof may already be satisfactory, but
the fender has to be improved with respect to drag. A representation that can only change both
targets simultaneously is counterproductive. Enabling the representation to adapt to sensitive
regions for fitness improvements requires to incorporate a fitness-dependent criterion into the
evolvability definition.

In the biological context several approaches identify evolvability itself with adaptation poten-
tial or adaptation speed of a population to an environment, e.g. [Pig08, DPWP10], and thereby
target the improvement of the fitness. But this definition is rather imprecise, since a popu-
lation is called adapted as soon as a beneficial trait occurs significantly more often. In the
engineering context the optimization potential in a varying fitness landscape is investigated in
[Suz03, BCCV09, TM14]. In [RSM05, RM06, RM07] the structural bias of an environment
is analyzed. When different regions of the fitness landscape are linked, a representation that
can learn that linkage will better adapt to changes in the environment than a representation
that ignores the fitness landscape. This approach, however, requires knowledge about the dif-
ferent environments and the connections between them. We regard this as a contradiction to
unpredictability in complex system engineering. The idea to include a fitness-dependent learn-
ing process is promising though. While it may slow down the development of the system in
the beginning, it improves the long-term performance. Since fitness evaluations typically are
computationally expensive, computationally cheaper surrogates can be used to approximate the
original fitness function and replace it in the optimization [JOS00, Jin11, LOM+13]. While the
surrogates are easier to evaluate by construction, they require an additional learning step.

Aulig [Aul11] selects the representation that results in the best compromise for a variety of pre-
defined environments and defines this representation to have the highest improvement potential.
However, an additional evolutionary optimization for each environment has to be performed in
order to evaluate each candidate and find the compromise, which can be rather costly. This
approach can be considered as performing local optimization for computing the improvement
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potential. Heading in similar direction, a probability-based definition is employed for improv-
ing the fitness of the offspring compared to the parent’s fitness in an evolutionary optimiza-
tion [SAESF17].

Transferred to complex systems the third criterion characterizes the (fitness) improvement po-
tential of a representation. One has to classify different representation setups either in a learning
process, with an additional local optimization, or even with a combination of both. Based on
available information about the environment this choice is left to the designer. In the spirit of
complex system engineering we can also incorporate his/her experience, to specify important/
sensitive regions for later adaptation.

3.3 Further Targets of Evolvability

In the context of evolvability many more attributes are used and can be investigated. In complex
system engineering robustness is one important aspect, but its relation to evolvability is discussed
contrarily. Another important aspect of complex systems is modularity. How it is integrated
into our evolvability model is shown after discussing robustness. The setup of evolutionary
algorithms influences the performance of the system as well. From that point of view evolvability
can be defined even for algorithms, which we discuss here.

3.3.1 Robustness vs. Evolvability

In optimization scenarios a solution is considered robust if noise does not affect its quality. The
setup of an algorithm is considered robust if noise on the input data still leads to the same solu-
tion. Generally, the concept of robustness is important in complex systems to induce stability.
In the biological context robustness reduces the mortality of offspring and therefore promotes
the evolutionary process. Wagner and colleagues define it as the persistence of an organismic
trait under perturbations [FW06]. The authors analyze robustness on three different levels: The
first one is independent of the environment and is called stochastic noise. Robustness preserves
the general quality if stochastic fluctuations occur in (biological) systems. The second level
characterizes the influence of genetic variation on the phenotype. A trait is regarded as robust
if genetic variation preserves it. The third level describes the survivability of a phenotype when
changes of the environment occur and thereby addresses the fittest individuals. Our definition
of evolvability can be considered to include robustness by interpreting stochastic noise as one
part of regularity. Moreover, robustness to varying environments is covered by the attribute
improvement potential.

Whether robustness to genetic variation promotes or hinders variability is discussed contrar-
ily. In biology, robustness and evolvability are usually reduced to the variety of phenotypes
[Wag05, BLOA06, Wag08, HB10, MT10, PM11, PMW14, WBM14, PW14, Wag17]. Hence
one could argue that a highly robust phenotype is not variable but this statement is not always
true. Wagner [Wag08] defines robustness through the concept of neutrality in two ways: local
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and global (similar to the variability discussion before). Robustness quantifies the neutrality in
the neighborhood of a phenotype or the size of a whole set of neutral phenotypes, respectively.
Interestingly, the local definitions of robustness and variability contradict each other, while the
global ones agree: A large neutral set of phenotypes has many, typically diverse neighbors, and
therefore also a higher variability. This approach is questioned in [MH17] where the authors
explain that Wagner’s assumptions are too strict and unrealistic.

The concept of cryptic gene variation [WA11] relies on biological observations and includes
both robustness and variability. When individuals are adapted to an environment their pheno-
type variation decreases, which reduces mortality because few non-adapted phenotypes occur.
However, cryptic gene variation preserves the variation hidden in the genotypes, which pro-
motes adaptation after a change in environmental conditions. In [DPWP10] a non-monotonic
relation between robustness and variability is described, meaning that the most variable phe-
notype is medium robust. The authors argue that non-robust phenotypes cannot survive and
very robust ones cannot evolve. In technical engineering this potential conflict is accepted, e.g.,
in [JGS09, JGPS09, Aul11, Men11, LM12]. The goal is to find variable solutions that are as
robust as possible. The solutions on this Pareto front can be used according to the behavior of
the environment. If it is stable, robust ones are preferred. If it is varying, variable ones are more
promising.

The general conflict that robust phenotypes cannot adapt to new conditions is analyzed in [LP07,
Whi10, DS10, WRBY12]. Degeneracy is proposed as the solution and is defined as multi-
functionality of components. For example, two different components (e.g. proteins) may per-
form the same task in the current environment, but different tasks once the environment changes.
The switch between redundancy and diversity, which characterizes degeneracy, increases the ro-
bustness as well as the improvement potential. If one component fails the task is performed by
the redundant component, which reduces mortality. Like this, variability and improvement are
ensured even under environmental changes. In [WRBY10, WRBY12] a multi-agent-system is
proposed as a successful example for integrating degeneracy. The concept of degeneracy has
two major drawbacks: First, multi-functional components require more resources and are more
complicated, which contradicts the goal of simple components in complex systems. Second,
degenerate mappings are a contradiction to the mathematically well-behaved mappings (e.g. bi-
jections) that are typically preferred in optimization.

There exist different concepts for including robustness as a stability criterion in complex sys-
tems, either as an additional meta-attribute or in the evolvability definition. We intentionally
avoid the stated conflict between robustness and variability, and include it in regularity and im-
provement potential, the other two aspects of the proposed evolvability definition instead.

3.3.2 Modularity

Modularity is one important feature that has to be incorporated into complex systems as it in-
creases their performance. The articles [WA96, Pig08, HB10] link evolutionary biology with
evolutionary computer science, and emphasize the importance of the genotype-phenotype map-
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ping. Modularity is one property that can be included in this genotype-phenotype relation. In
the biological context it describes the independence of functionally different regions of an in-
dividual. Independent components reduce mortality in case one component fails, and therefore
induce robustness from another perspective as discussed before [KG98, DS10, DMF10]. The
flexibility to replace components improves the adaptation potential. As a consequence, a high
modularity promotes the development of a system, such that it can be evolved, optimized, or
adapted easier and faster. We incorporate modularity into the choice of the genotype-phenotype
mapping instead of defining it as an evolvability-relevant attribute. For instance, in an automo-
tive design scenario different shape morphing methods can be used, such that the optimization
may pick the most promising one for different regions of the shape.

3.3.3 Evolvability of Algorithms

The evolutionary algorithm that is used for developing and optimizing engineering systems has
a strong influence on the resulting performance. For instance, if it hinders variability the system
cannot change or adapt. This is investigated in the field of genetic programming, e.g., in [Alt94,
BdS10, BAK13, AOCP14], or for a broader field of algorithms in [OWCK16, WLZY17]. Evolv-
ability, regarded as the adaptation potential of a population to the environment, characterizes
the mutation, the recombination, and the selection criterion of evolutionary algorithms. Since
these are stochastic algorithms, a probability-based definition of evolvability is commonly used.
Obtaining the probability measures (e.g., the probability that a phenotype varies) is one major
problem, and methods based on additional optimization steps or local information are frequently
used. Of course, algorithmic operators, such as the adaptation of mutation step size or recombi-
nation probability, repair and support the evolvability during optimization.

In the more general context—evolvable hardware—different targets of the quality criterion evolv-
ability are investigated in [Kal00, Tor04, SKL05, SdLSA+10, HT11, Rus12, Sri13, MN16,
MPN17]. In these works the setup and choice of algorithms is discussed, as well as the rep-
resentation setup, or different fitness strategies to achieve different optimization goals. The
focus is set to these aspects, instead of to a general quality criterion. Many relevant attributes of
complex systems are covered, such as the use of simple components, modularity, evolutionary
methods, or varying goals. This enriches our understanding of the different attributes that can
be evaluated by evolvability.

3.4 The conflict: Exploration vs. Exploitation

Because complex systems are modeled for uncertain environments the representation has to
ensure flexibility (variability): It has to promote the exploration of the phenotype to increase
the chance of finding good solutions. But, at some point if a promising trend is discovered
the representation should exploit this knowledge for a more efficient search. The conflict be-
tween exploration and exploitation is a widely discussed issue not only in evolutionary compu-
tation [Lap10, FLS10, HTL+15]. E.g. in [HTL+15] exploration/exploitation is even discussed
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for human decisions. Thus, we address it here for a comprehensive motivation for our model of
evolvability.

As described in [CXP+09] identifying exploration vs. exploitation as the conflict between global
to local search is too narrow. Instead, definitions are proposed based on how historical informa-
tion is utilized. E.g. random search does not employ any information, hence is linked to ex-
ploration, whereas gradient descent utilizes fitness information, hence is linked to exploitation.
The importance to vary the focus during an optimization is one key conclusion of [CXP+09].
Transferred to evolvability, a measure refers to exploration if it is independent of information
about the environment and it refers to exploitation if fitness information are utilized. In this
spirit, variability as well as regularity characterize exploration whereas improvement potential
covers exploitation. But, in the spirit of exploring the phenotype space, the variability criterion
is better suited.

Typically, the exploration/exploitation discussion revolves about the selection, mutation, and
crossover operator of evolutionary algorithms as pointed out in the survey [ČLM13]. From
this survey we obtain three key issues relevant for the definition of quality measures for rep-
resentations. First, there are approaches to measure exploration/exploitation on the genotype
and on the phenotype. Considering the basic motivation of particularly exploration, i.e., to ex-
plore the phenotype, we emphasize phenotype-based approaches to measure exploration and
exploitation. Second, there are many suitable different definitions, e.g., difference-/distance-
/probability-based ones. The representations for design optimization are continuous maps such
that probabilistic approaches or threshold-based discrete differences are not feasible. Thus, a
distance-based measure for exploration/exploitation is most promising for us. Third, the focus
between exploration and exploitation should change during an optimization run. But, the opti-
mal trade-off strategies are highly problem dependent. Independent of the employed measures
of exploration or exploitation, this fact lowers our expectations to find an optimal and general
trade-offstrategy for different representations and design optimization scenarios.

3.5 Summary

The most frequently used approach for solving engineering tasks still is classical engineering:
dividing the problem into sub-problems, simplifying and solving them [MBBY06]. After this
process the solution is fixed, which prevents the adaptation to unpredictable environments. A
specialized solution ready for reproduction is the primary classical goal. But, the developmental
phases of modern industrial products become more and more complex due to varying manu-
facturing constraints, customer demands, or changing objectives. This requires feedback loops
and adaptive processes in the development phase of a system, which further increases the un-
predictability of system behavior. Therefore the complex system engineering approach does not
target specialized solutions, but rather aims to implement a blueprint and development guidelines
to let the system unfold and adapt itself while interacting with the environment.

The representation setup significantly determines the developmental capability of a system. An
inflexible setup prevents the adaptation of the system to changing conditions/objectives/envi-
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ronments. Hence, the representation setup has to be flexible enough during the system’s life-
time. This level of self-organization, led by an evolutionary process, can result in beneficial
unexpected solutions. The designer is responsible for the layout of the components or the rep-
resentation. In this chapter we considered evolvability as a quality criterion for measuring the
potential of a representation for complex systems. Based on basic analyses in biology, evolv-
ability characterizes the potential success of a population in evolution. We analyzed concepts
in biology and their transfer to technical systems, and pointed out disadvantages and promising
approaches. Summarizing from literature a three-stage classification is motivated.

The first aspect that evolvability has to cover is a fitness-independent quality, which we interpret
as regularity. It is included to speed up an evolutionary process. The second aspect preserves
the potential variety, and is fitness-independent, too. If we achieved a beneficial design during
the design optimization we need this variability to react on changing environments or targets.
Some design regions may be crucial for the design process. It is important that the representation
promotes the improvement of these regions. Quantifying this improvement potential improves
the performance of the design process and is a third aspect of evolvability.

We discussed robustness in this context, since it is an important feature in engineering. The
basic idea is to induce stability, reduce mortality, and thereby improve the evolutionary progress.
It can be analyzed on the three levels like evolvability. With respect to variability contradicting
positions exist in literature. We have shown arguments supporting the assumption that robustness
promotes variability and arguments against this statement. We implicitly included robustness
into our evolvability concept, since we regard a regular or adaptable individual as robust.

As the interplay of exploration and exploitation is another important issue in evolutionary com-
putation we categorized regularity, variability, and improvement potential. Clearly variability
covers exploratory capabilities and improvement potential refers to the exploitation of design
regions. However, following a general definition of exploration, a designer might link regularity
to this attribute, too.

We are aware that the optimization algorithms for engineering complex systems influence their
performance, too. In our research, however, we focus on the representation setup. We gathered
the articles that we included in this chapter and categorize them in the attached Table 3.1. Short
notices to the different approaches towards evolvability, their basic results, and the context of the
evolvability analysis are summarized in this table. Based on the analysis in this chapter we derive
mathematical models for quality criteria for linear deformation representations in evolutionary
design optimization in the next chapter.
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Table 3.1: Summary of various approaches for evolvability
Definitions Result Context Articles

T
he

or
et

ic
al

ap
pr

oa
ch

es

evolvability = vari-
ability and modu-
larity

genotype-phenotype mapping is a key ob-
ject for the representation problem; robust-
ness, modularity, variation are important for
evolvability; fitness independent definition

biological analysis,
biological principles
in internet evolution

[WA96, Pig08,
HB10, KG98,
DS10]

evolvability = vari-
ability and adapta-
tion

changing fitness promotes variation thus
evolvability; fitness dependent definition of
evolvability

evolutionary compu-
tation

[GS00, WHK15]

evolvability =
variability and
heritability

heritability alone is not a good measure;
evolvability definition is highly problem de-
pendent; evolvability definition is fitness
and selection criterion dependent

biological analysis
of animal population
studies

[Hou92, HPH11,
Bro09, HMK16]

evolvability as
probabilistic model

evolvability is the probability of a future
trait given the current environmental and
features of the population; promoting fea-
tures are (low) mutation rate and variation

biological analysis [Bro13]

mathematical framework for algorithm
analysis; structures (e.g. specific functions)
are evolvable with respect to different prob-
ability distributions

conceptual mathemat-
ical analysis

[AK14, Val07,
Val12, Fel09,
Tou03]

robustness as prob-
abilistic model

mathematical (probability) framework of
robustness for networks defined

mathematical biologi-
cal networks analysis

[CL11, CL13a,
CL13c, CL13b]

robustness = regu-
larity and variation
and adaptation

robustness is persistence of a trait under per-
turbations; perturbation are: noise, genetic
variation, environmental variation

biological analysis [FW06]

cryptic gene vari-
ation as biological
concept of robust-
ness and adaptation

genotype variety of a phenotype promotes
robustness in a stable environment and
adaptation in a varying environment; cryp-
tic gene variation depends on neutrality

biological analysis [WA11]

evolvability as a
criterion for long
term development

many attributes have to be incorporated,
e.g., modularity, adaptation, testability,
variability, consistency, etc.

software engineering [BBR09]

B
io

lo
gi

ca
ls

im
ul

at
io

n

evolvability,
robustness =
variation on the
genotype and
phenotype

genotype robustness hinders genotype
evolvability, phenotype robustness pro-
motes phenotype evolvability; definitions
based on neutrality; fitness independent

RNA, Transcription
factor binding sides
analysis, neutral
networks

[Wag05, Wag08,
PW14, GJLA14,
CWMC18,
Wag17, MH17,
GSAL16]

variation addi-
tionally defined
through probability

robustness promotes this definition gene regulatory cir-
cuits, protein simula-
tions

[PM11, PMW14,
WBM14,
BLOA06]

recombination/mutation rate analysis; setup
of the algorithm highly influences evolv-
ability

algorithm analysis [MT10, BP03,
LWK15,
WLZY17]

evolvability as
product of pheno-
type and genotype
distance

robustness integrated in definition automat-
ically; fitness independent

transcription factors
in cell growth

[JT10]

evolvability =
adaptation

robustness-evolvability relation is non-
monotonic

RNA simulations [DPWP10]

degeneracy =
multi-functionality

switch between redundancy and diversity
(dependent on the environment) improves
robustness and evolvability (adaptation);
concept based on neutrality neutrality

simulations of a
multi-agent system

[Whi10,
WRBY10,
WRBY12]
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Definitions Result Context Articles
E
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fo
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se

nt
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io
ns

A
lg

or
ith

m
se

tu
p

in
en

gi
ne

er
in

g
novelty (variation)
search as selection
criterion in algo-
rithms

positive correlation between novelty search
and optimization performance; sampling
needed to compute variation (evolvability)

maze navigation,
robot walk

[LS11b, LS11a,
VC14, LS13,
LWS16]

changing environments promote evolvabil-
ity

digital evolution [OWCK16]

combination of novelty and fitness based
search is most promising

neural networks in
maze navigation, pat-
tern guessing, robot
walk

[IJH+13]

evolvability search
as an extension of
novelty search

improves novelty search maze navigation,
robot walk

[MLC16]

evolvability as
number of suc-
cessful solved
problems

novelty search worse than fitness search
when target changes

maze navigation [SN14]

evolvability = per-
formance of algo-
rithm

modularity of genotype-phenotype map-
ping increases evolvability

maze navigation, neu-
ral networks

[DMF10]

gradient information used to improve indi-
viduals after recombination; fitness depen-
dent

genetic programming,
gene expression pro-
gramming

[BAK13, BdS10,
Alt94]

genotype size, choice and setup of algo-
rithms investigated with respect to fast fit-
ness improvement

evolvable hardware [Sri13, SKL05,
SdLSA+10,
Kal00, Tor04,
Rus12, HT11]

design of evolution strategies investigated
and improved for fast fitness improvement

evolving digital cir-
cuits

[MN16, MPN17]

evolvability = ro-
bustness and varia-
tion (and heritabil-
ity)

increasing evolvability promotes optimiza-
tion; variation and robustness negatively
correlated; evolvability as trade-off; her-
itability gained through control volume
setup; fitness independent

continuous free-from
deformation, discrete
Boolean functions

[Men11, LM12,
JGS09, JGPS09]

evolvability =
adaptation poten-
tial

evolvable setups superior to robust ones re-
garding the adaptation to new fitness envi-
ronments; compromise between fitness de-
pendent and independent definition most
successful

spline matching, pat-
tern guessing, neu-
ral network learning,
sting writing gram-
mar, hexapod simula-
tion

[Aul11, RSM05,
RM06, RM07,
BCCV09, Suz03,
KVK+14,
TM14]

redundancy promotes evolvability grammar evolution [LP07]

predicting the fitness development improves
evolvability and optimization performance;
model based on probability measures used
for a search operator

car optimization, sim-
ulation on test func-
tions

[LOM+13,
AOCP14,
WLZY17]
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4 Definition of Evolvability Criteria
for Linear Deformations

As we described in Chapter 2 our employed representations for evolutionary design optimiza-
tion are linear, hence can be expressed in matrix notation. In this chapter, we transfer the bi-
ological motivations derived from the concepts of evolvability in Chapter 3 to models for the
quantification of the performance of these deformation matrices. To this end, we propose math-
ematical formulations for the three evolvability criteria variability, regularity, and improvement
potential. These criteria are designed to depend on the deformation matrix O only, and should
therefore generalize to any linear deformation. To simplify the notation and derivation, we as-
sume that the displacement function o(x) is scalar-valued, such that the coefficients pj ∈ R,
hence p = (p1, . . . , pn) ∈ Rn, and consequently o = Op ∈ Rm. Since the deformation matrix
O is identical for the 1D and 3D deformation, this simplification does not change the resulting
formulation of variability and regularity. However, we propose two versions for the criterion
improvement potential because it depends on the dimension.

