2,796 research outputs found

    How clumpy is my image? Evaluating crowdsourced annotation tasks

    Get PDF
    13th UK Workshop on Computational Intelligence (UKCI), Guildford, UK, 9-11 September 2013This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The use of citizen science to obtain annotations from multiple annotators has been shown to be an effective method for annotating datasets in which computational methods alone are not feasible. The way in which the annotations are obtained is an important consideration which affects the quality of the resulting consensus estimates. In this paper, we examine three separate approaches to obtaining scores for instances rather than merely classifications. To obtain a consensus score annotators were asked to make annotations in one of three paradigms: classification, scoring and ranking. A web-based citizen science experiment is described which implements the three approaches as crowdsourced annotation tasks. The tasks are evaluated in relation to the accuracy and agreement among the participants using both simulated and real-world data from the experiment. The results show a clear difference in performance between the three tasks, with the ranking task obtaining the highest accuracy and agreement among the participants. We show how a simple evolutionary optimiser may be used to improve the performance by reweighting the importance of annotators

    How clumpy is my image?: Scoring in crowdsourced annotation tasks

    Get PDF
    The use of citizen science to obtain annotations from multiple annotators has been shown to be an effective method for annotating datasets in which computational methods alone are not feasible. The way in which the annotations are obtained is an important consideration which affects the quality of the resulting consensus annotation. In this paper, we examine three separate approaches to obtaining consensus scores for instances rather than merely binary classifications. To obtain a consensus score, annotators were asked to make annotations in one of three paradigms: classification, scoring and ranking. A web-based citizen science experiment is described which implements the three approaches as crowdsourced annotation tasks. The tasks are evaluated in relation to the accuracy and agreement among the participants using both simulated and real-world data from the experiment. The results show a clear difference in performance between the three tasks, with the ranking task obtaining the highest accuracy and agreement among the participants. We show how a simple evolutionary optimiser may be used to improve the performance by reweighting the importance of annotators

    Formation of stars and clusters over cosmological time

    Full text link
    The concept that stars form in the modern era began some 60 years ago with the key observation of expanding OB associations. Now we see that these associations are an intermediate scale in a cascade of hierarchical structures that begins on the ambient Jeans length close to a kiloparsec in size and continues down to the interiors of clusters, perhaps even to binary and multiple stellar systems. The origin of this structure lies with the dynamical nature of cloud and star formation, driven by supersonic turbulence and interstellar gravity. Dynamical star formation is relatively fast compared to the timescale for cosmic accretion, and then the star formation rate keeps up with the accretion rate, leading to a sequence of near-equilibrium states during galaxy formation and evolution. Dynamical star formation also helps to explain the formation of bound clusters, which require a local efficiency that exceeds the average by more than an order of magnitude. Efficiency increases with density in a hierarchically structured gas. Cluster formation should vary with environment as the relative degree of cloud self-binding varies, and this depends on the ratio of the interstellar velocity dispersion to the galaxy rotation speed. As this ratio increases, galaxies become more clumpy, thicker, and have more tightly bound star-forming regions. The formation of old globular clusters is understood in this context, with the metal-rich and metal-poor globulars forming in high-mass and low-mass galaxies, respectively, because of the galactic mass-metallicity relation. Metal-rich globulars remain in the disks and bulge regions where they formed, while metal-poor globulars get captured as parts of satellite galaxies and end up in today's spiral galaxy halos. Blue globulars in the disk could have formed very early when the whole Milky Way had a low mass.Comment: 14 pages, 1 figure, in conference "Lessons from the Local Group," ed. K. Freeman et al., Springer, 201

    Large and small-scale structures and the dust energy balance problem in spiral galaxies

    Get PDF
    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a S\'ersic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.Comment: 9 pages, 5 figures, accepted for publication in A&

    The Dawes Review 1: Kinematic studies of star-forming galaxies across cosmic time

    Full text link
    The last seven years have seen an explosion in the number of Integral Field galaxy surveys, obtaining resolved 2D spectroscopy, especially at high-redshift. These have taken advantage of the mature capabilities of 8-10 m class telescopes and the development of associated technology such as AO. Surveys have leveraged both high spectroscopic resolution enabling internal velocity measurements and high spatial resolution from AO techniques and sites with excellent natural seeing. For the first time, we have been able to glimpse the kinematic state of matter in young, assembling star-forming galaxies and learn detailed astrophysical information about the physical processes and compare their kinematic scaling relations with those in the local Universe. Observers have measured disc galaxy rotation, merger signatures, and turbulence-enhanced velocity dispersions of gas-rich discs. Theorists have interpreted kinematic signatures of galaxies in a variety of ways (rotation, merging, outflows, and feedback) and attempted to discuss evolution vs. theoretical models and relate it to the evolution in galaxy morphology. A key point that has emerged from this activity is that substantial fractions of high-redshift galaxies have regular kinematic morphologies despite irregular photometric morphologies and this is likely due to the presence of a large number of highly gas-rich discs. There has not yet been a review of this burgeoning topic. In this first Dawes review, I will discuss the extensive kinematic surveys that have been done and the physical models that have arisen for young galaxies at high-redshift.Comment: 51 pages, 34,000 words, 16 figures. A few minor corrections have been made to the journal version. High-resolution PDF and iPad optimised ePUB versions available from http://astronomy.swin.edu.au/karl/dawe

    Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope

    Full text link
    We present new Hubble Space Telescope/Wide Field Camera 3 imaging of 25 extremely luminous (-23.2 < M_ UV < -21.2) Lyman-break galaxies (LBGs) at z ~ 7. The sample was initially selected from 1.65 deg^2 of ground-based imaging in the UltraVISTA/COSMOS and UDS/SXDS fields, and includes the extreme Lyman-alpha emitters, `Himiko' and `CR7'. A deconfusion analysis of the deep Spitzer photometry available suggests that these galaxies exhibit strong rest-frame optical nebular emission lines (EW_0(H_beta + [OIII]) > 600A). We find that irregular, multiple-component morphologies suggestive of clumpy or merging systems are common (f_multi > 0.4) in bright z ~ 7 galaxies, and ubiquitous at the very bright end (M_UV < -22.5). The galaxies have half-light radii in the range r_1/2 ~ 0.5-3 kpc. The size measurements provide the first determination of the size-luminosity relation at z ~ 7 that extends to M_UV ~ -23. We find the relation to be steep with r_1/2 ~ L^1/2. Excluding clumpy, multi-component galaxies however, we find a shallower relation that implies an increased star-formation rate surface density in bright LBGs. Using the new, independent, HST/WFC3 data we confirm that the rest-frame UV luminosity function at z ~ 7 favours a power-law decline at the bright-end, compared to an exponential Schechter function drop-off. Finally, these results have important implications for the Euclid mission, which we predict will detect > 1000 similarly bright galaxies at z ~ 7. Our new HST imaging suggests that the vast majority of these galaxies will be spatially resolved by Euclid, mitigating concerns over dwarf star contamination.Comment: 26 pages, 11 figures and 5 tables. Updated to match MNRAS accepted versio

    SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations

    Full text link
    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.Comment: 15 pages, 4 figures, accepted for publication in Astronomy and Computin
    • …
    corecore