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Abstract. This paper presents a study of the efficacy of comparative
controller design methods that aim to produce generalised problem solv-
ing behaviours. In this case study, the goal was to use neuro-evolution
to evolve generalised maze solving behaviours. That is, evolved robot
controllers that solve a broad range of mazes. To address this goal, this
study compares objective, non-objective and hybrid approaches to direct
the search of a neuro-evolution controller design method. The objective
based approach was a fitness function, the non-objective based approach
was novelty search, and the hybrid approach was a combination of both.
Results indicate that, compared to the fitness function, the hybrid and
novelty search evolve significantly more maze solving behaviours that
generalise to larger and more difficult maze sets. Thus this research pro-
vides empirical evidence supporting novelty and hybrid novelty-objective
search as approaches for potentially evolving generalised problem solvers.
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1 Introduction

A long time goal of Artificial Intelligence (AI) is to produce artificial brains
capable of eliciting generalised problem solving behaviours equilvalent to those
observed in nature [1]. Some research has focused on controller design methods
which specifically aim to be general problem solvers across a broad range of task
domains [2], [3], [4], [5], [6]. However, an alternate approach is to demonstrate the
efficacy of existing controller design methods as a generalised problem solvers in
a given task, and then extract the method’s underlying principles in order that
the method is applicable to a broad range of task domains.

Given that Neuro-Evolution (NE) [7] aims to emulate the evolutionary pro-
cess that has produced generalised problem solvers in nature, NE is one such
promising approach. That is, biological neural networks have evolved to be capa-
ble of learning a vast range of behaviors to potentially solve any task an organism
may encounter in its natural environment [8]. Although the methods used in NE
are vast simplifications of the processes which occurred in nature, a resemblance
does exist.
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This study’s research objective is to test if NE is an appropriate controller
design method for evolving generalised problem solving behaviours, and to elu-
cidate the necessary defining features of such controller design methods. As an
initial step towards addressing this general objective, this study tests the effi-
cacy of an NE controller design method with a fitness function [9], novelty search
[10], and a novelty-fitness hybrid for evolving generalised maze solvers. That is,
evolved maze solving behaviours that can solve any given maze.

Even though various NE controller design methods are frequently only tested
on specific tasks, we hypothesize that only small changes are required in order
that such methods evolve general problem solving behaviours. That is, evolved
behaviours that are applicable across a range of task domains. In related NE
research, a specific task can be viewed as one in which an NE method evolves
a controller that solves a single instance of a fully deterministic task. Thus, if
a given Artificial Neural Network (ANN) controller is evaluated multiple times
on this task it will always follow an identical trajectory through the task’s state
space. This implies that such tasks are solvable by a controller that memorizes a
specific sequence of sensory-motor couplings, rather than meaningfully interpret-
ing sensory inputs and appropriately mapping them to motor outputs. Examples
of such specific tasks are pole-balancing [11], [12], navigation of a single maze
[10], [13], [14] and biped [10] and quadruped [15] gait evolution.

A highly specific task can be made general either by making the environment
stochastic or requiring that a controller is solve multiple instances of the task,
each of which differ in some manner. Examples of stochastic environments in
the NE literature are abstracted Markov Decision Processes [16] and GO play-
ing against a non-deterministic opponent [17]. An example task domain with
multiple instances is the multi-agent pursuit-evasion task with variable agent
starting positions [18], [19]. A particularly relevant study was the evolution of
ANN controllers for generalised helicopter control [20] using both stochastic en-
vironments and multiple task instances. However, with the exception of notable
research such as that of Rajagopalan et al. [21], finding the evolution of gen-
eralised problem solvers was positively correlated with connection density in
ANNs, there is a lack of research on how NE can be scaled to more general
tasks.

Recent research established the evolutionary robotics task of evolving maze
solving controllers as a useful controller evolution benchmark [10], [13], [14].
However, all previous work has focused on controller evolution to solve a single
maze. In this research, the task was made general via requiring that evolved
controllers be able to solve any given maze. Such generalised maze solving con-
trollers are evolvable using novelty search or a hybrid fitness-novelty search to
direct controller evolution. In comparison, fitness function directed controller
evolution performed significantly worse in evolving generalised maze solvers.