As a result of this chapter we propose three simple formulas for variability, regularity, and im-
provement potential, which are also published in [RAMB16]. The mathematical motivations
and formulations were developed by the author of the thesis. The second author, J. Achenbach,
provided an efficient algorithm for test scenarios analyzed in Chapter 5.

4.1 Variability

Variability is meant to quantify the potential for exploring the phenotype space—independent
of the possibly complex objective function—by varying the genotype parameters p and map-
ping them to phenotype variations o = Op. The biological concepts mainly evaluate the ra-
tio between phenotype to genotype variation [Wag08, PMW14], which could be interpreted as
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‖Op‖ / ‖p‖ in our setting. Other approaches, e.g., [LS11a, SN14], analyze the genotype neigh-
borhood (specified by “ε”) and consider the distance between the corresponding phenotypes
as a measure for variability, which we would interpret as ‖Op1 −Op2‖ for ‖p1 − p2‖ < ε.
Both approaches would regard a genotype–phenotype mapping with a large gradient as a good
choice, which is known to cause numerical problems. In the context of free-form deformation in
[LM12] a variability definition is based on global information, which is derived from the anal-
ysis of the whole design space. This was possible in the configuration, since the design space
was bounded by a box around the initial design, but the concept is not suitable for problems
with unbounded parameter spaces—which we aim at. These limitations motivate the need for
an improved variability measure.

A representation has maximal variability if it can control the “1D-displacement” o(xi) for each
vertex xi ∈ X independently. This, however, would require an intractable number m = n of
optimization parameters, and therefore a much smaller number n � m is typically chosen in
practice. Consequently, not every desired shape variation ō = (ō1, . . . , ōm) can be represented
as Op. Hence, the variability criterion will estimate how well a given arbitrary displacement ō
can be approximated as Op, by averaging the approximation error ‖ō−Op‖ over all possible
deformations ō.

For a given deformation ō, the optimal parameters p, corresponding to the least squares approx-
imation, can be computed through the normal equations [GVL12]:

min
p
‖Op− ō‖2 ⇔ OTOp = OTō ⇔ p = O+ō (4.1)

with O+ = (OTO)−1 OT being the pseudo-inverse of O. The best-approximating deformation
therefore is OO+ō, and its least squares approximation error is

∥∥ō−OO+ō
∥∥2

=
∥∥(I−OO+

)
ō
∥∥2

. (4.2)

With the thin singular value decomposition (thin SVD) O = UΣVT (with Σ ∈ Rn×n and the
orthogonal matrices U ∈ Rm×n,V ∈ Rn×n) and the pseudo-inverse O+ = VΣ−1UT we write
equation (4.2) as:

∥∥(I−OO+
)
ō
∥∥2

= ‖(I−UUT) ō‖2 . (4.3)

To analyze how well the design space can be explored through variations of the initial design
X, we choose a uniformly distributed variation ō of unit length and compute the expected ap-
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4.2 Regularity

proximation error E of (4.3). We employing the trace (·) of a matrix and the covaricance matrix
Cov(·) in the following calculus.

E
(
‖(I−UUT) ō‖2

)
= E

(
ōT (I−UUT)T (I−UUT) ō

)
= E(ōT (I−UUT) ō)

= trace (E(ōT (I−UUT) ō)) = E(trace (ōT (I−UUT) ō))

= E(trace ((I−UUT) ōōT))

= trace ((I−UUT)E(ōōT))

= trace ((I−UUT) (Cov(ō) + E(ō)E(ōT)))

= trace

(
(I−UUT) I

1

m

)
=

1

m
trace (I−UUT)

=
1

m
(m− trace (UUT)) =

1

m
(m− trace (UTU))

=
1

m
(m− trace (In))

=
m− n
m

Because n is the rank of the deformation operator O we define the variability V based on the
rank of O, but normalize it by phenotype dimension in order to scale the values to [0, 1]:

V (O) :=
rank (O)

m
. (4.4)

According to this definition, a representation with good variability should have maximum rank,
i.e., all optimization parameters p should be truly independent. The maximum theoretical vari-
ability V (O) = 1 is achieved for m = n, but typically V (O)� 1 due to m� n.

4.2 Regularity

Regularity is understood as a fitness-independent quality criterion and is interpreted in different
ways. It can be regarded as an anti-outlaw condition [Ste04] to prevent infeasible offspring.
In design optimization self-intersections are such infeasibilities, which are reduced in [LM12].
Although regularity is not quantified in this article, it is implicitly optimized for a single point of
interest in a FFD control volume. Preventing or reducing infeasible designs (before costly fitness
evaluation) speeds up the optimization process in general. Inspired by this property, we directly
interpret regularity as a criterion to measure the optimization/convergence speed. Typically, opti-
mization algorithms try to identify a trend in the fitness landscape, a direction in which the fitness
improves the most. This is significantly influenced by the representation. A local (strong causal)
representation maps small changes in the genotype to small phenotype variations, thereby pre-
serving the local neighborhood structure, resulting in a numerically stable mapping. This makes
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4 Definition of Evolvability Criteria for Linear Deformations

it easier for the optimization to discover a promising direction in the fitness landscape, in con-
trast to non-local (weak causal) representations. Hence, causality [WCT12] and locality [Rot06]
are two concepts that are related to the convergence speed of evolutionary algorithms. But they
are typically associated to the mutation operator (e.g., [SKVS97, GLMOB11, SMC12, TR14]),
and are defined for discrete genotypes and phenotypes only. We propose a definition of regu-
larity that generalizes these concepts to linear deformations in continuous design optimization
problems.

In essence, regularity should characterize the numerical stability of the deformation process to
address the expected speed of convergence. A function is considered numerically stable if a
small (relative) change in the input leads to a small (relative) change in the output [TDB97].
We want to characterize the stability of the mapping p 7→ Op, i.e., we analyze the variation
of the displacement o = Op due to a change in the parameters p. In a numerically stable
deformation representation each deformation parameter pj should have about the same influence
on the resulting deformation Op. More formally, a change in genotype p 7→ p + δ leads to
a corresponding change in phenotype O(p + δ) − Op = Oδ. For a stable representation
the amount of phenotype change ‖Oδ‖ should depend on the amount of genotype change ‖δ‖
only—and not on the direction of δ in genotype space.

In our case of a linear function, the numerical stability is measured by the condition number of
the involved matrix:

κ(O) =
σmax

σmin
,

where σmax and σmin denote the smallest and largest singular value of the matrix O. In fact,
the condition number measures the ratio of maximum to minimum phenotype variation for unit-
norm genotype changes: ‖Oδmax‖ / ‖Oδmin‖, where δmax and δmin correspond to the maxi-
mum/minimum right singular vectors of the matrix O [GVL12].

It might be tempting to incorporate the fitness function f into the regularity criterion, for in-
stance by analyzing the numerical stability of the mapping p 7→ f(x + Op), but we cannot
assume analytic knowledge of the fitness function. It is known, however, that basic evolutionary
optimization perform better if all genotype parameters have a similar influence on the phenotype
variation. A few dominant parameters might slow down the optimization or otherwise require
sophisticated adaptation techniques.

As mentioned before, locality characterizes the convergence speed in evolutionary computa-
tion [WCT12, TR14]. Rothlauf proposes a definition of locality for discrete genotypes/pheno-
types in [Rot06]: ∑

dgx,y=dgmin

∣∣dpx,y − dpmin

∣∣ ,
where dgx,y defines the distance between the discrete genotypes x and y, dpx,y the distance be-
tween their discrete phenotypes, and dgmin and dpmin the minimal values of these distances. As-
suming genotype variations of equal amount (dgx,y = dgmin) the optimal/minimal locality is
achieved if the corresponding phenotype variations also have the same amount (dpx,y = dpmin).
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4.3 Improvement Potential

Using the condition number as a regularity criterion can therefore also be understood as a gener-
alization of the concept of locality from discrete genotypes/phenotypes to continuous optimiza-
tion.

Thus, we define regularity based on the condition number, but use the inverse in order to bound
the values to [0, 1], with 0 being the worst value and 1 the optimal value:

R(O) :=
1

κ(O)
=
σmin
σmax

. (4.5)

4.3 Improvement Potential

While a high variability allows the optimization to eventually find beneficial shape variations,
and a high regularity suggests that it does so rather efficiently, both criteria cannot guarantee that
the optimization performs well for the specific problem at hand—since both variability and reg-
ularity are agnostic of the fitness function. In the biological context several approaches identify
evolvability itself with adaptation potential or adaptation speed of a population to an environ-
ment, e.g. [Pig08]. But this definition is rather imprecise, since a population is called adapted as
soon as beneficial traits occur more often. Referring to technical optimization problems, where
the goal is to improve an initial solution, the third aspect of evolvability is improvement poten-
tial. This criterion is investigated for optimization in varying [BCCV09, TM14] as well as in
static [RM07] fitness landscapes. Estimating the improvement potential of a representation is
difficult due to, first, a lack of knowledge of the technical application, where information about
the fitness landscape may not be available at the beginning of an optimization. Second, it can
be computationally expensive, especially for industrial applications, if the local improvement
potential is tested during the optimization by additional data sampling [Aul11] and (surrogate)
modeling steps [MT10]. These drawbacks motivate the need for an alternative approach to de-
termine the improvement potential in design optimization.

In an optimization process some regions of the phenotype might already be close to optimal,
while other parts still have to be improved further. A successful representation should then allow
for and promote these particular required shape variations. Analyzing whether the representation
allows the optimizer to push the design towards beneficial configurations (larger fitness value)
requires knowledge of ascent directions in genotype space.

The direction that locally improves the fitness function the most is its gradient with respect
to phenotype parameters, i.e., ∇xf(x) := ∂f(x)/∂x. Since the analytic fitness gradient is not
known in most cases, we assume that at least an approximate gradient direction g is available, for
instance through learning from previous optimization runs or adjoint optimization approaches.

Given the improvement direction g, we measure how well the representation can approximate
it as Op. We proceed similar to Chapter 4.1, assume ‖g‖ = 1, and find the least squares
approximation error to be ‖(I−OO+) g‖2. Since g is normalized, this error is bounded from
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4 Definition of Evolvability Criteria for Linear Deformations

above by 1. To have the criterion in the intuitive range [0, 1], with 1 being the optimal value, we
define the improvement potential P (O) (for a given unit-norm improvement direction g) as

P (O) := 1−
∥∥(I−OO+

)
g
∥∥2

. (4.6)

The straightforward generalization to vector-valued deformation functions with an approximate
gradient matrix G, the Frobenius norm ‖·‖F , and‖G‖F = 1 is

P (O) := 1−
∥∥(I−OO+

)
G
∥∥2

F
. (4.7)

4.4 Summary

Based on the concept of evolvability we proposed three mathematical models for variability, reg-
ularity, and improvement potential for linear deformations or deformation matrices, respectively,
as our employed representations.

Variability is basically defined as the rank of the employed deformation matrix and regularity as
its condition number. Both measures are independent of the fitness function and can be linked
to the exploratory capabilities of the deformation setup. In contrast, improvement potential
employs fitness knowledge by measuring the approximation quality of a given estimated fitness
gradient. All three criteria are easy to compute and don’t require any further fitness evaluations,
which might be costly in real world application like automotive product design.

After having defined quantitative formulations for the three evolvability criteria variability, reg-
ularity, and improvement potential, we evaluate how well these criteria predict the true quality
and performance of different representation setups in two test scenarios in the following chapter.
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5 Evaluation of the Evolvability Criteria

In the previous chapter we proposed formulas for the criteria variability, regularity, and improve-
ment potential, for the evaluation of the performance of linear deformation setups in automotive
design optimization. But empirical evaluation of these criteria within an automotive design op-
timization scenario is impractical, since (1) the complicated fitness function inevitably requires
a computationally expensive and thus slow optimization process, and (2) no ground truth in the
form of an analytically known global optimum of the fitness function exists. Thus, we eval-
uate the definition of variability, regularity, and improvement potential in two simpler design
optimization test scenarios, which are 1D function approximation and 3D template fitting. We
perform our experiments on a customer computer Intel Xeon, 8x3.60GHz, with 8Gb memory.

The general evaluation process is as follows: First, random deformation setups are generated.
Second, the quality of the setups is computed. Third, the design is optimized for the different
setups. Finally, the correlation between quality of the setups (variability, regularity, and im-
provement potential) and the performance of the optimization (convergence speed and fitting
error) is computed. Ideally, our analysis reveals strong correlations for the quality criteria. En
passant we compare the different deformation methods (RBF, direct and indirect manipulation,
FFD, and shells) to each other to get deeper inside into their advantages and drawbacks.

We start the discussion of the simpler 1D scenario after which we analyze the more complex 3D
scenario like in our publication [RAMB16]. The author of this thesis designed the experiments,
implemented the CMA-ES, and interpreted the results. For a more efficient analysis a determin-
istic optimization approach by J. Achenbach, the second author of [RAMB16], was employed
to generate ground truth solutions for the evaluation of the evolutionary ones.
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5 Evaluation of the Evolvability Criteria

Deformation

X(1) = X+OP(1)

Deformation

X(2) = X+OP(2)

. . .

Example of evolutionary 1D function approximation 1D Test functionsp

Distorted test functions

Figure 5.1: The 1D function approximation scenario. Left: The initial plane X is deformed
via a linear deformation OP. E.g., the handle displacements P(1),P(2), . . . (red dots) of direct
RBF manipulation or shell deformation result in the deformed meshes X(1),X(2), . . . aiming to
improve the fitting accuracy to a target height field. Right: Our two test functions, the Giannelli
function from [GJS12] (left one) and a sine wave (right one) as well as distorted variants (below).

5.1 Test Scenario: 1D Function Approximation

As a first evaluation scenario we have chosen a least-squares function approximation problem.
Starting from a plane discretized by a regular grid of 150×150 vertices xi = (xi, yi)

T, we use a
deformation function o : R2 → R to approximate a given scalar height field, see Figure 5.1, left.
The two test functions to be approximated are a simple sine wave

s(x, y) = sin(π · (x+ y))2

with (x, y) ∈ [0, 1]2 and a more complex function used by Giannelli et al. [GJS12]:

s(x, y) =


1 y − x ≥ 0.5 ,

2(y − x) 0 < y − x < 0.5 ,

0.5 cos(4π · q0.5) + 0.5 q < 1
16 ,

0 otherwise ,

with (x, y) ∈ [0, 2]×[0, 1] and q = (x−1.5)2+(y−0.5)2, see Figure 5.1, right. We discretize the
target functions using the same 150× 150 points xi and define scalar height values si := s(xi).

The fitness function f(p) measures the least squares approximation error between the target val-
ues si and the current “design” op(xi), and has to be minimized with respect to the deformation
parameters p = (p1, . . . , pn):

f(p) =

m∑
i=1

(op(xi)− si)2 = ‖Op− s‖2 → min , (5.1)
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5.1 Test Scenario: 1D Function Approximation

center/handle distribution Generation of feasible FFD control grid

Figure 5.2: Example of random distributions of control points. Centers for RBF or handles for
shell deformations (left) are much simpler to distribute than random FFD control points. For
FFD we first distribute random points on the boundary of the bounding box of a design (middle)
and than randomize the inner points (right).

with s = (s1, . . . , sm)T. The deformation matrix O is defined according to either the indirect
or direct RBF method, FFD, or shell deformation, as shown in Equation (2.2), (2.5), (2.8), and
(2.10), respectively.

In this particularly simple optimization scenario the global optimum can directly be computed
equivalent to Equation (4.1), leading to popt = O+s and oopt = OO+s. We will use this
solution as a reference when evaluating the evolvability criteria, since this allows us to compare
the evolutionary solution to the analytic one.

In order to experimentally evaluate the evolvability criteria defined in Chapter 4, we generate a
large variation of RBF setups using different kernel types, different numbers of kernels, differ-
ent support radii, and direct or indirect manipulation. Additionally, we analyze FFD and shell
deformation to underline the generalization of our quality criteria for linear deformations.

To test the criteria regularity and the improvement potential we randomly generate 100 different
center distributions for each Wendland and triharmonic kernel function, where each distribution
consists of 25 centers. For the variability analysis we expand the tests to 50, 75, and 100 centers
per setup. In the case of the compact Wendland kernels we set the support radii s (identical for
all centers), such that each point xi of the design mesh is overlapped (and hence can be varied)
by at least l RBF kernels. We chose l to be 2, 5, and 15, such that we can distinguish between
more local (l = 2) and more global (l = 15) setups. We denote the triharmonic kernel with Tri,
the different Wendland kernels with Wl, and we use the abbreviations im/dm for indirect or direct
manipulation in the plots and tables later on. For shell deformation the random distribution of
handles is as simple as distributing RBF centers (Figure 5.2 left).

But for FFD the construction of randomized control grids without self-intersections is not straight-
forward. First, we construct randomized rectangular grid cells by placing the grid points partly
random on the bounding box of the initial plane (as depicted in Figure 5.2 center). Second, the
inner points are moved in a random direction at most 40% of the distance to the nearest neighbor
(Figure 5.2 right). This guarantees randomized grids without self-intersections. For the test of
regularity and improvement potential we utilize a 5 × 5 grid and for the variability analysis we
expand the tests to 7× 7, 9× 8, and 10× 10 grids.
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5 Evaluation of the Evolvability Criteria

Given a random set of centers/handles/grid points we then analyze how well our evolvability
criteria predict the actual performance of the design optimization. We compute the Spearman
correlation [Dan90] (using R [R C15]) between the variability/regularity/improvement potential
scores of the deformation setups and the quality/convergence speed of the design optimizations.
This stochastic test analyzes the monotonic correlation between two quantities and calculates
its significance (p-value). The intervals [0, 0.2[, [0.2, 0.4[, [0.4, 0.6[, [0.6, 0.8[, and [0.8, 1] are
classified as very weak, weak, moderate, strong, and very strong correlation [Wei15]. We in-
terpret p-values smaller than 0.01 as significant and report the p-values of the non-significant
test. Note that our evolvability criteria should be maximized (with 1 being the optimal value),
while the properties they characterize (e.g., fitting error, numbers of iterations) should be min-
imized. Hence, large negative correlations are better, but in order to simplify interpreting the
numbers using the above intervals, we negate all reported correlation coefficients, such that 1 is
the optimal value.

5.1.1 Results: Variability

Variability characterizes the potential for design space exploration, and is measured as the (nor-
malized) rank of the deformation matrix O, see Equation (4.4). Deformation setups with a high
variability are expected to result in more accurate fits.

In all our experiments the deformation matrices generated from random control point setups
have full rank n, such that the variability depends on the numbers of kernels, handles, or grid
points, but not on the type of basis functions and their placement (as long as the control points
do not coincide). We therefore increase the variability by adding more control points. Since
we characterize the potential for accurate fits, instead of the actual result of an evolutionary
process, we compute the optimal fitting errors using the analytic solution and thereby rule out
any negative effects of a randomized search.

The table in Figure 5.3 shows the correlation between fitting accuracy and variability, which is
significant for all tested functions. The triharmonic kernel and the widest Wendland kernel (W15)
show very strong correlations for both test functions. In contrast, the local Wendland kernel with
indirect manipulation (W2 im) only shows a weak correlation. The box-plot visualizes this trend
for the Giannelli test (Figure 5.3). A more spread fitting error for the local kernel W2 can be
observed compared to the kernel functions with larger support (compare W2, W5, W15). A
reason for this result is that local basis functions with a small support are very sensitive to the
random center distribution, whereas global kernels are more robust. For instance, the chance to
randomly place control points in already optimal regions, such they do not influence the fitting
result, is much higher for local basis functions. Hence, we can state that global kernels are
typically more accurate.

With our settings now we can support the assumption that a RBF deformation with linear pre-
cision (direct manipulation, Equation (2.5)) is superior to a RBF deformation without the poly-
nomial (indirect manipulation, Equation (2.2)) for local kernels, e.g., W2. In contrast, for a
global deformation setup (W15, Tri) the fitness scores are equivalent (compare W15/Tri im to
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5.1 Test Scenario: 1D Function Approximation

W2 im W2 dm W5 im W5 dm W15 im W15 dm Tri im Tri dm Shell FFD All

Giannelli 0.42 0.63 0.72 .85 0.88 0.91 0.88 0.87 0.63 0.70 0.68

Sine 0.36 0.66 0.45 0.74 0.83 0.83 0.94 0.93 0.66 0.60 0.53
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W2 im W2 dm W5 im W5 dm W15 im W15 dm Tri im Tri dm Shell FFD

Figure 5.3: Variability results for 1D function approximation. The table shows the Spearman’s
correlation between variability and the fitting error. For the widest Wendland kernel W15 and
for the triharmonic kernel the correlation is very strong. The box-plot visualizes the key trend
for the Giannelli test function, showing that a higher variability results in a better fit for a chosen
deformation method.

