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Abstract The use of citizen science to obtain annota-

tions from multiple annotators has been shown to be

an effective method for annotating datasets in which

computational methods alone are not feasible. The way

in which the annotations are obtained is an important

consideration which affects the quality of the resulting

consensus annotation. In this paper, we examine three

separate approaches to obtaining consensus scores for

instances rather than merely binary classifications. To

obtain a consensus score annotators were asked to make

annotations in one of three paradigms: classification,

scoring and ranking. A web-based citizen science ex-

periment is described which implements the three ap-

proaches as crowdsourced annotation tasks. The tasks

are evaluated in relation to the accuracy and agreement

among the participants using both simulated and real-
world data from the experiment. The results show a

clear difference in performance between the three tasks,

with the ranking task obtaining the highest accuracy

and agreement among the participants. We show how a

simple evolutionary optimiser may be used to improve

the performance by reweighting the importance of an-

notators.
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1 Introduction

The increasing digitisation of science has dramatically

reduced the cost of generating large amounts of data in

a relatively short amount of time. However, the analysis

and labelling of this data often requires human partic-

ipation. In fact, annotating large datasets to provide

ground-truth instances has become one of the major

bottlenecks for developing effective supervised machine

learning models which can generate new predictions

[Raykar and Yu, 2012]. Alternatives to purely compu-

tational approaches are therefore required in order to

obtain the annotations.

Citizen science seeks to elicit the help of non-experts

to address scientific problems by using crowdsourcing

[Doan et al., 2011]. Often this takes the form of an on-

line annotation task in which the collective efforts of

many individual participants are used to arrive at esti-

mates of the consensus annotations. Recently, a num-

ber of citizen science projects have shown effectiveness

in using crowdsourcing approaches to acquire annotated

datasets which can then be used to guide computational

approaches [Whitehill et al., 2009, Fortson et al., 2012,

Parent and Eskenazi, 2010]. Annotations gathered from

citizen science experiments can result in valuable train-

ing data for machine learning models, while also provid-

ing insights into the behaviour of the participants. In

addition, there are a number of interesting theoretical

problems surrounding citizen science as a result of the

different degrees of accuracy associated with the partic-
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ipants and the uncertainty inherent in the data [Raykar

et al., 2010].

With the increasing number of online projects there

is a corresponding need to investigate how crowdsourc-

ing tasks should be presented to the participants [Heer

and Bostock, 2010, Parent and Eskenazi, 2010, Snow

et al., 2008]. The effect that different types of anno-

tation tasks have on the performance and consensus of

the participants is an important, but largely unexplored

topic. The choice of task is an essential consideration

when using crowdsourcing to gather annotations, as it

determines to a significant extent the quality of the re-

sulting data. A common and relatively well-understood

task is classification in which annotators are asked to

assign instances to one of a number of discrete classes.

Since the classes are predefined through criteria deter-

mining membership of each class, the annotator’s task

is conceptually straightforward, even if determining to

which class an instance belongs is difficult.

In contrast, assigning a score to an instance is more

difficult because individual annotators may use the range

of scores differently and may judge the linearity of the

scale differently. The goal of this paper is to inves-

tigate a number of separate approaches to obtaining

score annotations from experimental participants and

to examine their effectiveness. We describe a web-based

citizen science experiment involving the annotation of

microscopy images of plant cells during bacterial infec-

tion. Briefly, the goal is to assess the degree of “clumpi-

ness” of each image. This task therefore differs from the

more common classification task, in which the annota-

tor is asked to assign an object to discrete categories,

because “clumpiness” is a continuous quantity. Three

separate paradigms are used to obtain the image anno-

tations and in this paper we assess their efficacy and

means of deriving a consensus score from the annota-

tions. The approaches are evaluated on both simulated

and real-world data from the experiment and a compar-

ison is made between the different tasks. In particular,

the influence of the task type on the overall performance

and consensus of the annotators is examined. The an-

notation of the microscopy images is a very challenging

problem for current image processing techniques, which

makes it a good candidate for a citizen science project.