2 Methods

2.1 Novelty Search

Traditionally, evolutionary algorithms have been driven by a fitness function
[9]. This function usually indicates how far a phenotype (solution) is from a
user defined objective. The closer the phenotype is to the objective, the more
likely it is that the associated genotype will be selected for reproduction. Novelty
search (NS) [10] represents a radical departure from this paradigm, given that
NS does not explicitly define an objective but rather rewards evolved phenotypes
based purely on their novelty. That is, a genotype is more likely to be selected
for reproduction given that the genotype’s encoded behaviour (phenotype) is
sufficiently different from all the other phenotypes produced thus far in the
evolutionary run. A criticism of NS is that it is equilvalent to random search [13].
However, recent experimental results indicated that controllers evolved with a
NS metric attained some degree of generality. That is, controllers evolved to solve
one maze could be successfully transferred to solve different mazes [13]. However,
the most convincing proof of NS efficacy is that in comparison to objective driven
NE, it produces significant performance improvements in a range of tasks that
include maze-solving, evolving bipedal robotic gaits [10], evolving programs with
genetic programming [22] and grammatical evolution [23].

To elicit further performance gains in these tasks, various research has tested
hybrid NS and fitness metrics. These include using a fitness function combining
traditional fitness and a novelty metric [24], restarting converged evolutionary
runs using novelty [24], a minimal criteria (for survival and reproduction of con-
troller behaviours) novelty search [25], a progressive minimal criteria (increment-
ing the requirements for reproduction throughout the evolutionary process) [26],
and novelty search combined with speciation techniques [27]. Inden et al. [27]
found that NS was outperformed by a hybrid objective-novelty metric in pole-
balancing, maze solving and quadruped gait evolution tasks. Similarly, Lehman
and Stanley [25] found that their minimal criteria novelty search evolved so-
lutions more consistently than objective base search. Gomes et al. [26] found
that their progressive minimal criteria novelty metric outperformed pure NS in
a swarm robotics task. However, it has also been found that an objective based
search can outperform NS on the deceptive tartarus task [24] as well as pole
balancing and a visual discrimination task [27].

This raises the question as to what the defining features of a task, controller
design method, and environment are such that NS, or a hybrid novelty-objective
metric is able to out-perform objective based search. Lehman and Stanley [10]
have argued that if a task’s fitness landscape is characterized by low fitness
regions being necessary stepping stones for evolution to reach desired high fit-
ness regions, then NS will perform well. Lehman and Stanley [10] also propose
that if a domain is deceptive then NS will perform particularly well. However,
aside from the hard maze example [10] the exact defining features of a deceptive
task remains unclear. Alternatively, Kistemaker and Whiteson [28] propose that



the success of NS is dependant on whether differences in evolved controller be-
haviours are reflected in differences in the fitness of the controllers’ descendants.

A key question is how NS performs in tasks with huge solution spaces, where
there is a high degree of probability that the continued discovery of novel so-
lutions will not produce a desired solution within a reasonable amount of time.
This research question was tested via applying NS to maze solving with some of
the outer walls of a maze removed [10]. Results indicated that the performance
of NS degraded to be comparable to objective based search. However, the per-
formance of NS in this version of the task could likely be increased via imposing
heuristic constraints that bias evolved behaviours.

Thus, this research investigates the performance of NS in the maze solv-
ing domain for a range of large and structurally diverse mazes. In this work,
the maze solving behaviours of a simulated robot was evolved for 100 different
mazes. This allowed for the evolution of a diverse range of novel maze solving
behaviours. The behavioural diversity metric used in this research was such that
a robot A, can behave identically to another robot B, on ninety-nine mazes, but
by differing on only one maze enables it to distinguish itself as being different
from B. This is different to the concept of increasing the dimensionality of the
behaviour representation [10], where a robot’s behaviour is frequently sampled
during a given task evaluation. This is due to the fact that, during a single task
trial, a robot’s behaviour at a given simulation iteration is dependant upon its
behaviour at an earlier iteration, and a robot’s movements early on will affect
the probability of it solving the task (finding a path through the maze) at a later
point. However, behaving in a certain manner in one maze does not affect the
robot’s behaviour in another maze.

Any implementation of NS requires that genotypes have a novelty represen-
tation, which is typically a vector of floating-point values. In addition to this, a
behavioural diversity metric is required which will assign a novelty value, which
is analogous to a fitness value, to any given genotype and its corresponding phe-
notype. An often used metric, also used in this research, is that of sparseness,
shown in equation 1 [10].

ρ(x) =
1

k

k∑
i=0

dist(µi, x) (1)

Here, µi is in the k nearest neighbours of x in both the population and an archive
of previously seen genotypes and dist is a distance measure.