W15/Tri dm in Figure 5.3). We also note that the fitness scores of shell deformations is similar to
global triharmonic RBFs because the employed shell deformation minimizes a similar fairness
energy [BKP+10].

FFD is slightly worse than global RBF but comparable to local direct RBF and superior to local
indirect RBF. But, for FFD we only tested one spline basis function in contrast to the 8 different
settings for RBFs such that we can not state that one particular deformation method is generally
superior with respect to the fitting quality.

Analyzing all tests together reveals a strong correlation between variability and fitting error for
the Giannelli function. The correlations of the results for the sine function are very similar,
such that we omit their visualization and can generally conclude that higher variability results in
better fits.
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5 Evaluation of the Evolvability Criteria

5.1.2 Results: Regularity

Regularity is meant to estimate the expected convergence speed of an evolutionary algorithm and
is computed as the inverse condition number κ−1(O) of the deformation matrix, see Equation
(4.5). As the optimization algorithm of the fitting problem we use a (1,10)-CMA-ES of the
shark3.0 library [AH12] as we motivated before. We measure convergence speed by counting the
number of iterations until the optimization converges and we consider the algorithm converged
as soon as the optimizer reaches a fitness value that is within a 5% tolerance of the true analytic
solution.

Figure 5.4 shows the Spearman’s correlations for the sine and Giannelli test function and it
shows the plots of the regularity criterion against the number of iterations until convergence for
the different basis functions exemplary for the Giannelli test function. Only 3 out of the 20 tests
are not significant, according to our barrier of 0.01, and they are marked with the p-value in
brackets. Again, the resulting correlations for the Giannelli and the sine test function are very
similar, such that we omit the plot of the latter one.

For direct RBF manipulation of all Wendland kernels we observe a strong correlation between
regularity and convergence speed. For Triharmonic kernels and direct manipulation the corre-
lation still is moderate. This correlation becomes weaker for the indirect manipulation results.
When comparing indirect and direct manipulation according to their scores, Figure 5.4 (top left)
reveals that in the experiments direct manipulation setups have a better regularity and converge
faster than the indirect ones, which is in line with the results of [MOS06].

The relation of our regularity criterion with Rothlauf’s locality measure [Rot06] motivates the
analysis of Wendland kernels with different support radii. It can be observed in Figure 5.4 (top
right and bottom center) that more local kernels converge faster than more global ones, which is
also hinted at by their better regularity values.

However, the very low regularity scores for “global” Wendland and triharmonic kernels requires
further investigation. We assume that the overlapping of kernel functions has a large impact
on the regularity score. If no kernels overlap each other then an orthogonal deformation ma-
trix, which has optimal regularity, can easily be constructed with a uniform center distribution.
But, the more kernels overlap, the more they disturb each other, which reduce regularity dras-
tically, especially for truly global kernels. This assumption is supported by the link between
the condition number and the minimum angle among the columns of the deformation matrix. A
small minimum angle caused by a large overlap of kernels results in badly conditioned matri-
ces [CC08]. The direct manipulation approach repairs this effect to some extent. For example,
the variation of one parameter can affect centers, which are not linked to this parameter, for
indirect manipulation but not for direct manipulation.

The medium correlations and the plot of the shell tests (Figure 5.4 top left) are similar to the
direct Triharmonic RBF tests. Whereas, the weak FFD correlations are slightly above our sig-
nificance barrier. Although FFD has low regularity scores, the optimization converges rather
quick (Figure 5.4 top left) similar to the smaller indirect Wendland kernel (Figure 5.4 top right).
But these two basis functions result in rather low fitness scores as we have discovered during the
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W2 im W2 dm W5 im W5 dm W15 im W15 dm Tri im Tri dm Shell FFD All

Giannelli 0.58 0.71 0.55 0.74 0.33 0.78 0.35 0.57 0.45 0.26 (0.01) 0.91

Sine 0.53 0.71 0.52 0.71 0.35 0.81 0.08 (0.42) 0.52 0.59 0.23 (0.02) 0.91
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Figure 5.4: Regularity results for 1D function approximation. The table shows the correla-
tion between regularity and convergence speed (#iterations until convergence) with p-values in
brackets if the tested deformation function is not significant (threshold 0.01). The plots visual-
ize the trend curve for the Giannelli test function. Top left plot: Comparison of indirect/direct
RBF manipulation, FFD, and shells. Direct manipulation and shells have better regularity scores
and converge faster than the other methods. The other plots show a detailed comparison of in-
direct (top right) to direct RBF manipulation (bottom): Local kernels are preferable in terms
of convergence speed. In general, it can be observed that a higher regularity results in a faster
convergence.
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variability discussion (Figure 5.3) and one general reason for fast convergence is minor quality
of the results. Another source, that causes noise in the FFD experiments, is the smaller range of
regularity scores.

But still, FFD fits the trend of all other plotted basis functions in Figure 5.4 (top left), showing
a strong correlation between regularity and convergence speed for a range of different methods,
which is also confirmed by the Spearman’s coefficients in the table (last column).

The RBF, FFD, and shell tests show that the regularity criterion is a good indicator for the
convergence speed of a deformation representation. Our direct-vs-indirect RBF and local-vs-
global results are in agreement with results known from the literature [SKVS97, MOS06, Rot06,
WCT12, SMB12, TR14], stating that w.r.t. convergence speed direct RBF manipulation of local
kernels is best.

5.1.3 Results: Improvement Potential

The improvement potential estimates how much a given deformation setups can potentially im-
prove the fitness value, based on how accurate a given approximate gradient g can be reproduced,
as described in (4.6). We expect deformation setups that can approximate the direction g well to
result in solutions with a better fitness value.

To emulate this approximate knowledge of a beneficial direction, we define g to be a distorted
version of the true analytic gradient∇xf . For the computation of the gradient we blend the true
fitness function with a varied version, which—in our scenario—can be interpreted as a distortion
of the target to be fitted. Thus, we define a distorted sine wave as:

s(x, y) = sin(π · (x+ y + 0.5))2

and distort the Giannelli function through:

ŝ(x, y) =


1 y + x < 0.5 ,

2(1− y − x) 0.5 < y + x < 1 ,

0.5 cos(2π · q0.5) + 0.5 q < 1
4 ,

0 otherwise ,

with q = (x − 1.25)2 + (y − 0.75)2 as depicted in Figure 5.1 (bottom right). The distorted
fitness is then defined as f̂(p) =

∑m
i=1 (op(xi, yi)− ŝi)2. Given this variant we compute the

approximated gradient g with respect to the phenotype as:

g̃ = β
∇xf

‖∇xf‖
+ (1− β)

∇xf̂∥∥∥∇xf̂
∥∥∥ , g =

g̃

‖g̃‖
.

The blending parameter β models the “reliability” of the approximate gradient g, which matches
the exact gradient for β = 1. Here, we conduct our experiments with β = 0.75, which induces
distortion on the gradient according to a misleading target. In [RAMB16] we applied a constant
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5.1 Test Scenario: 1D Function Approximation
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Figure 5.5: Results of the analysis of improvement potential for 1D function approximation.
The table shows the correlation between improvement potential and the fitness (fitting error)
where all tests are significant (thus the p-values are omitted). The plots visualize the trend curve
for the Giannelli test function. Left plot: indirect RBF manipulation and FFD. Right plot: direct
RBFs and shells. It can be observed that global RBF kernels and shells lead to the best potential
scores and the best fitting results.

distortion in normal direction of the height field. But because such a simple distortion can be
exactly reproduced with the linear precision of the deformation methods, we applied the more
complex one here.

Before performing any tests we can state for RBFs without the polynomial term: For identical
center placement and kernel function the improvement potential for direct and indirect manipu-
lation is identical because:

P
(
ΦΨ−1

)
=
∥∥∥(I−ΦΨ−1

(
ΦΨ−1

)+)
g
∥∥∥2

=
∥∥(I−ΦΦ+

)
g
∥∥2

= P (Φ) .

The table in Figure 5.5 shows the Spearman’s correlation between our improvement potential
and the final fitting accuracy. Since we want to measure the potential for improvement, we mea-
sure the fitting accuracy by the distance to the (known) analytic solution. Since the (quadratic)
function approximation problem can be solved by setting the fitness gradient to zero, the corre-
lation is 1 if a precise gradient is known (β = 1), which is not shown. For a distortion (β = .75)
the correlation between our criterion and the resulting fitting error still is very strong but natu-
rally would decrease with β.

All results are significant for both test functions. The plots in Figure 5.5 depict the improve-
ment potential against the resulting fitting error, left for indirect RBFs and FFD, right for direct
manipulation and shells. It can be observed that the triharmonic kernel, the Wendland kernel
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. . .Deformation

X(1) = X+OP(1)

Deformation

X(2) = X+OP(2)

Figure 5.6: The 3D template fitting scenario: An initial sphere X is deformed via a linear
deformation function OP. The handle displacement P(1),P(2), . . . (red dots) results in the
deformed meshes X(1),X(2), . . . aiming to improve the fitting accuracy to a target scan.
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Figure 5.7: Variability results for 3D template fitting. The table shows the Spearman’s corre-
lation between variability and the fitting error. For the widest Wendland kernel W15 and for the
triharmonic kernel the correlation is very strong. The box-plot visualizes a similar trend as for
the 1D Giannelli test function, showing that a higher variability results in a better fit for a chosen
deformation method.

with largest support, and the shell deformation approximate the estimated gradient direction
best and also result in a better solution. Like at the variability discussion FFD is superior to
local Wendland kernels but not as good as the global ones or shells.

Overall, these results demonstrate that the idea of estimating the improvement potential by ap-
proximating an (approximate) fitness gradient works well even for imprecise gradient informa-
tion, which might very well be available in practical real-world applications.
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5.2 Test Scenario: 3D Template Fitting

In the previous 1D function approximation scenario we were able to analytically compute the
global optimum, which we exploited for the analysis of the evolvability criteria. The 3D template
fitting scenario described in this section is considerably more complex, since the fitness function
has many local minima and the global solution is not known. The goal is to fit a given triangle
mesh X (a sphere in our experiments) to a target face scan T using a deformation o : R3 → R3,
as depicted in Figure 5.6. The sphere model is discretized using m ≈ 10k vertices. The scan
consists of l ≈ 12k points. In contrast to the 1D function approximation problem, where each
point (x, y, 0)T on the plane corresponds to a point (x, y, s(x, y))T on the height field, there is
no such one-to-one correspondence between the vertices of the sphere and points of the scan.
Hence, the fitness function, which measures the approximation error between the two models,
computes distances between any point on the (deformed) sphere and its closest point of the scan,
and vice versa. These closest points are denoted by

cT(xi) = arg min
tj∈T

‖xi − tj‖ , cX(tj) = arg min
xi∈X

‖tj − xi‖ .

These closest-point-pairs vary during the iterative optimization depending on the deformed
sphere X(k) at iteration k. Adding a Laplace regularization term, which prevents over-fitting
and results in a higher surface quality, yields the (non-static) fitness function

f(P) =
1

m

m∑
i=1

∥∥∥xi + oP(xi)− cT

(
x

(k)
i

)∥∥∥2
+

1

l

l∑
j=1

‖tj − cX(k)(tj)‖2

+
wr
A

m∑
i=1

Ai ‖∆oP(xi)‖2 , (5.2)

where x
(k)
i denotes the i-th vertex of the mesh X(k). For the regularization term A =

∑m
i=1Ai,

Ai denotes the corresponding area of vertex xi (see Figure 2.7), and wr denotes the regulariza-
tion weight. For our purpose the simple regularization is sufficient (see [AZB15] for details and
extended discussions).

In the evolutionary setting, we again employ the CMA-ES of the shark library [AH12, IHMG08]
to minimize the fitness function (5.2). Since we cannot compute the analytic solution as a ground
truth reference for analyzing the evolvability criteria, we fall back to the gradient-based Gauss-
Newton approach of [AZB15] for computing the reference solution.

The analysis of the variability criterion with 64 (4×4×4), 125 (5×5×5), and 216 (6×6×6)
kernels/handles (grid points) confirms the findings of the previous section: Since the deformation
matrices have full rank, adding more control points directly increases the variability, which
correlates (very) strongly with the fitting accuracy, see Figure 5.7.

Analyzing the relation of our regularity criterion and convergence speed reveals mainly signifi-
cant correlations. For indirect RBF manipulation (triharmonic and widest Wendland kernel) and
FFD the results are clearly not significant because these tests were terminated between 20000
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Figure 5.8: The results of the regularity tests for 3D template fitting are similar to the 1D test
case. Although four tested functions are not significant (as the p-values depict in brackets) the
overall correlation between regularity and convergence speed (number of iterations) is significant
and strong. Moreover, direct RBF manipulation converges faster than indirect RBFs and local
kernels converge faster than global ones, FFD, and shells.

and 30000 iterations before they converged. The p-value is at the border for the shell defor-
mation. But the overall correlation is very strong and plotting regularity against numbers of
required iterations (Figure 5.8) shows the same trend as in the 1D function approximation sce-
nario, which confirms that our regularity formulation characterizes convergence speed even in
more complex scenarios. Moreover, the comparisons between indirect and direct RBF manip-
ulation, FFD, and shells strengthen the 1D results: Direct manipulation converges faster than
indirect manipulation (Figure 5.8, right), local kernels converge faster than global ones, FFD
converges slow, and shells converge similar to direct triharmonic kernels (Figure 5.8, left).

Because the 3D deformation leads to an (m × 3)-dimensional fitness gradient we utilize equa-
tion (4.7) for the computation of improvement potential. During the optimization procedure the
closest-point-correspondences change, which leads to an inaccurate gradient right after the first
iteration. Moreover, we compute an approximation of the initial gradient by omitting the regu-
larization term (wr = 0 in equation (5.2)) to evaluate the improvement potential. The correlation
between the improvement potential and the final fitting accuracy is significant for all deforma-
tion functions. All correlations are roughly moderate to strong for each function with an almost
very strong correlation for all tests together (table in Figure 5.9). The plot in Figure 5.9 again is
similar to the 1D scenario with equivalent conclusions: global RBF and shell fit better than local
RBF kernels. But contrarily to the 1D scenario, FFD shows very good fitting results. The results
demonstrate again that the approximate gradient information can be rather inaccurate and will
still lead to a valid prediction of the eventual fitness.
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Figure 5.9: The correlation between improvement potential and fitting quality is strong even
for a rough estimation of the fitness gradient in the 3D scenario. Like in the 1D tests local kernel
have a lower potential as well as a higher final fitting error than global RBFs and shells. But FFD
performs similarly good as these two deformations in contrast to the results in the 1D scenario.

Overall, the analysis of the 3D template fitting scenario confirms the results of the simpler 1D
function approximation setting: Our formulations of variability, regularity, and improvement
potential indeed represent reliable criteria for evaluating the quality of deformation setups.

Given the quality criteria the next step is their efficient optimization, which we discuss in the next
chapter. However, we highlight the conflict between regularity and improvement potential. The
variability score is constant for a given number of control points. But, regularity and improve-
ment potential depend on their distribution and on the employed basis function. The randomized
tests show that highly regular setups (e.g. local RBF kernels) have low improvement potential
scores and vice versa. Thus, we analyze this conflict and Pareto-optimal solutions next.

5.3 Summary

A smart representation design tremendously supports the efficiency of industrial product op-
timization. Inspired by the biological concept of evolvability we analyzed our mathematical
model for quantifying the quality of linear deformation representations. Our formulation is
based on the three characteristics variability, regularity, and improvement potential.

Our results confirm that increasing the variability of the deformation reduces the fitting error,
hence it improves the quality of the solution. Furthermore, our experiments show a significant
and strong correlation between regularity and convergence speed. And finally, the experiments
support that approximated gradient information yields significant correlations between improve-
ment potential and fitting accuracy.
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5 Evaluation of the Evolvability Criteria

Apart from the analysis of these three quality criteria a direct comparison between RBF, FFD,
and shell deformation has been targeted. In general all three methods result in similar fitting
quality. However, especially local RBFs had lower fitting scores than global ones. But, with
respect to convergence speed these local RBF and direct manipulation clearly out-performed the
other deformation functions.

Hence, the conflict between regularity and improvement potential is subject for further inves-
tigation in the next chapter. There we target the efficient construction of optimal compromise
setups for RBF deformations.
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6 Pareto-optimal RBF Centers

Our transformation of the concept of evolvability results in promising quality criteria for defor-
mation setups. Thereby, we are able to distinguish fast converging setups from slow converging
ones and we can rank setups according to their expected fitness improvement. Moreover, a di-
rect optimization of the setups is feasible to increase the algorithm’s convergence speed and
fitting quality. But, our analysis of the quality criteria revealed that variability, regularity, and
improvement potential are partly contradicting. For example, local RBF kernels result in faster
convergence but inferior fitting quality than global ones and vice versa. It never happened that a
setup could enable both: fast convergence and good fitting results. Thus, our next step towards
optimal setups is an analysis of optimal compromises computed with a multi-objective opti-
mization, where each objective consists of maximizing variability, regularity, and improvement
potential. Again, we call the optimization process of a setup as “setup construction” to clearly
distinguish from the design optimization process.

In real world applications designer-driven approaches still are applied to construct initial defor-
mation setups. The designer defines target regions where the design has to be varied/optimized
and places control points adapted to these regions. For example, in [SMB12] a FFD grid is
manually constructed and RBF kernels are manually set up. For basic automated deformation
setups commercial tools provide a uniform distribution of control points, e.g., a glider opti-
mization [CBG+14]. But these approaches lack the quality of a computational optimization
approach.

Originally, deformation representations are employed in scattered data approximation, e.g., for
approximating a target shape. In [BSJ11] the control points of non-uniform rational B-splines
are optimized by a gradient-based method to improve the approximation quality of a wing.
In [ZWS05, VGJS11] a uniform setup of a control grid is refined in sensitive regions, i.e., pa-
rameters are added, resulting in an improved approximation. Amoignon [AHN14] tackles the
problem that uniform control grids for FFD might have empty grid cells. Instead of adjusting
the grid to the design he deforms the design (e.g., wings) to completely fill out the grid. To
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obtain RBF setups that are adapted to a target, different basis functions are iteratively evaluated
and selected at fixed locations [WS98] or their location is being optimized [GY00, OBS04].
All these approaches are specialized to set up control points for approximating one fixed target.
Thereby, they neglect numerical properties of the deformation setup which are important for,
e.g., the convergence speed of an evolutionary optimization.

The representation setup of adaptive B-splines for an evolutionary design process is targeted
in [OJS01, YSTY16]. The optimization alternates between approximation of a shape and adap-
tation of the representation. To test whether an adjusted representation is beneficial for the
optimization this process is performed for a few iterations. Thereby the performance of a repre-
sentation is measured by the objective function of the actual optimization task. In [SIHE14] the
representation is optimized implicitly by adding its parameters to the approximation problem.
The criterion for a high-quality representation purely depends on the target of the optimization
omitting further aspects of this process like convergence speed.

This again motivates the application of our evolvability criteria definitions. These criteria ad-
dress the convergence speed and include target information or human knowledge. Based on
our model we analyze how to obtain high-quality center distributions efficiently in this chapter.
Although, we would have to perform a three-objective optimization it turns out that variability
is constant because we fix the number of kernels/centers. During our optimization tests of the
center distributions the deformation matrix always had full rank and thereby optimal variability.
Thus, we omit this criterion here.

As described in Chapter 2 the setup’s quality depends on the amount of parameters, where they
vary the design, and which kernel is employed. For a basic analysis of compromise setups, we
utilize RBF deformations with a constant number of identical kernels and omit the polynomial
term for direct manipulation for the following reasons.

(1) Although the convergence speed (Chapter 8) and fitting quality (Chapter 5) of FFD and
shell deformations is similar to RBFs, their computation is much more complex. The evaluation
of a vertex with an RBF kernel only requires the computation of one polynomial for indirect
manipulation. Additional, a low dimensional matrix has to be inverted for direct manipulation.
In contrast, shell deformation requires the inversion of a large (Laplace) matrix and FFD even
requires a Gauss-Newton algorithm for the computation of the local coordinates. Thus, the
computation of the deformation matrix is magnitudes faster for RBF deformation, which enables
the application of evolutionary optimization strategies for its optimization.