The rest of the paper is organised as follows. Sec-

tion 2 is a description of the problem. Section 3 de-

scribes the citizen science experiment, including the

user statistics for each of the tasks. Section 4 outlines

methods for evaluating different annotation tasks. Sec-

tion 5 describes the simulation setup used to model an-

notators under the different tasks. Section 6 presents

the empirical results from the simulated and experi-

mental data. Section 7 describes how the estimates of

individual annotators can be reweighted using an evolu-

tionary optimiser to obtain more accurate results. Sec-

tion 8 concludes the paper.

2 Description of Problem

2.1 Learning from Multiple Annotators

In a typical annotation task, there is a set of N in-

stances x = {x1, . . . , xN} whose true annotations are

unknown. Each instance xi ∈ x is then assigned an

annotation by R annotators, resulting in a set of esti-

mates {y1i , . . . , yRi } of the true annotation. Given these

multiple annotations, the goal is to arrive at accurate

consensus estimates y = {y1, . . . , yN} for each of the N

instances.

One simple and often used technique for obtaining

consensus estimates from multiple annotators is major-

ity voting [Raykar et al., 2010]. For binary classification,

the majority vote estimate of an instance xi is defined

as

yi =

{
1 if 1

R

∑R
j=1 y

j
i ≥ 0.5

0 otherwise
(1)

where yji ∈ {0, 1} is the annotation assigned to instance

xi by annotator j. For simplicity of notation we assume

that each instance is annotated by the same number, R,

of annotators, although in practice R is often different

for each instance. Majority voting can be extended to

scores, where each instance is assigned the mean of the

annotators’ scores:

yi =
1

R

R∑
j=1

yji . (2)

If the scores are made on an integer scale (e.g., a five-

point scale: yji ∈ {1, 2, 3, 4, 5}), the estimate yi can then

be rounded to the nearest score on the scale.

Ideally, annotators with higher accuracy should be

given more weight when estimating the consensus, while

the influence of poor quality annotators should be de-

creased or removed entirely. A major limitation of stan-

dard majority voting is that it assumes all annotators

are equally reliable, meaning that its effectiveness is de-

pendent on the overall quality of the annotators [Raykar

et al., 2010]. Given an estimate of an annotator’s perfor-

mance, we can introduce an additional weighting term

to the vote to account for the variation in quality among

the annotators. Let εj be the error rate of annotator j

on some subset of the instances for which the true an-

notations are known. The standard majority vote for
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classification can be replaced by

yi =

{
1 if 1

R

∑R
j=1 |y

j
i − εj | ≥ 0.5

0 otherwise
(3)

which penalises annotators with high error rates and

assigns greater weight to the estimates of accurate an-

notators. If there is no known standard on which to

evaluate the annotators, more sophisticated techniques

are required in order to account for the differences in

annotator quality, such as those proposed in [Whitehill

et al., 2009, Raykar et al., 2010, Raykar and Yu, 2012].

In Section 7 we describe how annotator weighting

parameters can be optimised to improve the accuracy

of the estimates.

2.2 Obtaining Scores from Annotators

The annotations collected from the experiment indicate

the degree of “clumpiness” present in the microscopy

images. This notion of clumpiness is continuous in na-

ture, with scores potentially falling within an indefinite

range. Unlike classification tasks, which involve assign-

ment to predefined categories, ways of assessing a score

are less well explored. We therefore asked annotators to

perform three different kinds of task in order to elicit

a consensus score. Each individual annotator was ran-

domly assigned to one of these tasks and did not an-

notate images using the other two. The following is a

description of the three kinds of annotation investigated

in this paper: classification, scoring and ranking.

The classification task divides the range of scores

into two (not clumpy and clumpy) and requires the an-

notators to assign binary scores {0, 1} to the instances:

yji ∈ {0, 1} ∀xi ∈ x. (4)

A consensus classification is then obtained by majority

voting (1). In addition, the proportion of 1 annotation

is assigned (2). Clearly, this score can be interpreted

as the probability that the instance belongs to either

class. To obtain the maximum amount of information

the class boundary should be placed so that approxi-

mately half of the instances fall in either class. However,

while this task is conceptually straightforward for anno-

tator, they may find it difficult to assign instances close

to the artificially-imposed division between the classes.