2.2 Neuro-Evolution of Augmenting Topologies (NEAT)

This study uses the Neuro-Evolution of Augmenting Topologies (NEAT) method
[29]. NEAT is an established NE method that was selected since it has been
previously employed in similar studies [10], [13], [14]. NEAT evolves both the
topology and the weights of ANNs via a process of complexification. That is, at
the start of artificial evolution, ANNs in the population are functionally simple,
with minimal numbers of nodes and connections. During the course of evolution,
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Fig. 1. (Left) ANN controller used in the experiments. (Right) Sensory configuration
of robots in the simulated maze task. Both figures adapted from [10].

further nodes and connections are added to ANNs, where increasing the number
of nodes and connections in an ANN increases the search space dimensionality.
An advantage of NEAT is that this complexifying process is likely to find a
solution in a lower dimension search space than the large network which would
have to be specified a priori if a fixed topology method were to be able to
solve a variety of problem types [29]. Other distinguishing features of NEAT are
speciation, which protects innovation, and historical markings, which aid in the
crossover of structurally different ANNs. In this study, the real-time version of
NEAT, rtNEAT [30] was used as it has been demonstrated as effective in related
task domains.

Robot ANN controllers were evolved with the goal of being able to solve
any perfect maze generated on a grid structure [31], where each grid cell was
of a pre-set size. Although evolved on a 13x13 grid, the goal was to produce
generalised maze solvers. Hence, evolved controllers were tested on harder mazes
in a validation set. Figures 2 and 3 present examples of the mazes used for the
evolution and validation of maze solving behaviours.

2.3 Maze Generation

The evolution and validation of maze solving behaviours required large maze
sets. These sets were produced automatically using the Daedalus software writ-
ten by Walter Pullen [32]. All mazes were perfect mazes generated on a grid
structure [31]. Large quantities of mazes were generated using this software’s
implementation of the randomized Prim’s algorithm [33] and then scripts were
run to remove the duplicates.

2.4 Generalised Maze-Solvers

The methods are similar to those used by Lehman and Stanley [10], the key
difference being the inclusion of a hybrid novelty-objective metric, and evaluating



controllers over a set of mazes, rather than a single maze. The parameters for
NEAT and NS were also similar to those used by Lehman and Stanley [10].

Experiments were implemented as an extension of Novelty Search C++ used
by Lehman and Stanley [10]. The large number of maze navigation simulations
which had to be conducted per robot controller (that is, for each genotype in
the population) necessitated that we parallelize the genotype evaluation process.
This was done using the Boost MPI library [34] to facilitate parallel processing
on clusters. Robots were equipped with six rangefinder sensors and four radar
sensors in the configuration presented in figure 2.4. The rangefinder sensors indi-
cated the distance to the nearest wall along a line radiating out from the centre
of the robot at a specific angle. The radar sensors divided the space around the
robot into four equally sized quadrants and indicated whether or not the goal
was in the quadrant. The main difference between the approach presented here
and other investigations of NS in the maze domain was that instead of each
genotype evaluation equating to one task trial, that is, one attempt to navigate
a single maze, each controller was required to navigate every maze in a set of
100. The purpose of making a task trial consist of a set of 100 mazes, was to
gauge a controller’s general maze solving behaviour.

Robots were given 8000 time steps to navigate any given maze, where as 800
were used in the work of Lehman and Stanley [10]. This increase is due to the
larger size of mazes used in this study and also generalised maze solving requires
sufficient exploration of the maze, as opposed to simply finding the shortest path.
A robot’s behaviour representation was a vector of floating point numbers which
consisted of the x and y coordinates of the robot every 2000 time steps in each of
its 100 maze solving simulations. Thus, each robot’s behavioural representation
was a vector of 800 floating point numbers. The novelty metric used was that
of sparseness, as shown in equation 1. The distance metric between vectors was
simply the average difference between corresponding elements.

Also, the simulated robot was changed from a wheeled robot with momentum
to a tracked one without any momentum. That is, every time step, a robot’s
speed and angular velocity were specified by equations 2 and 3, respectively.

s = (o1) ∗ 0.5 (2)

ω = (o2 − 0.5) ∗ 10.0 (3)

Here s represents the speed of the robot, ω represents its angular velocity
and o1 and o2 represent the ANN outputs, in the range [0, 1]. The robot can
only move forwards, since a wall following behaviour (a typical maze solving
behaviour [32]) requires that the robot be able to move in only one direction.
However, exploratory experimentation (results not presented here), showed that
allowing the robot to move in reverse had a minimal impact on task performance.