(2) The flexibility of RBFs enables the placement of different kernel types at the RBF centers
in theory. But, mixing different kernel types increases the difficulty to find general optimal
configurations and is in conflict with theoretical results which we utilize, e.g., [Wen04]. Thus,
we employ the same kernel at each center. Moreover, we omit the support radius as a free
parameter for Wendland kernels to prevent degenerated results, e.g., a radius of 0 or ∞. In
contrast to the previous section, where we computed the support radius such that each point of
the design is covered by a certain amount of kernels, we simply set it to a certain fix value.
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(3) Convergence speed and fitting quality of course depend on the number of employed param-
eters. But, infeasible settings would again lead to optimal results. For instance if each vertex
of a design would be a RBF kernel maximal improvement and maximal variability would be
achieved. Employing only one kernel, as the other limit, results in optimal regularity because
the maximal and minimal singular values are identical and thereby the condition of the defor-
mation matrix is 1. Thus we fix the number of parameters.

(4) For a proper comparison between kernel placements of indirect and direct manipulation
we omit the polynomial term. Otherwise, indirect manipulation would employ less kernels
than direct manipulation. The polynomial term is recommended only for triharmonic kernels
for numerical reasons [Wen04]. In our experiments leaving out the polynomial never caused
numerical problems and ensures that direct and indirect manipulation span the same design
space.

In essence, the target subject for optimization with respect to regularity and improvement po-
tential are the locations of the RBF kernels (or the RBF Center distributions). We start with
the analysis of Pareto-optimal solutions computed with the multi-objective algorithm NSGA-
II [DPAM02]. This leads to an estimation of the Pareto front as a ground truth. Although such
a multi-objective optimization results in many optimal center distributions, its high computa-
tion time motivates alternative optimization approaches. In application scenarios we are rather
interested in one particular compromise determined by the preference of a designer. There-
fore, we evaluate the CMA-ES as a weighted single-objective evolutionary optimization, which
reduces the computation time. For an even more efficient optimization process we evaluate
the quality of heuristic strategies (Lloyd and OLS sampling), which “optimize” (set) the cen-
ter distribution almost instantly. The proposed heuristics lack the quality of a computational
optimization algorithm. However, they provide good initial deformation setups to increase the
algorithm’s performance. The evaluation of the multi- and single-objective optimization as well
as the heuristics are published in [RAMB17, RMB17]. In the last part of this chapter we evaluate
a gradient-based deterministic optimization, which erases the random effects of the evolutionary
algorithms. We employ the heuristic OLS sampling with an implementation by J. Achenbach,
the second author of [RAMB17]. Its analysis and combination with the Lloyd sampling in the
context of evolvability, as well as the evaluation of evolutionary and deterministic optimization
approaches were conducted by the author of this thesis.

6.1 Multi-objective Evolutionary Optimization

In the first test scenario the target of the design optimization is the fit of an initial plane to a
height field, as shown in Figure 5.1 before. Instead of performing the actual fit, our goal now
is to construct a well-performing deformation setup, which is characterized by the distribution
of RBF centers. Note, that we optimize the numerical properties of the deformation matrix,
which are independent of the RBF centers, in Chapter 8. We compute the deformation matrix
O according to either indirect or direct manipulation, Equation (2.2) or (2.5), and optimize for
the conflicting targets regularity and improvement potential (Equation (4.5), (4.6)). To cover a

55



6 Pareto-optimal RBF Centers

 

 

 

 

 

 

 

 

 

 

 

 

Initialization

NSGA-II

CMA-ES

Heuristics

Lloyd sampling

OLS sampling

0 10.2 0.4 0.6 0.8
0

1

0.2

0.4

0.6

0.8

Improvement potential

R
eg

ul
ar

ity

Initialization

NSGA-II

CMA-ES

Heuristics

Lloyd sampling

OLS sampling

0 10.2 0.4 0.6 0.8
0

1

0.2

0.4

0.6

0.8

Improvement potential

R
eg

ul
ar

ity

Wendland kernel, s = 0.25

Indirect manipulation

Direct manipulation

56



6.1 Multi-objective Evolutionary Optimization

 

 

 

 

 

 

 

 

 

 

 

 

Initialization

NSGA-II

CMA-ES

Heuristics

Lloyd sampling

OLS sampling

0 10.2 0.4 0.6 0.8
0

1

0.2

0.4

0.6

0.8

Improvement potential

R
eg

ul
ar

ity

Initialization

NSGA-II

CMA-ES

Heuristics

Lloyd sampling

OLS sampling

0 10.2 0.4 0.6 0.8
0

1

0.2

0.4

0.6

0.8

Improvement potential

R
eg

ul
ar

ity

Wendland kernel, s = 0.5

Indirect manipulation

Direct manipulation

57



6 Pareto-optimal RBF Centers

 

 

 

 

 

 

 

 

 

 

 

 

Initialization

NSGA-II

CMA-ES

Heuristics

Lloyd sampling

OLS sampling

0 10.2 0.4 0.6 0.8
0

0.01

0.002

0.004

0.006

0.008

Improvement potential

R
eg

ul
ar

ity

Initialization

NSGA-II

CMA-ES

Heuristics

Lloyd sampling

OLS sampling

0 10.2 0.4 0.6 0.8
0

1

0.2

0.4

0.6

0.8

Improvement potential

R
eg

ul
ar

ity

Triharmonic kernel

Indirect manipulation

Direct manipulation

Figure 6.1: The Pareto front of NSGA-II (blue) and the initial random population (green) for
the 1D scenario. The red circles are the results of the weighted single-objective CMA-ES which
can out-perform the bi-objective NSGA-II. The orange diamonds refer to our combination of
the efficient Lloyd and OLS sampling, which alone result in very regular setups (dark grey) or
setups with a very good improvement potential (light grey), but their combination lacks quality.
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Figure 6.2: Optimized center distributions towards regularity are uniform for indirect manipu-
lation (top) but tends to be unintuitive for direct manipulation (bottom).

variety of kernel types, from rather local to global, we employ compact Wendland kernels with
a fix support radii s of 0.25 and 0.5, and global triharmonic kernels. We chose n = 25 centers,
each with two coordinates, which results in a 50-dimensional optimization problem.

We realize the multi-objective optimization with the NSGA-II algorithm of the shark 2.3 li-
brary [IHMG08] with the following settings: 100 individuals, tournament selection, polynomial
mutation rate with a probability of 1/50, crossover with a probability of 0.9, and 25000 itera-
tions. We initialize the algorithm with randomized center distributions and restrict the centers
to the initial plane ([0, 1]× [0, 2]) during the optimization. With these settings one optimization
run took approximately 2 days on the used computer: Intel Xeon, 8x3.60GHz, 8Gb memory.

In Figure 6.1 we plot the resulting Pareto front as blue dots for the three tested kernels with indi-
rect and direct manipulation, respectively. The green dots are the values of the initial population.
The tests indicate a smooth well-shaped Pareto front. For the local Wendland kernel the front
almost reaches the optimal value of 1 for regularity and improvement potential, respectively.
Note that the very low regularity values of the triharmonic kernel for indirect manipulation goes
along with our results of Chapter 5 and theoretical results in [Wen04]. However, these results
demonstrate that achieving the optimal regularity score of one is limited if we only optimize the
center distribution.

The results of Chapter 5 motivate global triharmonic or Wendland kernels (with a large sup-
port radius) for high improvement potential and thereby for very good fitting quality. This, is
again depicted in Figure 6.1 with the green random kernel distributions. But, optimizing these
distributions with NSGA-II leads to optimal improvement potential scores with only marginal
differences between the local Wendland kernels (support 0.25) and the global triharmonic ones
(Figure 6.1, blue dots). Hence, our general recommendation of global kernels for good fitting
quality becomes weaker now because an optimized local kernel can become better than a un-
modified global version and it is almost as good as a tuned global one.

Especially the center distributions maximizing either regularity or improvement potential, re-
spectively, are interesting because they can be computed through a single-objective optimization.
For indirect manipulation we obtain uniformly distributed centers (Figure 6.2, top) resulting in
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6 Pareto-optimal RBF Centers

Wendland, s = 0.5 TriharmonicWendland, s = 0.25

Figure 6.3: Target-adapted center distributions with optimal improvement potential. The com-
pact kernels are mainly placed in regions with locally high fitting error (yellow), whereas trihar-
monic kernels are placed less intuitive (blue).

maximal regularity, in agreement with [Wen04]. In contrast, the center distributions leading to
optimal regularity for direct manipulation are unpredictable (Figure 6.2, bottom), which shows
the advantages of an automatic procedure for distributing centers in contrast to a purely designer-
driven approach.

Center distributions with maximal improvement potential are adapted to the target height field
for the compact Wendland kernels (Figure 6.3). The distribution is denser in regions which have
to be deformed more. In contrast, centers for the global triharmonic kernel are not primarily
placed in these regions (Figure 6.3, right), which is unintuitive for a designer. This again em-
phasizes the demand for an automatic construction of setups instead of a purely designer driven
approach.

In the second test scenario we deform an initial sphere to closely fit the point cloud of a given
face scan (see Figure 5.6). Like in the height field approximation scenario we intend to set up
an optimal center distribution rather than performing the fitting. However, distributing centers
for template fitting is more complex because the sphere and the scan are embedded in 3D such
that each of the 25 centers consists of 3 coordinates, resulting in 75 parameters to be optimized.
We choose the initial distributions randomly on the initial sphere, restrict the search domain to
its bounding box [−1, 1]3, and choose support radii of 0.5 and 1 for the Wendland kernels. The
support radii are increased because the initial domain is larger than the domain of the function
approximation scenario. Apart from the mutation rate, which we set to 1/75 according to the 75
parameters, we perform the multi-objective optimization with identical settings as in the function
approximation scenario.

In Figure 6.4 we plot the Pareto front for the three kernel types with direct and indirect ma-
nipulation, respectively. These plots are qualitatively equivalent to the plots of the function
approximation scenario, compare to Figure 6.1. In the 1D scenario we restricted the centers to
the initial plane, which might be to restrictive for general applications. Hence, we skipped this
restriction for the 3D tests. However, the optimized distributions converge towards the sphere
as depicted in Figure 6.5. A reason for optimal RBF centers on the initial sphere is the stronger
causal relation between the deformation parameters and shape deformation. Although the vi-
sualization is cumbersome, a uniform arrangement of centers is derived for optimal regularity
and a target adapted one for the other end of the Pareto front, optimal improvement potential
(Figure 6.5).
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Figure 6.4: The Pareto front of NSGA-II (blue) and the initial random population (green) for
the 3D scenario. The single-objective optimization CMA-ES (red) out-performs the bi-objective
NSGA-II. The efficient Lloyd and OLS sampling alone result in very regular setups (dark grey)
or setups with a very good improvement potential (light grey), respectively. But their combina-
tion (orange diamonds) lacks the quality of a true optimization procedure like in the 1D scenario.
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Figure 6.5: The optimized center distributions in the 3D scenario converge towards the initial
sphere. Regularity-optimal centers are uniformly placed on/around the sphere whereas center
distribution with optimal improvement potential are partly clustered.

The multi-objective optimization in both test scenarios, height field approximation and template
fitting, runs up to 2 days, hence we target more efficient approaches for real-world applications.
Instead of computing the whole Pareto front we are rather interested in one particular setup
trading off regularity and improvement potential according to our preference. Therefore, we
employ a weighted single-objective optimization next and utilize the Pareto front as a ground
truth to test if this optimization is able to converge towards the front.

6.2 Single-objective evolutionary Optimization

The runtime of 2 days of a multi-objective optimization in our tests motivates alternative op-
timization approaches. Instead of computing the whole Pareto front the designer guides the
construction of trade-off setups between regularity and improvement potential by setting a pref-
erence λ ∈ [0, 1] based on their expertise.

By weighting Equation (4.5) and (4.6) we define an objective function fλ for a preference-based
single-objective optimization:

fλ(O) = λR(O) + (1− λ)P (O) . (6.1)

Because such a single-objective optimization might not converge to the Pareto front, we analyze
this in the following. As an optimization algorithm we choose a (25,100)-CMA-ES of the shark
2.3 library [IHMG08], we choose the preferences λ to be 0, 0.1, 0.2, . . . , 1 for Equation (6.1)
and run the optimization for 1000 generations. The optimization of a setup for one preference
took approximately 2 hours.
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Wendland, s = 0.5 TriharmonicWendland, s = 0.25

OLS samplingLloyd sampling

Figure 6.6: The Lloyd sampling results in a uniform center distribution independent of the
employed kernel. Heuristic OLS setups with high improvement potential are adapted to the
target. Wendland kernels are placed in regions with locally high fitting error (yellow) rather than
in already optimal ones (blue).

The results of the single-objective optimization in Figure 6.1 and Figure 6.4 are depicted with
the red circles. The clustering of solutions, e.g., Figure 6.1 and Figure 6.4 middle, shows that
uniformly distributed preferences λ do not result in uniformly distributed solutions along the
Pareto front. Therefore, a designer has to set the preference carefully. The single-objective
optimization converges towards the solutions of the multi-objective NSGA-II and even performs
slightly better because of its focus in one preferred direction. But, when focusing improvement
potential the CMA-ES seems to get stuck in local optima (Figure 6.4).

The existence of these local optima especially for improvement potential can be explained as
follows. Assume that all centers of a local Wendland kernel are placed beneath the plateau in
the upper left yellow region of the plane in Figure 6.3. Moving even some of them through the
already optimal blue region to fit the yellow peak in the center would increase the fitting error.
The condition number as the regularity criterion behaves much smarter. As shown in [MY09]
optimizing the condition number is a quasi-convex problem, i.e., a problem that can be approx-
imated by a sequence of convex problems. Because for each convex problem finding a global
optimum is relatively easy [BV04], we regard the optimization of regularity not as problematic
as the optimization of improvement potential where local optima exist.

All in all we have shown the feasibility of such a single-objective optimization for scenarios
where a designer is interested in a setup for one particular preference. The runtime of 2 hours
and local optima motivate efficient heuristics to distribute centers.

6.3 Heuristic Approaches

Heuristic methods aim to generate good center distributions in a robust and efficient manner.
They are analytically and geometrically motivated but lack the guarantee to be Pareto-optimal. In
our test scenarios a single-objective optimization still runs for hours and might get stuck in local
optima. Because we expect these drawbacks to become worse for more complex scenarios, e.g.,
with a more complex initial design or a larger amount of parameters, we propose and analyze
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Candidates for OLS OLS selection Farthest point fill-up Lloyd sampling

Figure 6.7: The combination of OLS and Lloyd sampling. Among a set of centers as candidates
(left most) the best (13) centers are selected with OLS (center left). Than the remaining centers
are placed with a farthest point sampling (center right) and adjusted with the Lloyd sampling
(right).

a geometry-motivated approach for very regular setups and an analytically motivated approach
for setups with high improvement potential.

Optimal center distributions targeting regularity are uniform distributions in our tests with in-
direct manipulation (Figure 6.2, top). Hence, we apply Lloyd sampling [Llo82] which is also
known as k-means clustering [Mac67], which results in uniform center distributions similar to
the regularity-optimal solutions (compare Figure 6.6, left most, and Figure 6.2, top). But the
Lloyd sampling is not bound to the surface of, e.g., the sphere in the 3D scenario. Thus, we
project the heuristically distributed centers to the sphere, which is inspired by the solutions of
the 3D scenario.

Comparing the regularity score of the resulting setup to the Pareto front (see Figure 6.1, Fig-
ure 6.4, dark grey diamonds) reveals that the Lloyd sampling is close to the front for local
Wendland kernels (s = 0.25 for the plane or s = 0.5 for the sphere). Uniform Lloyd sampling
results in good regularity even for direct manipulation. For the triharmonic kernel in the tem-
plate fitting scenario the heuristic even out-performs the multi- and single-objective optimization
(Figure 6.4, bottom right). According to Equation (4.5) regularity is the ratio of the smallest to
the largest singular value of the deformation matrix. For indirect RBF manipulation this singular
value is bounded by the separation distance, which measures the minimal distance between any
pairs of centers [Wen04]. The uniform Lloyd sampling by construction has a good separation
distance and thus results in good regularity. This sampling performs better than any tested ran-
dom distributions. It performs better than the evolutionary optimization in one test and it is fast
to set up (less than one minute).

Previously, we motivated improvement potential (Equation (4.6)) by solving the approximation
problem g = Op for an estimated fitness gradient g, the deformation matrix O, and the defor-
mation parameters p = (p1, . . . , pm). Each parameter pj is the coefficient for a kernel function
ϕj(x), which corresponds to a column Oj of the deformation matrix and to a center cj for in-
direct manipulation. The orthogonal least squares method (OLS, [CBL89, GY00]) determines
the influence of each parameter to minimize the approximation error to the estimated gradient
in a greedy manner. OLS ranks the parameters according to their influence and thereby ranks
the centers. Hence, given a set of candidate centers we can select the most important ones. We
initialize OLS with a large set of candidates, 30 × 30 on a uniform grid on the initial plane in
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2D (e.g. Figure 6.7 left), or 500 uniformly distributed on the initial sphere in 3D, and greedily
select the best k ones for approximation of the gradient information.

However, we cannot apply this procedure for direct manipulation because the interpolation
matrix Ψ−1 in Equation (2.5) disbands the correspondence between parameters and centers.
Because direct manipulation and indirect manipulation result in equal improvement potential
for identical center distributions, we simply apply this algorithm for indirect manipulation and
switch to direct manipulation afterwards. For the function approximation scenario we show that
target-adapted setups for the Wendland kernels in Figure 6.6 (center left, right) are similar to
the Pareto-optimal solutions in Figure 6.3. But for the global triharmonic kernels OLS results in
an unintuitive center placement (Figure 6.6 right). Nonetheless, the OLS setups are close to the
Pareto front or even hit it in both test scenarios (see Figure 6.1, Figure 6.4, light grey diamonds)
for the compact Wendland kernels. In conjunction with the small computation time of 1 minute,
OLS is very efficient.

We now combine both methods to construct compromise solutions of Equation (6.1) almost im-
mediately. The given preference λ ∈ [0, 1] weights regularity and (1− λ) weights improvement
potential. Thus, given n centers to be distributed we place rd((1− λ) · n) centers in a gradient-
adapted manner (using OLS) and rd(λ · n) centers in a regular manner (using Lloyd sampling).
Note that we round up in favour of improvement potential with the rounding operator rd. For
example, we distribute 25 centers with OLS for λ = 0, or we place 25 centers with the Lloyd
sampling for λ = 1, or we distribute 13 centers with OLS and 12 centers with Lloyd for λ = 0.5.
In general, we first distribute (rd(1− λ) · n) centers with OLS sampling and then distribute the
remaining rd(λ · n) centers with the Lloyd algorithm as depicted in Figure 6.7. We initialize
the Lloyd algorithm with the chosen OLS centers and fill up the remaining rd(λ · n) centers by
farthest point sampling [ELPZ97]: We add centers one by one such that they are as far away
as possible from all other centers. We run the Lloyd algorithm on these centers and keep the
OLS centers fixed. Because the Lloyd algorithm moves centers slightly off a curved domain, we
simply project these centers back.

Our approach of combining Lloyd sampling and OLS lacks the quality to construct Pareto-
optimal center distributions (Figure 6.1, Figure 6.4 orange diamonds). Furthermore, only n+ 1
compromises can be constructed this way, which especially for a small number of centers leads
to a very low resolution of the compromises. Nevertheless, the constructed compromise setups
are better than random ones, which makes them good candidates for the initialization of a single-
objective optimization.

Thus we analyze the evolutionary CMA-ES with heuristic initialization for the preferences λ =
0.0, 0.5, and 1 for Equation (6.1) in the 1D scenario. To increase the robustness with respect to
local optima we apply the standard settings of the shark library which leads to a (7,15) CMA-ES
for 25 centers/50 parameters. We terminate the optimization if a new result is only up to 0.1%
better than the average of the previous 50 iterations. This strategy gives a certain robustness
against an early termination of the randomized search.

In Figure 6.8 we show convergence plots of the fitness of the deformation setup O (for direct ma-
nipulation), either being solely improvement potential f0(O) = P (O), a compromise between
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Figure 6.8: A setup optimization with our heuristic initialization (solid lines) converges faster
and yields better values than the optimization with a randomized initialization (dashed lines).
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Figure 6.9: Comparison of heuristic (green) and random (red) initialization for the single-
objective optimization of the kernel distribution for three preferences. Heuristic initialization
leads to improved setups on average and results in less distortions.

improvement potential and regularity f0.5(O) = 0.5 · P (O) + 0.5 · R(O), or solely regularity
f1(O) = R(O). The fitness values are averaged over five trials. For each kernel the heuristic
initialization (solid lines in Figure 6.8) out-performs random initializations (dashed lines in Fig-
ure 6.8). The CMA-ES with heuristic initialization converges to better values, converges faster to
same values, or even converges faster and reaches better values than with random initializations.