Furthermore, the extreme “quantisation” of the contin-

uous scale into just two categories inevitably discards

information about degree which is only recovered after

many annotations have been made.

For the scoring task, the annotators directly assign

scores in a pre-determined range. Although in princi-

ple an indefinitely fine scale could be employed, in our

experiments a seven-point integer scale was used:

yji ∈ {1, . . . , 7} ∀xi ∈ x (5)

A fairly coarse integer scale, like this, relieves annota-

tors of feeling that they have to make very fine distinc-

tions, while allowing them to distinguish between very

clumpy and quite clumpy, etc. Nonetheless, even when

furnished with examples, annotators may not use the

full range of the scale and, of course, may assign dif-

ferent scores based on their prejudices and the partic-

ular instances that they have seen previously. Clearly,

a consensus score is easily given by the mean of the

annotators’ scores (2).

For the ranking task, annotators are required to

rank-order subsets of the instances according to what-

ever quantity is being assessed. This results in a set

of ordered relations and we write (xi ≺j xk) to indi-

cate that xi has been assessed to have a lower score

than xk by annotator j. Although probabilistic mod-

els for inferring ranks for partial information can be

constructed [e.g. Lebanon and Lafferty, 2002], we use

a straightforward method for determining a consensus

score as follows. Consider the specific case in which each

instance is ranked either higher or lower than one other

instance. From these binary rankings, a score is derived

for each of the instances. Let

Rxi = {xk ∈ x | (xk ≺j xi)∀j} (6)

be the set of instances ranked lower than xi by any

annotator. Also let

Txi
= {xk ∈ x | (xk ≺j xi) ∨ (xi ≺j xk)∀j} (7)

be the instances ranked either lower or higher than xi.

The consensus score for xi is then

yi =
|Rxi |
|Txi |

(8)

so that 0 < yi ≤ 1. Clearly, instances that are con-

sistently ranked above other instances will obtain high

scores and vice versa. In the experiment we describe

below, annotators were asked to rank order groups of

three images from least clumpy to most clumpy. This

ranking was decomposed into the three implied binary

relations and used as described above. The advantage

of the ranking task is that annotators find it relatively

easy to compare instances and agree on an ordering

even if they disagree on a precise score or even to which

pair of classes an instance belongs. Unlike the classifica-

tion and scoring tasks there is no need for the annotator

to refer back to a set of fiducial instances for calibration.
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(a) Consensus Score: 0.14 (b) Consensus Score: 0.39 (c) Consensus Score: 0.85

Fig. 1 Examples of the chloroplast images used for the experiment. Also shown are the consensus scores from the ranking
task, which range from 0 to 1.

3 Description of Experiment

In order to assess the different approaches to obtaining

the instance annotations outlined above, we describe

here a web-based citizen science experiment involving

the annotation of plant cell images according to their

“clumpiness”. 1

We first describe how the image dataset used for the

experiment was acquired. The microscopy images ob-

tained for the experiment show perfluorocarbon-mounted

[Littlejohn et al., 2010] leaves of the model plant Ara-

bidopsis thaliana (Col-0 ecotype) obtained using a Zeiss

510Meta Laser Scanning Confocal Microscope equipped

with a 40x oil immersion lens. Chlorophyll was imaged

by Excitation at 488 nm and Emitted Fluorescence was

collected with a LP615 nm filter. So-called “Z-stacks”,

consisting of 75 parallel planar images with an inter-

planar separation of 1 µm were collected during a time-

course comparing infection with the phytopathogenic

bacterium Pseudomonas syringae pv. tomato strain DC-

3000 to a mock inoculation using infection conditions

previously described [Truman et al., 2006].

When leaves were infiltrated with the virulent bacte-

ria, it was noticed that during the timecourse, chloro-

plasts tended to clump together within the cell. The

goal of the citizen science experiment was to determine

the clumpiness of each image by deriving a consen-

sus score from the individual annotations provided by

multiple annotators. In addition, the resulting labelled

dataset can potentially be used as training data for su-

pervised learning algorithms.