The collision radius of the robot with the walls was reduced from four to 0.5
units. The purpose of these changes in the robot’s movement and its collision
radius was the result of preliminary experiments finding that the maze environ-
ment of Lehman and Stanley [10] did not allow for the evolution of generalised
solvers. Exploratory experiments attempted to elucidate the exact relationship



Fig. 2. Examples of the mazes used in the training set. (Left) Less difficult and decep-
tive. (Right) More difficult and deceptive.

Fig. 3. Examples of the mazes used in the validation set. (Left) Less difficult and
deceptive. (Right) More difficult and deceptive.

between these parameters, the defining maze features, and successful evolution
of maze solving behaviours. However, due to the large computational and time
expense of evolving maze solving behaviours across a vast range of mazes for var-
ious task and method parameters, this is still the subject of ongoing research.

3 Experiments

3.1 Objective versus Non-Objective Search

Experiments compared the task performance of non-objective (NS) versus ob-
jective versus a hybrid NS-Objective search approach. Thus the three test cases
were NE directed by novelty, NE directed by fitness, where robot behaviour
fitness was the number of mazes it was able to solve, and finally NE directed
by a hybrid fitness-novelty function. This hybrid fitness-novelty function was
f = n + m

2 . Here n is the robot’s novelty score and m is the number of mazes
that it solved. Exploratory experiments indicated that using this hybrid fitness
function, the behaviour of NE was distinct from NE directed by NS and NE
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Fig. 4. Number of mazes solved by the best evolved controller, averaged over 20 runs,
against the number of evaluations.

training generalisation

Mazes Solved Successful Runs Mazes Solved Successful Agents

Hybrid 98.7 (4.1) 18 9911 (267) 10

Novelty 99.6 (1.2) 17 9954 (88) 9

Fitness 89.8 (17.6) 10 9735 (419) 1

training

Hybrid Novelty Fitness

Hybrid - 0.4 0.009

Novelty 0.4 - 0.007

Fitness 0.009 0.007 -

generalisation

Hybrid Novelty Fitness

Hybrid - 0.5 0.02

Novelty 0.5 - 0.03

Fitness 0.02 0.03 -

Table 1. (Top) Average number of training mazes solved by best evolved robot con-
troller after 50000 evaluations, over 20 run,s as well as the number of runs which
produced a controller capable of solving all 100 mazes. Also shown is the average num-
ber of mazes solved in the generalisation test as well as the number of tested agents
capable of solving all 10000 mazes. Standard deviations are in parentheses. (Bottom)
p values for the differences in the means shown in the upper table (Mann-Whitney-U
test[35]).

directed by fitness. More specifically, the populations converged on solving be-
haviours, unlike NS, yet evolution performed better than fitness.

Each experiment tested one of these three approaches, and each experiment
was run 20 times. Each run was ended after 50000 new individuals had been
added to the population. That is, given that rtNEAT was used [30], there was
continuous replacement of genotypes. Also, each genotype (robot) was tested on



all 100 mazes in the training set, where each run consisted of over five million
maze navigation simulations. Results are presented in figure 4 and table 1. It was
found that the NS and hybrid NS-objective schemes yielded statistically com-
parable task performance, where as both approaches out-performed the fitness
function directed NE (section 4).

3.2 Validation of General Maze Solving

One test of behavioural generality, is to place evolved controllers (behaviours)
in new environments in which they were not evolved and to measure their task
performance in these new environments. The 100 mazes used for maze solving
behavioural evolution were a sample of the space of all mazes for the given maze
size and structural criteria.

To test the general nature of evolved behaviours, the first behaviour (geno-
type) capable of solving all 100 mazes in the evolution set for each of the 20
runs, under each of the different incentives, was saved.

Since some evolutionary runs did not evolve maze solving behaviours, 17
saved genotypes from NS directed NE, 18 from NS-Objective and 10 from fitness
were tested. A set of 10000 mazes was constructed using the same methods as for
the evolution set except that these mazes were harder, constructed on a 21x21
grid instead of a 13x13 grid. Figures 2 and 3 present examples of some harder
mazes. An agent which is a perfect wall-follower will not find these larger mazes
more difficult. However, the larger distance which an agent is required to cover
in one of these mazes means that there are more opportunities for mistakes to
be made.