Comparing the generated setups to the solutions computed with random initializations (Fig-
ure 6.9, red) reveals that a weighted single-objective optimization with heuristic initialization
(green) shows a very high performance, except for the values of improvement potential for the
triharmonic kernel, which are slightly worse (Figure 6.9 right). These results and the largely
superior performance of the single-objective optimization confirm the benefit of our proposed
OLS/Lloyd initialization for setup construction.

But, we also realize the effects of a randomized evolutionary search. Although, we already
utilize a heuristic initialization the optimal setups are still spread along the Pareto front. For
instance, if the focus is on regularity only, then the 5 tests result in setups with a large variance
in improvement potential (Figure 6.9, center/right).

Whether this variance becomes worse for a fine-grained preference analysis we analyze next.
We conduct the weighted single-objective optimization for 51 preference weights for each of
the three kernels (indirect manipulation only) in the 1D and in the 3D scenario. Like before, 25
centers are optimized on the 2D plane. But we optimize 75 centers on the 3D sphere to improve
the quality of the final fits later on. The color-coded weights in Figure 6.10 (light to dark) show
mostly well ordered results for the 1D tests. In contrast, the solutions for 3D are partly distorted
for the Wendland kernels and the optimized distributions are almost randomly ordered for the
triharmonic kernel. The low regularity score for these kernels might be one reason and again
shows the difficulty to obtain well spread solutions for equally distributed preference weights.

This noise might not effect a coarse analysis of three different preference weights, but for the
analysis of all 51 preferences we target an improved distribution of the compromise solutions.
We discuss a deterministic gradient-based optimization in the next section in order to exclude
the random effect of the employed evolutionary search.
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Figure 6.10: The solutions of an evolutionary single-objective optimization (CMA-ES) for 51
weights trading of between regularity and improvement potential. For the 1D scenario (left) 25
RBF centers and for the 3D scenario (right) 75 centers are optimized. The preference weight is
color-coded from a focus on regularity (light green) to improvement potential (black).
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6.4 Gradient-based Optimization

A non-deterministic evolutionary optimization for RBF center distributions leads to random-
ized results, which disturbs a fine-grained preference analysis. This motivates a deterministic
gradient-based optimization, which is able to reduce this noise. Such an optimizer requires the
gradient (see, e.g., [BV04]), which consists of the partial derivatives of the objective function
(Equation (6.1)) with respect to the parameters, which are the x, y, z-coordinates of the RBF
centers cj . Thus, we have to compute the partial derivatives of regularity and improvement po-
tential (Equations (4.5), (4.6)). We add an additional distance function to constrain the centers
to the desired design areas. Here, we just calculate the partial derivatives ∂fλ/∂cj,x for the x
coordinates of the centers because the calculus of the other partial derivatives is analogue. We
employ indirect manipulation for an easier computation of the partial derivatives such that the
deformation matrix equals:

Oi,j = ϕ(‖cj − xi‖2) .

Note that the computation of partial derivatives for direct manipulation is possible by solving:

0 =
Ψ−1Ψ

∂cj,x
=

Ψ−1

∂cj,x
Ψ +

Ψ

∂cj,x
Ψ−1 for

Ψ−1

∂cj,x
x.

First, we start with the calculus for regularity:

∂R(O)

∂cj,x
=

∂

∂cj,x
κ−1(O) =

∂

∂cj,x

σ1

σn

where we compute the derivative of the condition number of a matrix O for which we require
its singular value decomposition (SVD):

O = UΣVT

with Σii = σi being the singular values (σ1 ≤ · · · ≤ σn), U = (u1 . . .un) being the matrix
of left-singular vectors, and V = (v1 . . .vn) being the matrix of right-singular vectors (Σ ∈
Rn×n,ui ∈ Rm,vj ∈ Rn). Assuming m ≥ n, which means the number of center is not larger
than the number of vertices of the design, we compute the derivative of a singular value σk with
respect to an entry of the matrix Oi,j following [PL00] as:

∂σk
∂Oi,j

= uikvjk .

With the chain and quotient rule we obtain the partial derivative of regularity as:

∂R

∂cj,x
=

∂

∂cj,x

σ1

σn

=
1

σn

m∑
i=1

∂σ1

∂Oi,j

∂Oi,j

∂cj,x
− σ1

σ2
n

m∑
i=1

∂σn
∂Oi,j

∂Oi,j

∂cj,x

=
1

σn

m∑
i=1

ui1vj1
∂Oi,j

∂cj,x
− σ1

σ2
n

m∑
i=1

uinvjn
∂Oi,j

∂cj,x
(6.2)
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with ∂Oi,j

∂cj,x
being the derivative of the kernel function ϕ, which is computed as follows for the

triharmonic and Wendland kernels (ϕtri, ϕW ):

∂Oi,j

∂cj,x
=
∂ϕtri(‖cj − xi‖2)

∂cj,x

=

{
2 log((‖cj − xi‖2)− 1)(cj,x − xi,x) for 2D domains
3 ‖cj − xi‖ (cj,x − xi,x) for 3D domains

∂Oi,j

∂cj,x
=
∂ϕW (‖cj − xi‖2)

∂cj,x

=

{
20
s2

(1− 1
s ‖cj − xi‖2)3(cj,x − xi,x) for ‖cj − xi‖2 < s,

0 otherwise.

Second, we compute the derivative of improvement potential. According to Equation (4.6) we
would have to derive the pseudo-inverse O+ of a matrix. But we note that Equation (4.6) was
computed from:

P (O) = 1−min
p
‖Op− g‖22 =: 1−min

p
P ∗(O,p) .

Thus, instead of computing the derivative of P (O) with respect to the center positions we com-
pute the derivative of P ∗ with respect to the centers and the parameters p = (p1, . . . , pk)

T . This
leads to the following calculus:

∂P ∗

∂p
= 2(Op− g)TO

∂P ∗

∂cj,x
= 2

m∑
i=1

n∑
k=1

[Oi,kpk − gi]
∂Oi,j

∂cj,x

(6.3)

Third, in many design scenarios the center distribution is restricted to certain design regions
leading to a constrained optimization problem for which we model soft constraints. Rectangular
areas are sufficient for our test scenarios such that each coordinate is bounded from below and
above, e.g., bj < cj < bj . For our tests the following exponential error function C for a
constraints works well:

C(cj) = e‖δcj‖
2
2 − 1 with (6.4)

δcj,x|y|z =


cj,x|y|z − bj,x|y|z if cj,x|y|z > bj,x|y|z

cj,x|y|z − bj,x|y|z if cj,x|y|z < bj,x|y|z
0 otherwise.

The derivative of this function with respect to a coordinate of the center cj,x equals:

∂C(cj)

∂cj,x
= 2 · e‖δcj‖

2
2δcj,x . (6.5)
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In the 3D scenario we restrict to the center distributions to the initial unit sphere. A 3D point x
is parameterized with spherical coordinates, the angles α and β, as follows:

x =


x

y

z

 =


cos(α) sin(β)

sin(α) sin(β)

cos(β)

 .

Thus, the partial derivatives depend on the angles α, β resulting in an extended calculus. The
derivative of the spherical coordinates is computed as follows:

∂x

∂α
=

∂

∂α


x

y

z

 =


− sin(α) sin(β)

cos(α) sin(β)

0


∂x

∂β
=

∂

∂β


x

y

z

 =


cos(α) cos(β)

sin(α) cos(β)

− sinβ

 .

And according to the chain rule ∂Oi,j/∂ci,x in Equation (6.2), (6.3) has to be multiplied with:

∂ci,x
∂αi

+
∂ci,x
∂βi

= − sin(αi) sin(βi) + cos(αi) cos(βi) (6.6)

Note that ∂Oi,j/∂ci,y|z are computed analogue and that the domain of the angles is not bounded.
This calculus is only applied for the 3D scenario.

For the 1D scenario we add the constraints leading to the following objective function:

f∗λ(O,p) = λR(O) + (1− λ)(1− P ∗(O,p)) + wc

m∑
i=1

C(cj) (6.7)

and its derivative (according to Equation (6.2), (6.3), (6.5)) for a gradient method to optimize
the RBF center distribution for a given preference λ and a weight for the soft constraints wc
(wc = 100 in our examples). Note that if centers violate constraints after an optimization
procedure we project them to the valid area and compute the final fitness of this configuration.
For the 3D tests we omit the constraints, but employ spherical coordinates through Equation
(6.6) for the partial derivatives.

Like before, we evaluate the optimization of the RBF center distribution in the 1D test scenario
first where we optimize centers in the plane for a preference weight. As we have shown in the
previous section a smart initial center distribution constructed with the Lloyd and OLS sampling
already improves the quality of an evolutionary optimization process thus is utilized as initial-
ization here. We optimize centers for the preferences λ = 0, 0.25, 0.5, 0.75, 1 for a first basic
analysis, and compare the gradient-based BFGS [Fle13] method with CMA-ES [AH12] for the
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Table 6.1: Table: Comparison of the fitness and computation time (in seconds) of center distri-
butions optimized with BFGS and CMA-ES. In 14 out of 15 tests BFGS results in higher fitness
than CMA-ES on average. The BFGS results marked with + are better than the the best CMA-
ES trials, whereas a − indicates a worse BFGS result than CMA-ES on average. The other case
is marged with o.

Wendland kernel (0.25)

BFGS CMA-ES average CMA-ES best

Preference Fitness Time Fitness Time Fitness Time

λ = 0 0.99711+ 82 0.99519 82 0.99541 85

λ = 0.25 0.89456+ 132 0.89237 244 0.89329 257

λ = 0.5 0.87519+ 133 0.87212 226 0.87390 228

λ = 0.75 0.90791+ 89 0.90576 155 0.90895 170

λ = 1 0.98054o 124 0.97610 111 0.98117 138

Wendland kernel (0.5)

λ = 0 0.99740+ 86 0.99643 51 0.99652 54

λ = 0.25 0.83669o 233 0.83165 357 0.83981 388

λ = 0.5 0.70837+ 294 0.70332 329 0.70652 429

λ = 0.75 0.57481o 307 0.57016 270 0.57486 240

λ = 1 0.44792o 143 0.44716 262 0.45212 402

Triharmonic kernel

λ = 0 0.99229− 251 0.99286 139 0.99392 153

λ = 0.25 0.74686+ 247 0.74466 95 0.74487 103

λ = 0.5 0.49741o 187 0.49736 81 0.49750 89

λ = 0.75 0.24983+ 178 0.24969 93 0.24976 92

λ = 1 0.00326o 570 0.00316 809 0.00334 1027

two compact Wendland kernels (support s = 0.25 and s = 0.5) and the global triharmonic ker-
nel. For both optimization methods we use the shark library [IHMG08] with basic settings. For
the CMA-ES we use the basic Equation (6.1) and add the constraints (6.4) as the fitness function
and for BFGS we use the equivalent Equation (6.7) as fitness. 25 centers have to be optimized
in the tests, which results in a 50 dimensional problem. Both optimization methods terminate
if the average fitness of the setups of the last 50 iterations is only improved by less than 0.1%.
Because the solutions of an evolutionary algorithm are partly random, we perform 5 runs for
each preference weight and kernel for them.

The resulting fitness values and the computation time is shown in Table 6.1. Fitness values
with a + point to a BFGS solution that has a better quality than any CMA-ES solution, values
with a o mean that the solution of BFGS is better than the average of CMA-ES, and fitness
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Figure 6.11: The solutions of a gradient-based single-objective optimization (BFGS) for 51
preferences weights trading of between regularity and improvement potential. The preference
weight is color-coded from a focus on regularity (light green) to improvement potential (black)
and the previously computed solutions of a evolutionary algorithms are depicted in grey.
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6 Pareto-optimal RBF Centers

values with − mark a BFGS solution that is worse than the average CMA-ES result. The table
shows that the BFGS solver results in better setups than the CMA-ES on average in all but one
test. Comparing the computation time reveals that the BFGS converges faster for the Wendland
kernel with support 0.25. Figure 6.11 visualizes the quality of the resulting trade-offs between
regularity and improvement potential. The main drawback of the CMA-ES is the clustering of
solutions and the distortions of the order for preferences. The deterministic approach overcomes
these issues only partly. For the 1D scenario (Figure 6.11 left) the curve of the BFGS solutions
has higher quality (i.e., better solutions and less outlier) as the curve of the CMA-ES (shaded
in grey, compare to Figure 6.10) for the Wendland kernels. For triharmonic kernels the result-
ing quality of both algorithms is similar in the 1D scenario. For the 3D scenario (Figure 6.11
right) the smaller cluster of solutions with high improvement potential motivates the applica-
tion of BFGS. The solutions for triharmonic kernels are very noisy in 3D for both algorithms.
The plots clearly demonstrate the existence of local optima, e.g., the CMA-ES with a focus on
improvement potential results in higher scores than BFGS. Thus, we are well aware that the fol-
lowing preference analysis for the 3D test case, especially for the triharmonic kernel, might be
very noisy. Nonetheless, we apply the deterministically generated compromises for the prefer-
ence analysis in the next chapter because they are improved compared to the CMA-ES solutions
although only by a small margin.

6.5 Summary

The initial representation setup is crucial for the performance of an evolutionary optimization
process. We analyzed the generation of RBF deformation setups for evolutionary design opti-
mization for two test scenarios. The concept of evolvability reveals powerful criteria for setups,
namely variability, regularity, and improvement potential, to measure the expected performance
of a setup. Regularity and improvement potential are conflicting targets, which we therefore an-
alyze with a multi-objective optimization. As downside this optimization process has a runtime
of 2 days for our comparatively simple test scenarios.

In real-world applications we rather aim for one optimal deformation setup with respect to a
user-specified preference between regularity and improvement potential. Thus, we avoid the ap-
plication of a multi-objective algorithm and employ a weighted single-objective version to con-
struct compromise setups. We demonstrated the feasibility of such a weighted single-objective
optimization. For some tests the quality of the deformation setup is even better than the quality
of setups optimized with a multi-objective algorithm. This process is much faster, but it still runs
for 2 hours for our simple problems. Furthermore, the single-objective optimization gets stuck
in local optima in some of our tests.

In order to further improve computational performance and robustness we proposed and ana-
lyzed heuristics to generate setups. The regular setups constructed by Lloyd sampling are close
to the Pareto front for local Wendland kernels. Even for direct manipulation where we lack the
geometrical motivation, the regularity of the setup is significantly better than a random initializa-
tion. The Lloyd sampling even out-performs the evolutionary solutions in one example. Center
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6.5 Summary

distributions constructed with orthogonal least squares have high improvement potential and are
on or very close to the Pareto front in all tests. Both methods reduce the computational effort
from 2 hours to 1 minute.

Although our proposed combination of Lloyd and OLS sampling lacks the quality of truly op-
timized distribution of centers, they are efficiently constructed with these heuristics and thereby
they are suitable for initializations. With these initializations we increased the resulting quality
of an evolutionary optimization procedure.

But still, the random distortions resulting from a single-objective evolutionary algorithm distorts
the order of solutions for different preferences. E.g., a solution optimized for high weight for
regularity does not have a higher regularity score than a solution optimized for a minor weight for
regularity. To overcome this issue we tested a deterministic gradient-based approach. This was
successful in the 1D scenario. But for the more complex 3D template fitting the solutions are still
distorted. This might negatively effect a detailed preference analysis for dynamic optimization
scenarios in the next chapter.

77
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Design Optimization

The initial deformation setup has a strong impact on the performance of the optimization pro-
cess as shown before. The setup’s potential performance can be well estimated through our
interpretation of the concept of evolvability, which we quantified by the three sub-criteria vari-
ability, regularity, and improvement potential. The concept of evolvability can not only be used
for analyzing existing setups, but also for their initial construction. In this case, we (evolution-
ary) optimize the deformation setup itself. Since our shape deformation framework is based on
RBFs, setup optimization means to determine where on the shape to place RBF kernels. The
inherent conflict between regularity and improvement potential can be resolved by letting the
designer choose a compromise weight and performing a weighted single-objective optimization
with respect to these two objectives.

Ultimately, for a high-performing design optimization process, the deformation representation
has to be able to adapt to dynamic environments, such as, e.g., varying fitness environments
induced by varying angles of attack in a CFD simulation. In dynamic environments the inter-
play between exploration and exploitation, which is covered by evolvability, is key for high-
performance as motivated in Chapter 3. Improvement potential defined as the potential of the
deformation setup to exploit extracted (gradient) information clearly refers to exploitation. But
the quite general, information-independent definition of exploration [CXP+09] leaves room for
interpretation: variability as well as regularity can be associated with this. But, our definition
of variability in Chapter 4 is independent of the RBF center distribution, such that any defor-
mation setup has equal variability for a fixed amount of even different kernel functions. In
contrast, regularity-optimal RBF setups are uniform for indirect RBF manipulation. This fits
a genotype-based definition of exploration where a wide-spread genotype (large distances be-
tween the centers in our example) characterizes exploratory nature. Thus, we link regularity
with exploratory capabilities of the deformation setup.
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Adaptation Optimization

Adaptation Optimization · · ·

Target

Current information
on the target

Figure 7.1: Example of a stepwise design optimization process where the representation (RBF
kernel distribution, red dots) is adapted in its domain (plane) according to information on the
target (color coded estimation of the fitness gradient).

We first perform the next step towards a truly dynamic evolutionary design optimization: In a
static design optimization (non-varying fitness function or design target) we alternate between
setup optimization/construction (where to place RBF kernels?) and design optimization (which
RBF coefficients to use for shape deformation?). As illustrated in Figure 7.1 we split the design
optimization process into the two parts, an adaptation phase, i.e., the construction of the setup,
and an optimization phase of the design.

Tuning a deformation setup towards improvement potential requires a rough estimate of the fit-
ness function’s gradient. While in later adaptation stages this information can be extracted from
previous design optimization phases (see Figure 7.1), the gradient estimate for setting up the
initial representation typically comes from expert knowledge. Both gradient information might
be out-dated or inaccurate. Hence, the deformation setup must be able to exploit accurate infor-
mation while at the same time be robust against inaccurate information. We analyze different
preference weights for setup optimization and show that an intermediate preference between
regularity and improvement potential meets these two requirements. These results are published
in [RMB17].

In the second part of this chapter we extend the coarse preference analysis to a fine-grained one
for dynamic scenarios. Based on the strength of a change in the fitness function a designer has
to gauge exploration (regularity) and exploitation (improvement potential) accordingly. E.g., in
an almost static environment a focus on exploitation should be chosen whereas for a strongly
changing environment exploration should be the choice. We first measure the strength of the
change in the fitness function and then analyze optimal preferences to construct the deformation
setups for several classes of shifts ranging from almost static environments to strongly changing
ones.

But, the strength of a dynamic shift can be interpreted differently as reliability/accuracy of in-
formation. If the information about a fitness environment is reliable or accurate, such that a
designer trusts this information, then it should be exploited for the construction of the deforma-
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7.1 Static Design Loop

tion setup. But, if the fitness information is not reliably or inaccurate an exploratory approach is
more appropriate.

7.1 Static Design Loop

Not only a dynamic problem, but also a static one is enhanced by a deformation representation
that can react and adapt to gathered information. We alternate between the optimization of the
deformation setup (adaptation phase) and the optimization of the design (optimization phase) as
a first step towards a dynamic optimization, similar to [Aul11, OJS01, YSTY16]. To evaluate the
exploitation potential we require information about the targeted design (i.e. the fitness function).
Initially, we employ a rough manual estimation of the target design. Otherwise, we extract such
information during the design optimization process without an additional data mining process.
Because exploration and exploitation are competing targets we analyze different preferences to
weight them, like in [ANMD16], where three different preferences (0, 0.5, and 1) are analyzed
for competing targets in topology optimization.

During a non-converged design optimization process we expect that a previously successful vari-
ation, i.e., the difference between the design before (X) and after (X′) some optimization steps,
will be successful in the next steps, too. Thus, we evaluate the results of a design optimization
after a fixed number of iterations k (shown in Figure 7.2) and use the difference between the
vertex positions xi of the initial design and the result after k iterations x′i to compute a new
estimation of the gradient (following the approach in [GMH+08]). Without loss of generality
we assume a one dimensional deformation of the n points. Thereby, one coordinate xi of each
vertex xi is deformed and we define the estimation of the gradient g = (g1, . . . , gn) as:

ĝi = (x′i − xi)3, g =
ĝ

‖ĝ‖2

Note that for deformations of higher dimension the gradient becomes a Jacobian matrix. In this
case we apply the above formula for each dimension/coordinate and use the Frobenius norm for
normalization. We compute cubic differences for three reasons: First, they preserve the sign
of the displacements. Second, linear differences as displacements can be exactly reproduced
with the previous center distribution. Hence, a focus purely on improvement potential with
these displacements as the estimated gradient would choose the previous centers for the next
phase, which would keep the centers fixed. The cubic leads to gradient estimations that cannot
be exactly approximated by the old center distribution, thus leading to a varied distribution.
Third, during a design optimization process the fitness gain of well-shaped design regions may
dominate a small loss of fitness resulting from poorly shaped regions. The resulting deformations
in poor regions are smaller than in well-shaped regions, but they still would be incorporated into
the new gradient. Thus, the cubic power scales down the small displacements of bad regions and
emphasizes larger displacements of well-shaped regions.

The computation of the gradient based on the last k iterations allows us to intentionally forget
information. If the old information still was good then the new gradient will be similar to the
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Color coded accurate
gradient information

30 iterations 90 iterations 150 iterations

Compromise
setup

Figure 7.2: Stepwise design optimization initialized with accurate gradient information in the
beginning. A compromise preference between improvement potential and regularity is chosen
for setup adaptation, leading to good fitting quality and convergence speed.

Target Accurate gradient Erroneous gradient

Figure 7.3: Sketch of an accurate gradient direction derived from the target and an erroneous
gradient which completely ignores the peak in the target.

old one, such that there will not be a negative effect. But old information may dominate new
one, e.g., the changes in the design are rather large in the beginning of an optimization process
compared to later stages. This effect is avoided when analyzing just the last k iterations. In our
tests we set k to 30 (for 1D function approximation) and 50 (for 3D template fitting) to reduce
random effects in the beginning of a design optimization process.

First, we start with the stepwise design optimization for the 1D height field approximation sce-
nario, where we evaluate the three different preference weights (λ = 0, 0.5, and 1). The design
optimization process alternates between setup construction and optimization of the fit. Like
before, we distribute 25 RBF kernels with two coordinates with a (7,15)-CMA-ES for the con-
struction of the setup. For the following fitting we optimize the 25 RBF parameters with a
(6,13)-CMA-ES. The number of parents and offspring results from the default settings of the
shark library. We perform the fitting for k = 30 iterations and alternate with the setup construc-
tion five times, which we denote as one test (see Figure 7.2). Each test took approximately 40
minutes on an Intel Xeon, 8× 3.60 GHz, with 8 GB of memory.

To reduce the random effects of the optimization of the setup and the optimization for the fit we
perform five tests for each of the three kernel functions (Wendland kernel with support radius
0.25 and 0.5, and the global triharmonic kernel) and each of the three preference weights (λ =
0, 0.5, 1). First, we analyze the optimization process with exact gradient information for the
initial setup generation (Figure 7.2). But in a real-world optimization scenario such accurate
information typically is not available. To simulate such a scenario we intentionally feed the
initial setup generation with an erroneous gradient estimation. In Figure 7.3 we sketch such an
estimation compared to the accurate gradient direction.
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7.1 Static Design Loop

Table 7.1: The regularity for the setups during a design optimization process. The very low
values (red) of a setup purely optimized for improvement potential with a triharmonic kernel
characterize a slow converging optimization process.

Preference Iteration

0 30 60 90 120

Wendland
kernel,
s = 0.25

λ = 0 0.486 0.244 0.151 0.054 0.152

λ = 0.5 0.862 0.787 0.735 0.690 0.767

λ = 1 0.974 0.977 0.978 0.979 0.977

Wendland
kernel,
s = 0.5

λ = 0 0.268 0.105 0.098 0.075 0.089

λ = 0.5 0.618 0.757 0.640 0.625 0.687

λ = 1 0.824 0.848 0.813 0.813 0.809

Triharmonic kernel

λ = 0 0.052 0.041 0.031 0.028 0.029

λ = 0.5 0.578 0.580 0.374 0.536 0.444

λ = 1 0.596 0.596 0.596 0.597 0.596

In the case of accurate gradient information we expect that a preference λ = 0, i.e., a focus on
exploitation, results in the best fitting values because the resulting center distribution is adapted
to best fit the features (plateau and peak) of the target. A distribution tuned for regularity (λ = 1)
might explore the design space more, but has centers in already optimal regions. An intermediate
preference (λ = 0.5) combines both, the potential to exploit information and to explore.

For the Wendland kernel with small support, the intermediate preference results in fitting val-
ues almost as good as for λ = 0 (Figure 7.4, top left). For the larger Wendland kernel, the
intermediate preference is on par with a preference on improvement potential (Figure 7.4, left),
and for triharmonic kernels it even out-performs this preference (Figure 7.4, bottom left). As
shown in Table 7.1, a preference of 0.5 results in setups with good regularity values, significantly
better than a preference of 0 and on a similar level with a preference of 1. Because regularity
characterizes the convergence speed, a triharmonic kernel in combination with a preference of 1
converges slowly. An intermediate preference guarantees both: a good fitting quality (exploita-
tion) and good regularity with the potential to explore a design.

In complex design optimization scenarios we have to base the estimation of the gradient infor-
mation either on designer’s input according to an expected target or on data from previous tests.
For example, in Figure 7.5 we set the estimated gradient according to a variation of the plateau
that a designer manually specified, intentionally ignoring the peak in the middle. In such sce-
narios the optimization process should be able to explore further design regions. But a focus
purely on improvement potential/exploitation would relentlessly construct center distributions
according to this misleading estimation of the gradient.

For example, in Figure 7.5 (top) the centers are only placed near the plateau during the whole
design optimization process. Choosing a compromise between improvement potential and regu-
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Wendland kernel, s = 0.5

Triharmonic kernel

Figure 7.4: Convergence plot for the stepwise optimization procedure for the 1D scenario ini-
tialized with accurate gradient information (left) and an estimated version (right). Accurate
information and an intermediate preference (solid purple lines) results in good fitting quality
for Wendland kernels (top and center, left) and out-performs a pure focus on exploitation for
triharmonic kernels (bottom left). An adaptive process (solid lines, right) performs better than
a non-adaptive process (dashed lines, right). Choosing an intermediate preference (solid purple
lines, right) handles the coarse estimation of the gradient and out-performs a pure preference
focus on improvement potential (solid red lines, right) or regularity (solid blue line, right).
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Color coded erroneous
gradient information

30 iterations 90 iterations 150 iterations

Gradient adapted
initialization

Color coded erroneous
gradient information

Compromise
setup

Figure 7.5: Design optimization with an erroneous estimation of the initial gradient given by
a designer (left). Top: Adapting purely to improvement potential “exploits” the misleading
erroneous gradient information, resulting in fits of low quality. Bottom: A compromise between
improvement potential and regularity manages to repair the initially misleading gradients.

larity results in center distributions that are more spread on the domain and thereby can explore
the design space better. Thus, the estimation of the gradient extracted during the next design
optimization phase is more accurate for the following adaptation phase. As a consequence, the
center distribution has a higher quality and results in improved designs, as can be seen in Fig-
ure 7.5, bottom.

In Figure 7.4 (right) we plot the average fitting values of the five tests for the three kernels and
three preferences. A compromise preference (the purple solid line) out-performs a focus on
either regularity or improvement potential for the Wendland kernels and is as good as a focus
on regularity for the triharmonic kernel. This shows that a compromise between exploration and
exploitation can repair initially misleading gradient estimations.

Moreover, we compare the stepwise optimization process, which alternates setup adaptation
with shape optimization, to a non-adaptive optimization procedure. For the latter we construct
the deformation setup just once in the beginning, according to the estimated gradient, and omit
the following adaptation phases. As expected, the stepwise optimization performs better than
the non-adaptive one (see Figure 7.4, dashed lines, right), which demonstrates its benefit for
design optimization.

Because the 1D fitting of height fields is a rather simple test scenario we increase complexity
in a 3D template fitting procedure (as we did before). The goal in this design optimization
scenario is to fit a template (sphere) to a scanned face (compare Chapter 5). Each vertex of
the design has three degrees of freedom and exact gradient information is not available. In
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Target 0 iterations 50 iterations 150 iterations 250 iterations

Figure 7.6: Example results of an adaptive template fitting process where the RBF kernels are
adjusted on the deformed mesh with a compromise preference between regularity and improve-
ment potential, i.e., between exploration and exploitation.

Target Initial sphere Erroneous gradient

Figure 7.7: As erroneous gradient information for template fitting we use displacements just
on the bottom of sphere (right) to initialize the adaptation of the kernel distribution.

contrast to the 1D function approximation scenario we distribute the kernels on the initial unit
sphere or its deformed state. Furthermore, we increase the number of kernels from 25 to 75 to
obtain plausible fits resulting in 150 parameters to be optimized for setup construction. In the
design optimization phase we optimize 225 parameters because each vertex has three degrees
of freedom. With the default settings of the shark library this leads to a (9,19)- and (10,20)-
CMA-ES, respectively. Like in the function approximation scenario we alternate between setup
construction and design optimization five times which took approximately three hours for the
whole stepwise optimization due to the increase in complexity. We perform the fitting procedure
for k = 50 iterations, exemplarily shown in Figure 7.6. To reduce random effects we perform
the optimization process three times for three preferences, a compact Wendland kernel and the
global triharmonic kernel.

As in the previous 1D test scenario we want to show that an intermediate weight (λ = 0.5)
between improvement potential and regularity to adapt the kernel distribution overcomes bad
initial estimations of the gradient and out-performs an adaptation strategy with a preference ei-
ther set for improvement potential (λ = 0.0) or regularity (λ = 1). We intentionally construct
erroneous gradient information by utilizing displacements in normal direction just on the bot-
tom of the sphere (Figure 7.7). The convergence plots (Figure 7.8) show the same trend as in
the function approximation scenario, namely that the stepwise design optimization with an inter-
mediate preference weight between improvement potential and regularity repairs a low-quality
estimation of the gradient and performs better than an adaptation strategy that either sets the
kernels to obtain maximal regularity or sets them to obtain maximal improvement potential.
An intermediate preference allows for a plausible fit of the whole scan and deforms important
regions more accurately (Figure 7.9), thereby leading to an improved design.
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Figure 7.8: Convergence plot for the adaptive optimization procedure of the 3D template fit-
ting. Choosing an intermediate preference (purple line) to setup the deformation out-performs a
preference focus on regularity (λ = 1) or improvement potential (λ = 0).

Result with λ = 0.5 Result with λ = 1

Figure 7.9: Using an intermediate preference (left) between regularity and improvement po-
tential to adapt setups is robust to erroneous initial gradient information and utilizes extracted
information of the design optimization phase to improve the fit in an important region. In con-
trast, adaptation purely focusing regularity results in a plausible fit but neglects the extracted
information (right).

With the advantages of an intermediate preference weight for a stepwise optimization process in
mind we conduct a more detailed preference analysis for dynamic scenarios in the next section.

7.2 Dynamic Design Loop

A proper reaction to different dynamic changes is required to handle dynamic design problems
efficiently. Here, we address how to describe the strength of a dynamic change and then we dis-
cuss the proper construction of the deformation setup which means choosing the best preference
for trading-off between regularity and improvement potential.

To simulate dynamic changes in the 1D scenario we parameterize and vary the target height field
s(t) = (st(x1, y1), . . . , st(xk, yl)) of [GJS12]. As depicted in Figure 7.10 the target height field
consists of a plateau, a slope, and a bump. We parameterize the plateau with a height parameter
h1, and two variable points P1,P2 forming the edge. In addition to the edge P1,P2 we chose
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s(P3)

s(P2)s(P1)

s(P4)

s(P5)

Original target Example target 1 Example target 2

P5
P2

or
P4

P1 or P3

P4

or
P2

P3 or P1
Figure 7.10: Example of a parameterized target height fields. The plateau at P1,P2, the slope
between P1P2,P3P4 and the bump at P5 can be varied.

P3,P4 to bound the area of the slope. A point of the slope is defined as interpolation of the
nearest point on the plateau and the “0”-level. The free parameters for the bump are its center
P5, its radius r, and its height h2. Choosing the parameters randomly as follows:

P1 ∈ ([0, 1], 1)T ,P2 ∈ (0, [0, 1])T ,P3 ∈ ([0, 1], 0)T ,P4 ∈ (1, [0, 1])T ,P5 ∈ ([1, 2], [0, 1])T

h1, h2 ∈ [0, 1] r ∈ [0.1, .5]

and including the possibility that P1, P3 and P2, P4 can be flipped results in varying targets
from almost congruent to almost distinct. Flipping these points simply defines the corner of the
plateau C12 = (P2,x, P1,y)

T which leads to the following definition of the height field (pseudo-
code):

s(x, y) =



h1 if x ≤ 1, (x, y) ∈ 4P1P2C12

d12·h1
d12+d34

if x ≤ 1, (x, y) ∈ �P1P2P3P4 and
dij equals the distance of the segment PiPj to (x, y)T

h2 if
∥∥P5 − (x, y)T

∥∥2

2
< r2

0 otherwise

Given this parameterization the fitness as the least squares distance of a deformed state x = Op
of the plane to the changing scalar field s(t) can change over time:

ft(p) =

m∑
i=1

(op(xi)− si(t))2 = ‖Op− s(t)‖2 (7.1)

The definition of improvement potential (Equation (4.6)) requires an estimation of the fitness
gradient which can be computed analytically for the given fitness:

gt =
Op− s(t)

‖Op− s(t)‖
.

Note that in more complex scenarios the gradient can be estimated as the difference between
two deformed states X1,X2 (in the Frobenius norm).

The similarity between two fitness gradients g1,g2 is an indicator for the strength of a changing
dynamic. If both gradients are similar we assume no change in the dynamic, but if they vary
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7.2 Dynamic Design Loop

Original height field Similarity 0.8 Similarity 0.59 Similarity 0.35

Figure 7.11: Randomized height fields compared to the original one. The similarity score
measures the similarities between the fitness gradients for the original target and for the random
ones.

heavily then the fitness might have changed such that the deformation setup has to be adjusted.
We choose the dot product between the gradients as a measure of similarity:

sim(g1,g2) =
|〈g1,g2〉|
‖g1‖ ‖g2‖

.

For the computation of the dot product in the 3D scenario we vectorize the gradient matrices and
employ the Frobenius norm for normalization. In comparison to a p-norm, e.g., the Euclidean
distance employed in [SZPJ13], this definition is scale-invariant which makes it suitable for
linear deformations. If a deformation is able to approximate a vector then it can approximate
any scaled version (even negatively scaled) with identical quality. A similarity of “1” means that
the gradients are equivalent and thereby no change in the fitness occurred whereas a similarity
of “0” describes orthogonal and thereby most distinct gradients, which indicates the most drastic
change in the dynamic. But this gradient-based measure tempts to be unintuitive for a designer
due to the scale-invariance. E.g. we would rank the height field in Figure 7.11, center right,
higher than the left one.

However, we assume that if the dynamic of a scenario remains similar it is not necessary to
adapt the deformation setup whereas the setup has to adapt to handle dynamic changes. By
investigating the correlation between the similarity of the fitness before and after a dynamic
change and the optimal choice of a preference to adjust the setup in test scenarios we obtain
information for possible generalizations of the optimal adaptation settings in more complex
scenarios.

Again, we mention the alternative interpretation of the similarity measure as reliability of in-
formation. A designer might have information about the standard height field, but the expected
target is different, such that the original information is not reliable to a certain degree. Thus,
an optimal preference weight to construct the deformation setup according to this derivation is
required.

For the analysis we utilize the compromise setups for 51 preferences (λ = 0, 0.02, 0.04, . . . 1)
computed with BFGS in the previous chapter (Figure 6.11, left). These setups are constructed for
the standard height field. A changing fitness is simulated with a new and randomly generated
target, for which we compute the similarity to the standard one, and for which we test each
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7 Optimal Preferences for Design Optimization

setup. An analytic template fitting procedure as described in Chapter 5 enables the fitting of
10000 random targets which ensures to cover almost the whole range of similarities. Hence,
each of the plots for the three tested kernels, the compact Wendland kernels with support 0.25
and 0.5 and the global triharmonic kernel, in Figure 7.12 (left) consists of 51000 data points.
For each random target (fitness) we rank the preferences according to their success: a preference
whose setup results in a better fit is ranked higher than a preference whose setup results in
a worse fit. This is an appropriate approach because the different targets result in different
optimal fitting scores, whereby they cannot be compared. We obtain a color coding of the
rankings by averaging over each interval of similarities. E.g., the rankings of all tested targets
with similarities in

[
k−1
20 ,

k
20

]
(k = 1, · · · , 20 in the 1D scenario) or

[
k−1
10 ,

k
10

]
(k = 1, · · · , 10 in

the 3D scenario) are averaged. White indicates a very good similarity–weight relation and black
refers to the worst relation for the different preference/target combinations in Figure 7.12.

The plot of the Wendland kernel with support 0.25 (Figure 7.12, top left) visualizes a strong
linear correlation (indicated by the “white diagonal”) between the similarity of gradients and the
most successful weights with a significant Pearson correlation coefficient r = −0.63. In contrast
for the Wendland kernel with support 0.5 (Figure 7.12, center left) a linear relation tends to exist
only for similarities larger than 0.8. For similarities lower than 0.8 the relation is constant and a
preference focus on regularity seems to be most successful. The global triharmonic kernel has
a similar constant relation between similarity and preference weights (Figure 7.12, bottom left)
but with a larger constant range up to 0.9. Hence, the overall linear correlation for the global
Wendland and triharmonic kernel is only very weak (r = −0.22, r = −0.1 respectively).

Based on these results we can only emphasize a focus on improvement potential (exploitation)
for weakly changing environments, characterized by high similarity scores between the fitness
gradients. In contrast, a focus on regularity (exploration) is superior for a strong change in the
fitness. But, the transition between an optimal focus of regularity and improvement potential is
different for the different kernel functions. For further investigation we conduct the tests in the
more complex 3D scenario.

90



7.2 Dynamic Design Loop

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Similarity

W
ei

gh
t

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Similarity

W
ei

gh
t

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Similarity

W
ei

gh
t

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Similarity

W
ei

gh
t

00 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Similarity

W
ei

gh
t

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Similarity

W
ei

gh
t

Wendland kernel, support 0.25 Wendland kernel, support 0.5

Wendland kernel, support 0.5 Wendland kernel, support 1

Triharmonic kernel Triharmonic kernel

1D template fitting 3D face matching

Figure 7.12: Optimal preference weights (highlighted in white) for 1D template fitting (left)
and 3D face matching (right). For drastic changes in the fitness function (small similarity score)
a focus on regularity (weight of 1) is superior. In contrast, for a small changes in the fitness
function (high similarity score) a focus on improvement potential (weight of 0) is superior. But
the range where and how to switch between the compromises is imprecise. For the 3D scenario
the results are more noisy (especially the triharmonic kernel) because of a lower quality of the
optimal compromise setups for the preference weights.
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Original scan Similarity 0.85 Similarity 0.46 Similarity 0.3

Figure 7.13: Example modifications of a scanned face as the design target and the similarity
scores with respect to the gradient of the original target.

Additionally to the dynamically changing correspondences in the 3D fitting scenario we vary
the target scan by scaling the vertices in x,y,z direction (between 90% and 110%) and apply a
rotation around the y and z axis (by up to 40◦), e.g., Figure 7.13.

For the analysis of a relation between the similarity of a dynamic change and the preference
weights to set up the center distribution we employ the constructed compromise setups shown
in Figure 6.11 (right). We perform 1000 tests for 51 preference weights with 75 centers and three
kernel functions, Wendland kernels with support 0.5 and 1 and a triharmonic kernel. Because
of the more complex fitting procedure one test required approximately 20 minutes computation
time compared to 10 seconds for the simpler 1D scenario.

But, the results are very noisy as shown in Figure 7.12 (right). The range of similarities (larger
than 0.6) with a beneficial focus on exploitation seems to be larger than in the 1D approximation
scenario (compare to Figure 7.12, left). Furthermore, this range is roughly similar for the three
kernels. For the Wendland kernel with support 0.5 the plot in Figure 7.12 (top right) supports
the assumption that the lower the similarity the better is a focus on regularity. In contrast for the
Wendland kernel with support 1 (Figure 7.12, center right) there seems to be no optimal pref-
erence for similarities lower than 0.6. This tendency is even stronger for the global triharmonic
kernel (Figure 7.12, bottom right).