Nine of the behaviours evolved under NS were able to solve all 10000 mazes.
The mean number solved was 9954, with a standard deviation of 88 and a min-
imum of 9662. Ten of the behaviours evolved under the NS-Objective hybrid
were able to solve all 10000 mazes. The mean number solved was 9911, with a
standard deviation of 264 and a minimum of 8815. Only one of the behaviours
evolved under pure fitness were able to solve all 10000 mazes. The mean number
solved was 9735, with a standard deviation of 419 and a minimum of 8799.

4 Discussion

Experimental results (figure 4) indicate that given the three schemes for directing
the evolution of maze solving behaviours, NS, NS-Objective hybrid and a fitness
function, there was no statistically significant difference between the average
task performance of NS and NS-Objective directed NE. However, there was a
statistically significant difference between these approaches and fitness function
directed NE (table 1). This result contributes to increasing empirical evidence
on the value of NS or an an NS-Objective hybrid in tasks with varying degrees of
deception versus a purely objective function based search [25], [26], [27], [10], [13].
For example, related work has similarly yielded comparable task performances
for evolved maze solving behaviors between a range of hybrid NS-Objective



functions and NS search [27]. Moreover, the results presented here show that NS
and NS-Objective hybrids can be successful in very large behaviour spaces.

This experimental comparison was not explicitly designed to support the
efficacy of NS or an NS hybrid search in contrast to objective based approaches,
but rather to elucidate what constitutes an effective NE method capable of
evolving generalised problem solvers (in this case study, specifically, maze solving
behaviours). Further to this research goal, an analysis of evolved behaviours
indicates that multiplicative factors converting controller outputs to robot speed
and angular velocity, are important contributors to the functionality of the best
evolved maze solving behaviours. However, the impact of controller parameters
and task environment features on the evolution of behaviours able to generalise
to harder task versions, is the subject of ongoing research.

In terms of the functionality of all evolved behaviours, emergent wall fol-
lowing behaviours were observed in all general maze solving behaviours evolved
using NS, NS-Objective and fitness function directed NE, supporting the no-
tion that a well established general maze solving behaviour [32] is attainable by
NE. Also, the capability of many of the highest performing behaviours (those
that solved all 100 mazes in the initial set), to solve all 10000 of a set of harder
validation mazes, further supports the efficacy of NE for producing generalised
maze solvers. These results support the study’s research objective of using NE
to evolve generalised problem solvers. The evolution of generalised maze solvers
is an initial step towards this objective, where comparatively testing NS, NS-
Objective hybrid, and objective based search was necessary to help elucidate the
defining features of an NE controller design method able to evolve generalised
problem solving behaviours.

The generality test was to validate evolved behaviours in a harder maze set. A
majority of the best behaviours evolved by NS, NS-Objective and fitness function
directed NE were able to solve all 10000 mazes in the validation set. However,
the NS and NS-Objective approaches evolved more maze-solving behaviours that
generalised to the validation set (table 1).

A key result is the higher (statistically significant) task performance of NS
and NS-Objective hybrid search, compared to objective based search. This sug-
gests that the task environment contains features making it amenable to the
evolution of effective maze solvers by NS or an NS-Objective hybrid. Previous
work [10], [13] indicates that NS performs well in deceptive tasks. Assuming
that the high performance of NS in a domain indicates that it is deceptive, then
we can conclude that generalised maze-solving is such a domain. However, the
notion of deception remains ill defined, and it is difficult to tell a priori if a
task is deceptive. In mazes, deceptiveness is intuitively gauged by observation,
but it is unclear whether tasks such as generalised maze-solving, pole-balancing,
quadruped robotic locomotion, and visual discrimination tasks also have ele-
ments of deception. In such tasks, the efficacy of NS or a NS-Objective hybrid
search approach is yet to be satisfactorily demonstrated [27].



5 Conclusion

As a step towards addressing the research goal of defining controller design meth-
ods that elicit generalised problem solving behaviour, this paper presented a com-
parison of NE methods for generating generalised maze solving behaviours. The
experimental comparison used objective (fitness function) versus non-objective
(NS) versus a hybrid NS-Objective search as a means of guiding the NE controller
design method. This study’s specific aim was to elucidate if NE is appropriate for
generating generalised maze solvers, and tested the three search metrics as the
NE method’s salient feature. Results indicated that the NS and NS-Objective
approaches yielded comparable task performances, but out-performed a fitness
function directed NE. These results support previous work that indicate that
NS directed NE is appropriate for solving deceptive tasks. However, the efficacy
of controller evolution driven by fitness, NS and NS-Objective hybrid search for
eliciting problem solving behaviours in a broader range of tasks, especially those
that do not include deception, is the subject of future research.
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