In total the resulting plots for the 3D scenario in Figure 7.12 (right) are very noisy compared to
the results of the function approximation. This has several reasons: First, the target geometry
is more complicated resulting in noisy center distributions for the different preference weights
especially for the triharmonic kernel (compare Figure 6.11). Second, the gradient information
is only accurate in the beginning of the fitting procedure. Thus, we are working with inaccurate
gradients anyway. Third, the “dynamic” fitness, constructed through a random target, is truly
dynamic due to the changing correspondences during the fitting process, which causes noise.
Forth and most important: regularity-optimal center distribution can accidentally fit a random
target properly and distributions tuned for improvement potential can accidentally have very
good regularity scores. This holds for the 1D test case, too, but it is especially true for the
3D scenario where center distributions with good improvement potential are almost uniformly
spread over the initial sphere, which has to be deformed almost everywhere. Consequently,
highly regular uniform center distributions result in good fits.
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7.3 Summary

These facts disturb the analysis such that especially for the triharmonic kernel only a weak
preference recommendation can be given for the 3D scenario. For a small change in the fitness
function a focus on improvement potential (exploitation) is superior. For a strongly changing
fitness a focus on regularity (exploration) is beneficial for the Wendland kernel with support
0.5, whereas almost all preference weights seem to be equivalent for the Wendland kernel with
support 1 and the triharmonic kernel. However, the plots in Figure 7.12 show that an intermediate
preference weight (λ = 0.5) works fine for all environments. Such a preference weight always
had at least a medium ranking (grey color), such that we recommend its application if neither a
static nor a heavily changing environment is detected.

Note, that we perform such a preference analysis again for an alternative formulation of the
variability criterion in the next section. Although the utilized compromise setups have a better
quality with the new definition, the preference analysis points to equivalent results.

7.3 Summary

The construction of optimal trade-offs for design representation is crucial for the performance of
an evolutionary optimization process. With regularity and improvement potential as conflicting
targets for the representation setups we cover exploration and exploitation capabilities of the
setups. For these two criteria we targeted the optimal trade off for dynamic environments.

First, we analyzed a static and stepwise design optimization process as a first step. We showed in
the two test scenarios, fitting of 1D height fields and fitting of 3D face scans, that an intermediate
preference weight between regularity and improvement potential to construct a RBF deformation
setup performs better than setting the preference to either construct highly regular setups or
setups with optimal improvement potential. For our test cases, a compromise includes both:
the potential to exploit information (via improvement potential) and the potential to explore the
design (obtained indirectly from regularity). A compromise setup induces robustness towards
imprecise or erroneous information in the beginning of an optimization process and it enables
the exploitation of gathered information during the optimization process.

In the second step, we extended the coarse preference analysis to a fine-grained one for dynamic
scenarios. We employed a similarity measure based on the (approximated) fitness gradient to
quantify the strength of a dynamic change. In 1D template fitting a similar or static environ-
ment requires a focus on improvement potential (exploitation) for optimal performance whereas
a quite drastic change in the environment’s fitness made the focus on regularity (exploration)
become superior. But the transition depends on the employed kernel function. For example the
Wendland kernel (with small support) showed a rather linear correlation between the similarity
of the fitness change and the optimal preference weight whereas for the global triharmonic kernel
a focus on regularity is superior even for very constant fitness environments. In the more com-
plex 3D scenario the results are very noisy: For the Wendland kernels we can observe a weak
trend for superior regularity focus in changing environments and superior focus on improve-
ment potential for constant environments. But the range for a superior focus on improvement
potential is much larger than in the 1D scenario. Thus, we only could give a very coarse sug-
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7 Optimal Preferences for Design Optimization

gestion of the choice of preferences to set up RBF center distributions. We favor regularity for
a strongly changing fitness, improvement potential for a constant fitness, and an intermediate
focus otherwise.

The reasons for the weak results are diverse: One aspect in 3D are the Pareto-fronts of low qual-
ity. Moreover, because the regularity measure is problem independent it results in a variety of
uniform distributions with identical regularity score but varying improvement potential. Thus,
the chosen distribution can randomly result in good fits—or bad ones. This induces a large por-
tion of random noise. To tackle these issues we question and analyze our concept of evolvability
in the next chapter.
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8 Extended Analysis of
Regularity and Variability

In our tests in Chapter 6 we realized that optimal center distributions with respect to regularity
rarely reach the maximum score of 1. Thus, a design optimization would converge slowly despite
the optimization of regularity. Hence, targeting optimal center distributions is not sufficient for
a good convergence speed.

Hence, we approach this problem from a different, more fundamental angle and propose a
representation-agnostic optimization, that is based on the deformation matrix only. RBF, FFD,
and shell deformation (like all linear deformation techniques) can be written in matrix notation
(Equation (2.6)), where a constant deformation matrix maps the basis functions’ coefficients to
per-vertex displacements of the mesh geometry. Interestingly, the expected optimization perfor-
mance can be estimated from the deformation matrix alone. Thus, we formulate an optimization
based on the deformation matrix itself: For any given deformation setup, a matrix orthogonal-
ization leads to provably optimal regularity while preserving both the design/phenotype space
and the improvement potential. This optimization is computationally efficient, fully automatic,
and can be applied in a black-box-manner to any linear deformation representation. It can boost
convergence speed by up to an order of magnitude without affecting the optimization’s outcome,
as we demonstrate through extensive numerical experiments in the first part of this chapter. This
research is published in [RDMB18]. We conducted our experiments for FFD based on an im-
plementation of S. Dresselhaus [Dre17], the second author of [RDMB18].

Because this orthogonalization-approach is basically a transformation of the employed basis
functions that are linked to the control points, any distribution of control points can be mod-
ified for optimal regularity. This makes the direct optimization of control points dispensable.
Moreover, because any distribution of control points can be modified for optimal regularity,
the connection between the uniform distribution of RBF centers and optimal regularity breaks

95



8 Extended Analysis of Regularity and Variability

apart. Thus, our attempt to link regularity and exploration has to be revoked and only variabil-
ity remains to characterize exploration now. But, as we have discussed in Chapter 5 variability
is basically constant for any distribution with a fixed amount of control points. To resolve this
dilemma we scrutinize the definition of variability and propose a different approach in the second
part of this chapter. Based on the new definition of variability we again construct optimal com-
promise setups with respect to improvement potential and perform a further preference analysis
to improve the results from the previous chapter.

8.1 Matrix Orthogonalization for Optimal Regularity

RBF kernel distributions are optimized in Chapter 6 to improve the regularity of the initial de-
formation setup, requiring a computationally expensive evolutionary optimization by itself. But
despite the high computation cost, the improvement in regularity (and hence in convergence
speed) is rather modest. In a similar spirit, [MOS06, SMB12] switched from indirect to direct
manipulation of RBF and FFD to improve causality and thereby increase convergence speed.
We showed in Chapter 6 that these representation-specific methods provide only limited gain
in convergence speed. In contrast, our method provably converts any linear deformation repre-
sentation to optimal regularity through a suitable orthogonalization of the deformation matrix –
without changing RBF kernels, FFD control points, or shell handles, and therefore without the
need for an additional optimization procedure. In contrast to Chapter 6 we fix the solution space
now and optimize its basis.

Regularity is strongly linked to the concepts of locality/causality, which aim for representa-
tions where small changes in the genotype result in small changes in the phenotype. This
preservation of local neighborhoods in the genotype–phenotype mapping allows for more ef-
ficient exploratory evolutionary search [Rot06, WCT12]. However, typically the mutation or
crossover operators are addressed with these concepts, e.g., with locality in genetic program-
ming [GLMOB11] or grammatical evolution [TR14], or with causality for genetic representa-
tions in antenna design [CRLL12]. In contrast, we incorporate locality/causality into the rep-
resentation. Not only does the orthogonalized representation setup feature optimal regularity, it
also perfectly realizes locality/causality and, as a consequence, results in faster convergence of
evolutionary optimization processes.

Our orthogonalization can be considered as a particular preconditioning technique, which are
used in numerical analysis to improve the convergence of iterative solvers, e.g., [LMDM14,
Bai15, dPVvZvB17]. Our orthogonalization employs the singular value decomposition (SVD),
which is used in [GRO+03] to increase the performance of evolutionary optimization. But while
the decomposition is applied to the mutation operator in [GRO+03], we optimize the underlying
deformation representation.

In [LM12] the SVD is employed in the design optimization context with FFD. The goal in this
article is the construction of optimal FFD grids. The SVD is employed on the deformation matrix
to determine a basis of the null space of the grid with respect to a certain point of the design. In
this null space the grid points can move freely without causing a variation of this particular point
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Original basis O Orthogonal basis Ô = UVT

Orthogonal basis Ô = U Orthogonal basis Ô = Q

Figure 8.1: Visualization of two original basis functions and different orthogonal versions:
Two columns of the deformation matrix O (top left). Their closest orthogonal approximation as
UVT of SVD (top right) are geometrically more similar to the original bases than using only
the U matrix of SVD (bottom left) or the Q matrix of a QR decomposition (bottom right).

of interest. Thereby, an enhanced configuration of the control grid can be constructed. But,
this approach again targets the optimal distribution of control points in contrast to an optimal
deformation matrix, as we do now.

In general, the matrix entry Oi,j stores the jth basis function evaluated at vertex xi, and pj
is the coefficient or control parameter of that basis function. For example, for the RBF defor-
mation, Oi,j = ϕ (‖xi − cj‖), with the kernel ϕ positioned at center cj . For FFD, which we
additionally analyze here, Oi,j = N3

j1
(ui)N

3
j2

(vi)N
3
j3

(wi), a tri-cubic tensor-product B-spline
function evaluated at (ui, vi, wi), the local coordinates of xi w.r.t. the FFD lattice [SP86, PT96]
(implementation from [Dre17]). Finally, for linear thin shells there is no analytic expression.
The jth column is the discrete response function to a virtual unit displacement of the jth control
handle, computed by minimizing physical stretching and bending energies [BS08, BKP+10].

In Chapter 6 we optimized RBF deformation setups with respect to regularity and improvement
potential through optimization of kernel positions. However, even when optimizing solely for
regularity, the resulting setups are still far from the optimal regularity value of one for larger
kernel widths. This can be explained by analyzing the regularity definition: An optimal reg-
ularity requires all singular values σi to be one for optimal condition number κ(O) = σ1/σn
(σ1 > · · · > σn), which is true for orthogonal matrices only. For our non-square m× n matrix
O with m > n, this requires the matrix columns o1, . . . ,on to be of unit length and mutually
perpendicular, which (with slight misuse of notation) we call orthogonal, too. Because the RBF
basis functions are not orthogonal w.r.t. the L2 inner product, their discretization will in general
not lead to orthogonal columns oj . The same is true for the B-spline basis of FFD and shells.

We approach the problem from a different angle, by directly optimizing the matrix O, instead
of indirectly manipulating it through careful placement of RBF kernels or FFD control points.
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The columns oj form a basis of the n-dimensional phenotype sub-space of Rm, since any dis-
placement OP can be written as a linear combination

∑n
j=1 ojp

T
j . Asking these basis vectors

to be orthogonal and of unit length is in agreement with the concepts of locality [Rot06] and
causality [SKVS97, WCT12], which are closely related to convergence speed. They emphasize
that similar parameter variations should yield similar amounts of phenotype variation and that
local neighborhoods should be preserved, both of which is achieved by orthogonal matrices.
In the ideal case of an orthogonal deformation matrix, regularity, locality, and causality nicely
coincide.

In practice, however, the deformation matrix O is not orthogonal, and we propose to orthogo-
nalize it, which corresponds to a change of basis for the phenotype space. This can be achieved
by several techniques, such as Gram-Schmidt orthogonalization, QR decomposition, or singular
value decomposition (SVD) [GVL12]. Although computationally most expensive, we employ
the SVD, since it is numerically most stable and yields the orthogonal matrix closest to the
original one [Zha00], i.e., it changes the deformation basis the least, as visualized in Figure 8.1.

We decompose O using the thin SVD [GVL12] into O = UΣVT, with orthogonal matrices
U ∈ Rm×n and V ∈ Rn×n and a diagonal matrix Σ ∈ Rn×n containing the singular values
Σi,i = σi. Removing the singular values Σ (or setting all σi to one) yields the orthogonalized
deformation matrix (as the product of two orthogonal matrices):

Ô = UVT. (8.1)

By construction κ(Ô) = 1, therefore Ô has optimal regularity, locality, and causality, and we
can expect faster convergence. Since the columns of Ô span the same phenotype space as the
columns of O, the improvement potential is unchanged and the design optimization can reach
the same optimum in both variants. In practice, starting from a given representation O, we first
compute its orthogonal version Ô and transform the initial original parameters P to P̂ with

P̂ = VΣVTP. (8.2)

Then we perform the evolutionary optimization (more efficiently) based on Ô. The resulting
optimal parameter vector P̂ is finally mapped back to the original representation O as P =
VΣ−1VTP̂. This allows us to perform the optimization using the more efficient representation,
but to convert the optimized parameters (exactly) back to the original representation, where they
have their originally intended semantic meaning.

In order to analyze the orthogonalization’s effect on the convergence speed in actual evolutionary
optimization, we compare optimization runs with and without orthogonalization of the deforma-
tion representation for the experiments described in Chapter 5. For the two test scenarios (1D
function approximation, 3D template fitting) and the different types of representations (RBF,
FFD, shell) we run an evolutionary optimization for 100 random setups each. The RBF tests are
further split up according to the employed kernel function and its support radius: W2, W5, W15

refer to Wendland kernels of support radius 2, 5, and 15; Tri refers to the triharmonic kernel;
dm and im denotes direct or indirect deformation. Like before, we utilize a (1,10)-CMA-ES
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Figure 8.2: Pairwise comparison of the convergence speed of CMA-ES (#iterations until con-
vergence) for different deformation representations (column pairs), for original representation
O (light color) versus orthogonalized representation Ô (dark color), for fitting 1D height fields
(left) and 3D face scan (right), averaged over 100 random setups each.
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Figure 8.3: Different orthogonalization techniques based on the singular value decomposition
O = UΣVT or the QR decomposition O = QR yield equivalent convergence speed.

of the shark library [IHMG08] with manually determined optimal initial step sizes s for each
representation. For the 1D height field we chose s = 0.001 for the unmodified and s = 0.01 for
the orthogonal setting. For fitting 3D faces we chose s = 0.001 and s = 0.05, respectively. Oth-
erwise the default settings of the shark library are applied. The results in Figure 8.2 show that
on average the orthogonalized setups converge faster than the unmodified ones, by more than
an order of magnitude for representations with low initial regularity, such as FFD and im-RBF.
These numerical experiments demonstrate that our orthogonalization approach – which raises
high expectations for faster convergence due to the its optimal regularity – indeed meets these
expectations.

Although we recommend the SVD-based orthogonalization Ô = UVT from Equation (8.1)
due to its numerical stability and the fact that it minimally modifies the input setup, Figure 8.3
shows that alternative orthogonalizations, such as using the U-matrix of SVD or the Q-matrix
of QR decomposition, yield equivalent results in terms of convergence speed. This emphasizes
the importance of the general concept of orthogonal representations, which is in agreement with
the concepts regularity, locality [Rot06], and causality [SKVS97, WCT12].

Our approach offers an interesting view onto the concept of indirect versus direct manipula-
tion. Indirect manipulation deforms a geometry by changing the coefficients of the basis func-
tion (e.g., RBF coefficients or spline control points), while direct manipulation prescribes dis-
placements of some handle points on the surface and solves a linear system to determine the
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Figure 8.4: Matrix orthogonalization for custom-tailored setups. We analyze height field fit-
ting, using RBF deformation (top) and FFD (bottom). The uniformly distributed setups (having
higher regularity) converge faster than the target-adapted ones, but the adaptive setups (having
higher improvement potential) achieve a better fitting quality with lower error. Orthogonalizing
the target-adapted setup combines both advantages: low error and fast convergence.

coefficients that yield this desired deformation. Direct manipulation has better regularity and
converges faster in a design optimization (Chapter 5 Figure 5.4, 5.8), as also confirmed by the
experiments in this chapter (Figure 8.2). The switch from indirect to direct manipulation can
be considered as a matrix preconditioning that improves regularity to a certain extend. In this
view, our orthogonalization provides a superior alternative that projects the matrix to optimal
regularity, thereby improving convergence speed even more (Figure 8.2).

While the previous experiments analyzed our orthogonalization technique for random setups
only, we now demonstrate its practical relevance by applying it to custom-tailored setups. Fig-
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Figure 8.5: The results of the analysis of setups for 3D faces, using RBF deformation (top)
and FFD (bottom), is equivalent to the 1D scenario. The uniformly distributed setups (having
higher regularity) converge faster than the target-adapted ones, but the adaptive setups (having
higher improvement potential) achieve a better fitting quality with lower error. Orthogonalizing
the target-adapted setup combines both advantages: low error and fast convergence.

ure 8.4, 8.5 shows the results for fitting of 1D height fields and 3D face scans, of 10 trials using
both RBF and FFD representations. The utilized uniform deformation setups have a higher regu-
larity and therefore converge faster, but target-adapted setups have a higher improvement poten-
tial and achieve better fitting results. When setting up deformation representations by specifying
RBF kernels or FFD control grids, one always has to find a compromise between these two ex-
tremes, as analyzed in detail in Chapter 6. In stark contrast, our matrix-based setup optimization
does not face this problem, as it projects any input setup to optimal regularity without chang-
ing its phenotype space or improvement potential. Applying the setup orthogonalization to the
target-adapted setups consequently preserves its ability to generate high-quality fitting results,
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Figure 8.6: Convergence plots for the height field fitting scenario with a uniform RBF setup
(left) and the adapted RBF setup (right). The initial step sizes s for the original representations
O have been converted to ŝ for the orthogonalized representations Ô through Equation (8.3). For
two initial step sizes s (red and blue), the convergence behavior for Ô (solid line) matches that
of the original setup O (dotted) in the beginning of the optimization. While the fast-converging
uniform setup show an overall similar behavior (left), for the adaptive setups with low initial
regularity our optimized setup converges faster (right).
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8 Extended Analysis of Regularity and Variability

but considerably reduces the number of iterations required to do so. The impact of orthogonal
decompositions is stronger for the more complex face fitting scenario. The adaptive RBF setups
did not fully converge due to their low regularity, and hence yield an error that is only slightly
lower than the uniform setups. The orthogonalized adapted setups converge without problems
and show the lowest errors. In the FFD example, we did not succeed in constructing an adaptive
lattice of control points to produce better results than the uniform lattice. Therefore we only an-
alyze the uniform lattice and its orthogonalized version, where the latter converges considerably
faster to a considerably better solution.

For the previous experiments we hand-tuned the initial step sizes for the CMA-ES in order
to focus the analysis on the actual representations. While for long-running optimizations the
initial step size s has a minor effect, its choice is more important for fast-converging optimiza-
tions. Given an initial step size s for the original representation O (e.g., from the designer’s
knowledge), it can be converted to the orthogonal representation Ô by compensating for the
normalization of the matrix columns oj :

ŝ = s · 1

n

n∑
j=1

‖oj‖ , (8.3)

where ‖oj‖ is the length of the jth column of O (see Figure 8.6).

Being able to modify any distribution of control points for optimal regularity breaks up its link
to exploration. Following our interpretation of evolvability in Chapter 3 variability is the re-
maining criterion to characterize exploratory capabilities of the setup, now. But according to our
definition of variability it characterizes the degrees of freedom (Chapter 4) and is independent
of the distribution of control points (Chapter 5). Thus, we approach this dilemma with an alter-
native definition of variability in the next section. Moreover, we analyze the new definition for
dynamic scenarios.

8.2 Redefinition of Variability

In Chapter 3 and Chapter 4 we motivated and defined variability as a measure for exploratory
capabilities induced by a representation. An exact approximation of any phenotype with the
representation would have the best exploration potential and thereby maximal variability. This
theoretical fact is limited by the employed number of parameters because they are only few
compared to the dimension of the phenotype. We motivated the definition of variability by
computing the expected approximation error of any possible phenotype. If any phenotype can be
approximated well, then variability should be good. This holds for the number of control points:
increasing their amount increases variability. But, the variability definition (Equation (4.4)) can
not distinguish between different distributions of control points with the same number.

Computing the expected approximation error has one significant drawback. Because the repre-
sentation has to approximate any possible phenotype there are phenotypes which can be exactly
approximated, and others which result in a large approximation error (Figure 8.7). Computing
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8.2 Redefinition of Variability

Target and RBF setup Fitting error: 0 Target and RBF setup Fitting error: 1 Maximal error: 1

Expected error: 0.5

Figure 8.7: Exemplary visualization of the approximation quality of a particular RBF center
“distribution”. The target on the left can be exactly approximated in contrast to the target on the
right. Computing the expected fitting error cancels the impact of bad approximation results.

the expected error cancels these extremes. This holds for each representation setup (as long as
the parameters effect the phenotype, e.g., a deformation matrix of full rank) leading to identical
variability.

Instead of the expected approximation error we now compute the squared maximum error emax
for a displacement ō = (ō1, . . . , ōm) (ōi ∈ [−1, 1] for mathematical convenience) of a design
with the representation O (compare to Equation (4.1)):

emax = max
ōi∈[−1,1]

∥∥ō−OO+ō
∥∥2

. (8.4)

Although we don’t have a general solution for this equation, which might not exist for arbitrary
linear deformations, we can bound emax with the so-called fill distance for standard indirect RBF
deformations following [Wen04]. This quantity measures the maximum distance of any vertex
of a design to its nearest center. Given the vertices of a discrete design X = {x1, . . . ,xm} and
a RBF center distribution C = {c1, . . . , cn} the fill distance hX ,C is defined as:

hX ,C = sup min
x∈X c∈C

‖x− c‖ .

To compute an upper bound for emax we switch from our discrete setting to the point-wise
continuous one to apply the results of [Wen04]. In our notation the best interpolant ōj of a
variation at vertex j is the product of the j-th row of OO+ and ō which is denoted with s(ōj)
in [Wen04]1 . With this notation we bound emax via:

emax = max
ōi∈[−1,1]

∥∥ō−OO+ō
∥∥2

= max
ōi∈[−1,1]

m∑
j=1

∣∣ōj − (OO+)j ō
∣∣2

≤
m∑
j=1

max
ōi∈[−1,1]

∣∣ōj − (OO+)j ō
∣∣2

=

m∑
j=1

max
ōi∈[−1,1]

|ōj − s(ōj)|2

≤
m∑
j=1

c̄ · F (hX ,C) = c · F (hX ,C)

105



8 Extended Analysis of Regularity and Variability

0.64 0.780.66 0.68 0.7 0.72 0.74 0.76
0.7

0.9

0.75

0.8

0.85

0.64 0.760.66 0.68 0.7 0.72 0.74
0.65

0.9

0.7

0.75

0.8

0.85

0.5 0.750.55 0.6 0.65 0.7
0.74

0.88

0.76

0.78

0.8

0.82

0.84

0.86

0.93 10.94 0.95 0.96 0.97 0.98 0.99
0.78

0.92

0.8

0.82

0.84

0.86

0.88

0.9

0.9 10.92 0.94 0.96 0.98
0.7

0.95

0.75

0.8

0.85

0.9

0.5 10.6 0.7 0.8 0.9
0.7

0.95

0.75

0.8

0.85

0.9

Improvement potential

V
ar

ia
bi

lit
y

Improvement potential

V
ar

ia
bi

lit
y

Improvement potential

V
ar

ia
bi

lit
y

Improvement potential

V
ar

ia
bi

lit
y

Improvement potential

V
ar

ia
bi

lit
y

Improvement potential

V
ar

ia
bi

lit
y

Wendland, s = 0.25 Wendland, s = 0.5

Wendland, s = 0.5 Wendland, s = 1

Triharmonic Triharmonic

1D function approximation 3D template fitting

Figure 8.8: The solutions of a weighted single-objective optimization for 51 preferences
weights trading of between variability and improvement potential. The results for the kernels of
the 1D scenario are left; those of the 3D scenario are right. The preference weight is color-coded
from a focus on variability (dark green) to improvement potential (light green).
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8.2 Redefinition of Variability

with c = c̄ · m, c̄ being a constant number, and F (hX ,C) being a monotonically increasing
function in the fill distance. Thus, reducing the fill distance reduces the maximal approximation
error emax up to a theoretical limit of 0, which is achieved if every vertex of the design is
equipped with a center. The upper limit of emax is obtained if only one center is placed at
a vertex of a design, which has the largest distance to the other vertices. We call this largest
possible distance between any pairs of vertices the diameter ∅X of the design X and define the
“new” variability based on the fill distance as:

V (O(X , C)) =
∅X− hX ,C

∅X
. (8.5)

Like the definitions of regularity and improvement potential this new definition is scaled between
0 and 1 with 1 being the optimal value. Applying Equation (8.5) restricts the choice of the
kernel functions. The proposed derivation only holds for symmetric basis functions, which are
commonly employed anyway, like the radial Wendland and triharmonic kernels. It cannot be
applied to differently mixed kernels or linearly combined basis functions, as in the case of direct
manipulation.

For the realization of measures for exploration one has to decide to follow a genotype-based
or phenotype-based approach as motivated in Chapter 3. Although, we emphasize and apply a
phenotype-based approach because the target is to explore the phenotype, when having a second
glance at Equation (8.5), we realize a definition based on both spaces. The maximum error in the
phenotype can be bounded by a maximum distance—the fill distance—in the genotype, whereby
both approaches coincide nicely.

For an efficient optimization of the new variability we apply the Lloyd sampling (discussed
in Chapter 6) because this sampling results in a uniform center distribution, which naturally has
a good fill distance and thereby a good variability score.

This link between Lloyd sampling and fill distance motivates us to discuss regularity again.
Previously, in Chapter 7, we linked optimal regularity to a uniform (Lloyd) distribution and
this to exploration. Now, we link variability to the Lloyd sampling. However, the connection
between Lloyd sampling and exploration still remains such that we can simply exchange the
place of regularity with variability for dynamic scenarios. Thus, we expect similar results for
the preference analysis from the previous chapter.

To conduct a preference analysis we first need the optimal center distributions for different com-
promises between the alternative variability definition (Equation (8.5)) and improvement po-
tential (Equation (4.6)). For simplicity we apply the CMA-ES with heuristic initialization for
a weighted single-objective optimization as described in Chapter 6 to optimize 25 centers in
the 1D scenario and 75 centers in 3D. We still employ soft constraints (Equation (6.4)) for the
initial plane in the 1D tests because it enables a more efficient evolutionary search. Removing
an individual directly, which violates a constraint only in one center, results in many discarded
individuals if one center is on the edge of the valid area. If several centers of a parent population
are at this edge the evolutionary search might get stuck. In contrast, a soft barrier takes these

1Pages 11, 181, 188
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Figure 8.9: Optimal preference weights (highlighted in white) for 1D function approximation
and 3D template fitting. For drastic changes in the fitness function (small similarity score) a
focus on regularity (weight of 1) is superior. In contrast, for a small changes in the fitness
function (high similarity score) a focus on improvement potential (weight of 0) is superior. But
the range where and how to switch between the compromises remains rather imprecise.
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8.3 Summary

slightly invalid individuals into account and thereby supports the search by pushing new off-
spring towards the valid area through the covariance updates. After the optimization the solution
is projected back to the valid area as we did for the center optimization in Chapter 6. In Fig-
ure 8.8 the newly computed solutions for 51 different preference weights (λ = 0, 0.02, . . . , 1,
color-coded) are plotted. Especially, the solutions for triharmonic kernels are better distributed
than the optimization for regularity (compare to Figure 6.11).

With these compromise setups we again perform the preference analysis for dynamic scenarios
like in Chapter 7. Given a similarity of gradient information derived from various targets to be
fitted, our goal is to determine which preference is the optimal choice for the different targets
and different kernels. As before we rank the preferences according to their fitness score for each
10000 (1000) randomized targets in the 1D (3D) scenario and average the ranking for the sim-
ilarities. The results in case of the triharmonic kernel in the 3D scenarios are less noisy, now.
But overall, a similar trend as in the previous preference analysis can be observed (Figure 8.9).
For a strongly changing dynamic, indicated by a low similarity score with respect to the pre-
vious fitness environment, a focus on exploration/variability, i.e., a uniform center distribution,
is superior. In contrast, in a static environment a focus on exploitation/improvement potential,
i.e., a fitness-adapted center distribution, is superior. Still, the range for an optimal intermediate
focus, e.g., a preference weight of 0.5, is rather small and problem dependent. However, such
an intermediate weight works fine for any dynamic change in our tests.

As mentioned before, there are various problems, which deteriorate precise results. (1) The
Pareto-fronts as shown in Figure 8.8 are still not optimal. (2) Center distributions with optimal
variability can accidentally have high improvement potential and vice versa. (3) The analyzed
ranking does not take the absolute fitness score of the results into account. (4) The different
kernels vary in their sensitivity with respect to their location. E.g., the fitting quality with a
triharmonic kernel is almost independent of the kernel distribution whereas a local Wendland
kernel is very sensitive.

8.3 Summary

For any design optimization, convergence speed and solution quality are crucial aspects to guar-
antee short developmental cycles of industrial products. This is especially true for evolutionary
design optimizations with computationally expensive fitness functions. The choice of optimiza-
tion parameters, i.e., the chosen representation, drastically influences the results. Optimally
setting up linear deformation representations, which play a major role in practical design op-
timization of complex geometries, is therefore a (very challenging) problem of high practical
relevance.

We argued that setting up a deformation representation by a careful placement of kernels or con-
trol points can lead to high-quality results for target-adapted setups, but is inherently limited for
optimizing convergence speed, since the deformation basis functions do not yield an orthogonal
deformation matrix. The resulting setups violate the design principles of regularity, locality, and
causality, and will in general not provide high convergence speed.
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8 Extended Analysis of Regularity and Variability

Our automatic setup optimization is inspired by the concept of regularity. The proposed SVD-
based orthogonalization can be applied to any linear deformation representation, is easy to im-
plement, efficient to compute, and is optimal with respect to regularity, causality, and locality.
The optimized setups showed performance improvements by up to an order of magnitude.

The applied SVD (or any orthogonalization) can be seen as a simple basis transformation of the
phenotype space. However, the resulting basis vectors are unintuitive and to complicated to be
construction manually.

Since the orthogonalized matrix spans the same phenotype space as the original matrix, our
setup optimization does not negatively affect the optimization’s results. For the user it acts as
a perfect black-box: The designer provides an input representation, which is automatically or-
thogonalized; the optimization is efficiently performed using the orthogonal representation; and
the final result is converted back to the original representation. Our approach has the potential to
become a general recommendation for adapting any matrix in the context of linear deformation
representations.

But as any deformation matrix can be set to optimal regularity through orthogonalization, the
previously drawn link to exploration breaks apart. Thus, we fell back to an alternative ap-
proach to measure variability, that we linked to exploration instead. In case of RBFs we define
variability with the fill distance. With this alternative definition of variability uniform center
distributions achieved the best score (like in test before in Chapter 6) which perfectly fits the
motivation behind exploration. Thus, we simply replaced the regularity criterion with variability
from a conceptual point of view.

We again constructed compromise setups (RBF center distributions) with respect to variability
and improvement potential targeting an improved preference analysis between exploration and
exploitation. These compromises are better distributed, now. But because key problems of the
preference analysis still remain, its results are only improved by a small margin. Thus we only
can emphasize to employ a focus on exploration/variability for heavily changing dynamics and
a focus on exploitation/improvement potential for an almost static environment. However, an
intermediate preference between the criteria works fine in any scenario, which would be our
recommendation if the variation in the dynamic is either unclear or intermediate.
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9 Conclusion

Designers and engineers face a wide variety of challenges to come up with novel solutions for
industrial design problems. The performance of an evolutionary optimization cycle, which is
typically applied in these scenarios, depends significantly on the quality of the employed repre-
sentation. Linear deformation methods, like Free-Form deformation (FFD) or deformations with
radial basis functions (RBFs), as representations map the abstract genotype, i.e., the parameters,
to meaningful phenotypes, i.e., design variations. The recurring tasks for designers are to choose
the optimal distribution of control points, e.g., a FFD grid or the distributions of RBF centers,
and to choose proper deformation functions, e.g., spline bases for FFD or radial symmetric ker-
nels for RBF. This information is encoded into a deformation matrix. Ideally, the distribution of
control points and the choice of the basis function, and thereby the deformation matrix, adapts to
changing conditions to ensure a high-performing optimization process. Because of the impact of
the representation/deformation matrix on the performance of the optimization we target optimal
deformation matrices in our research.

Quality criteria are required to determine if a deformation matrix, or a deformation setup (as
we call it), is optimal. Because industrial design optimization problems are complex, due to
timely varying customer demands, manufacturing conditions, or even performance criteria, we
analyzed the concept of complex system engineering. This concept motivates evolutionary opti-
mization and the application of the meta-attribute evolvability to induce robustness and flexibility
to the representation/deformation matrix during the developmental cycle.

Motivated by the meta-attribute evolvability we defined three novel quality criteria for linear
deformations which are: variability, regularity, and improvement potential. We analyzed these
criteria in two test scenarios. In a basic 1D scenario the design goal is to fit a plane to a target
height field and in a more complex 3D scenario the objective is the optimal fit of a sphere to a
scanned face.
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9 Conclusion

Variability is independent of any fitness environment and thereby covers the exploratory capa-
bilities of the deformation setup. According to this motivation highly variable setups should be
suitable for environments with only limited information or no information at all. Based on two
modeling approaches we defined variability basically as (1) the numbers of employed parame-
ters (for any linear deformation) or as (2) the so-called fill distance (for RBF only). Our analysis
reveals strong correlations between the number of parameters and the quality of an optimization
process in the test scenarios. But, this approach (1) is independent of the distributions of control
points as long as they are connected with the design. Thereby, it cannot be linked to the concept
of exploration. This motivated the fill-distance as the alternative approach (2), which we finally
link to exploration.

We motivated regularity as a general fitness independent criterion, like variability, to characterize
the expected convergence speed of an evolutionary optimization algorithm. We define regularity
basically as the condition number of the deformation matrix. Our analysis reveals strong cor-
relations between the criterion and convergence speed of an evolutionary algorithm. Moreover,
we discovered that an optimal regularity score or condition number of the deformation matrix,
respectively, relies only on numerical properties of the deformation matrix and is independent
of the distribution of control points. Through matrix orthogonalization with a singular value
decomposition we tuned any deformation matrix for optimal regularity and showed improved
convergence speed. Because this approach is independent of the center distribution it cannot be
linked to exploration.

Of course a representation has to enable results of high quality based on available information
about the fitness environment. Thus, we defined the third attribute improvement potential, which
measures the potential of the representation to approximate (estimated) gradient information.
Our analysis proofed strong correlation between the criterion and the fitting quality for the test
cases even for imprecise gradient information. Improvement potential clearly corresponds to the
concept of exploitation.

In essence, the defined criteria—variability, regularity, and improvement potential—are easy to
apply to any linear deformation. Their local definitions do not rely on global information of the
whole phenotype/design space, which makes them applicable for complex problems.

The comparison of FFD and RBF, to support a designer’s choice which representation to employ,
reveals no favorite with respect to the three criteria. As we have shown the fitting quality depends
on the employed basis function, which in our tests showed no clear winner. And regularity can
be tuned independent of the chosen type of linear deformation. However, orthogonalization for
optimal regularity makes so-called direct manipulation approaches of FFD or RBF superfluous
for algorithmic optimization. Even the comparison between local and global basis functions
showed no clear winner in our tests. Although global basis functions (or functions with a large
support) resulted in better fits for random distributions of control points, optimized distributions
lead to equivalent fitting quality.

However, we recommend RBF deformations because of their simplicity and efficiency. An in-
herent drawback of FFD is the application of an additional optimization procedure to determine
the local parametrization. Of course, this is much more inefficient than evaluating a simple func-
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tion for RBFs. Moreover, the feasibility of a FFD control grid has to be guaranteed during its
optimization. This limits the flexibility of the setup and results in additional constraints which
would slow down the optimization of the deformation matrix.

Employing our proposed quality criteria we optimized RBF setups, more precisely their cen-
ter distribution. Based on a multi-objective approach (running for 2 days) to compute Pareto-
optimal distributions as compromises between exploration and exploitation we showed the ca-
pability of a more efficient weighted single-objective optimization to hit the Pareto front. To
further enhance performance we drew inspiration of optimal center distributions of both ends of
the Pareto front and discussed the Lloyd sampling, the orthogonal least squares (OLS) sampling,
as well as an own approach for their combination. Although, these heuristics distribute centers
almost immediately (1 minute), compared to a 2 hours running single-objective optimization,
they lack the quality of a true optimization. However, employing the combination of Lloyd and
OLS sampling as initialization for an optimization procedure improves its performance at al-
most no cost. Our attempt to further improve the quality of the setups and their computation
time with a deterministic gradient-based optimization led to mediocre results. On the one hand
the deterministic results are better for further analyses because they can be reproduced and the
compromise solutions are partly more precise. On the other hand the gradient optimizer can
get stuck in local optima easier than an evolutionary approach. However, we employed the
deterministic approach for a detailed preference analysis.

Our goal was to choose the optimal compromise between exploration and exploitation dependent
on the strength of the variation of the fitness function for dynamic design optimization scenarios.
Our first tests in a static environments showed that an intermediate focus between exploration
and exploitation is superior for imprecise gradient information. In a second series of tests we
simulated a changing dynamic through a changing target to be fitted and thereby a varying fitness
gradient. For very similar fitness gradients, inducing an almost static environment, a focus on
exploitation leads to superior results, whereas for very distinct gradients, referring to a drastic
change of the fitness, a focus on exploration is superior. But, intermediate preference weights
were only better in a small range of similarity values and this range is highly problem dependent.
However, an intermediate preference weight works fine for any environment. We can’t give a
more precise statement when to apply which preference weight according to our results. We
figured out two key problems. First, a deformation setup tuned for exploration can accidentally
exploit given information perfectly and vise versa. Second, the fitting quality of different setups
cannot be compared because the fitness function and thereby the optimal value varies in the
tests. This only allowed a simple ranking of the preferences, which does not give qualitative
information to compare different fitness functions.

This leads us to general recommendations for future design scenarios. As mentioned before, we
recommend RBF deformations for their simplicity. Given a kernel function we first optimize the
center distribution with an evolutionary optimizer because of its robustness. If a designer expects
a strong change in a dynamic environment a focus on exploration (variability) is promising. If a
static dynamic is expected focusing exploitation (improvement potential) works best. Otherwise,
or for imprecise information we recommend a 50–50 compromise. Moreover, for the exploita-
tion cases we recommend local kernels, e.g., Wendland kernels with a small support radius
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9 Conclusion

Optimal center distribution
- Choose λ ∈ [0, 1]
- Optimize equation (6.1)

with CMA-ES

Optimal regularity
- Employ SVD (equation (8.1))
- Transform initial parameters

(equation (8.2))
- Transform initial step size

(equation (8.3))

Design
optimization

Figure 9.1: Summary of our recommended steps to initialize a high-performing design
optimization.

because they are more efficient than global kernels and lead to results of equivalent quality. For
exploration or imprecise information we recommend global triharmonic kernels or Wendland
kernels with a large support radius because their resulting quality of design solutions does not
depend that much on the center distribution, which induces robustness. Independent of the opti-
mal center distribution, or even independent of the employed linear deformation method, tuning
the deformation matrix itself for optimal regularity and thereby enhancing the convergence speed
is a must-do as a last step. Following these recommendations (summarized in Figure 9.1) the
tuned deformation setup should enable an efficient evolutionary design optimization process.

But, our detailed analysis of optimal compromises relies only on RBF tests. A possibility to
show the general character of our preference analysis is the analysis of optimal FFD setups.
But, this requires a proper definition of variability for FFD, and possibly for any linear defor-
mation first, which is an issue for future work. Another issue is to show if our proposed concept
performs in an automotive design scenario as well as in our test cases. But, because our math-
ematical models are based on general problem-independent concepts their application in this
more complex real-world application seems promising. Besides automotive product design fur-
ther application areas (like train, ship, or aircraft optimization) for our models are closely related
and can be tested. However, we can push the idea of generalization in another direction. We
analyzed our models for deformation-based evolutionary design optimization with a CMA-ES
as the algorithm. Different evolutionary methods for design problems can be tested to show the
independence with respect to the chosen algorithm. Furthermore, alternative non-deformation-
based, but still linear, scenarios can be evaluated with our quality criteria. So far variability,
regularity, and improvement potential are defined for linear mappings only. Thus, the high-
est level of generalization is their transformation to arbitrary representations, e.g., continuous
mappings.

o(·)OLuN(·)NδcδCxN (x)XXCo(·)wWpPdDϕ(·)ΦΨqQπUVσΣ∂cj,xmnRd∆∇PhenotypeGenotypeRepresentationEvolvabilityExplorationExploitationVariabilityRegularityImprovement
potential
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[GLMOB11] Edgar Galván-López, James McDermott, Michael O’Neill, and Anthony
Brabazon. Defining locality as a problem difficulty measure in genetic program-
ming. Genetic Programming and Evolvable Machines, 12(4):365–401, 2011.

[GMH+08] Lars Graening, Stefan Menzel, Martina Hasenjäger, Thomas Bihrer, Markus Ol-
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