The participants were shown chloroplast-only 3D

maximum projections of confocal z-stacks, comprising

19 projections turning round the z-axis with a first an-

1 The URL of the site is http://www.clumpy.ex.ac.uk

which remains active at the time of writing.

gle of 45◦ and a difference angle of −5◦. Participants

were free to rotate these projections, static examples

of which are shown in Figure 1. When first registering

on the site, a tutorial page was displayed to the partici-

pants which included some example images with known

scores. Note that this was the only training provided to

participants and no feedback was given during the ex-

periment.

There were three tasks associated with the experi-

ment, which can be viewed as implementations of the

classification, scoring and ranking approaches outlined

in Section 2. The classification task involved classifying

the images as either “clumpy” or “not clumpy” by se-

lecting the appropriate button. For the scoring task, the

participants used a slider bar to specify a “clumpiness”

score from 1 to 7 for the images. Finally, the ranking

task required the annotators to order groups of three

images left to right, from least clumpy to most clumpy.

This was achieved by dragging the images into the de-

sired position. The participants were assigned one of

the three tasks randomly on registering with the web-

site and only annotated images in a single paradigm.

There was no limit to the number of annotations, with

each participant free to annotate as many of the images

as they chose.

Table 1 summarises the annotation statistics for each

of the tasks. Note that each individual ranking provides

information about three images, whereas information

on only a single image is obtained from each scoring or

classification.

In addition to the initial dataset of 64 images, we

also created a second set by rotating the original images

by 180 degrees. This was carried out to provide a means

of evaluating the reliability of annotators, as the degree

of clumpiness for the original and rotated images will

be identical.
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Table 1 Summary of annotation statistics from the experi-
ment. The table shows for each task the number of annota-
tors, the number of annotations performed and the average
number of annotations per annotator.

Task Annotators Annotations Avg PA
Classification 76 3410 45
Scoring 74 3709 50
Ranking 77 1605 21
Total 227 8724 39

In order to evaluate the accuracy of annotators from

the three tasks, a gold standard was selected consisting

of seven images annotated by an expert. These images

were chosen so as to include the full range of possible

scores (i.e. from 1 to 7). A randomly selected image

(or group) from the gold standard was displayed to the

participants at regular intervals, enabling an “Expert

vs. Participant” measure of accuracy on the images.

4 Evaluating Annotation Tasks

In order to evaluate the accuracy of both individual an-

notators and the consensus scores on a common footing

we view all three tasks in a classification framework,

which allows evaluation of performance using the com-

monly used Receiver Operating Characteristic (ROC)

curves. Given some instances (the gold standard im-

ages) whose true classifications are known, the ROC

curve displays the true positive rate versus the false

positive rate as the decision threshold is varied and the

area under the ROC curve (AUC) measures the overall

ability of a classifier to separate two classes [Fawcett,

2006].

Clearly application of the ROC methodology to the

classification task is straightforward: the performance

of a consensus classifier can be evaluated on the gold

standard images and the performance of individual an-

notators can be evaluated against either the gold stan-

dard or the consensus classification. Annotators can

be viewed as belonging to one of three general quality

classes, depending on their classification performance

[Raykar and Yu, 2012]. Example ROC curves for anno-

tators of different quality are shown in Figure 2 using

simulated data.

A good annotator’s ROC curve lies above the diag-

onal of the plot, indicating that they consistently make

correct annotations. The proportion of good annotators

in the population and their overall level of performance

depends on a number of factors, such as the individual

difficulty of the instances, the duration of the task, as

well as the accuracy and reliability of the annotators.
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Good annotators

Adversarial annotators

Spammers

Fig. 2 The good and adversarial annotators are above and
below the diagonal of the ROC, respectively. Spammers are
close to the diagonal of the ROC, assigning the scores at
random.

An adversarial annotator’s ROC curve lies below

the diagonal of the ROC plot. These annotators are

the mirror image of the good annotators on the ROC

plot, assigning incorrect annotations to the instances.

An important point to note is that although adversarial

annotators are inaccurate and assign incorrect annota-

tions, they do so consistently. This means that if they

can be detected in the population and have their anno-

tations “flipped”, they still have discriminatory power

[Raykar and Yu, 2012].

Finally, a spammer is an annotator who assigns an-

notations at random [Raykar and Yu, 2012]. For binary
classification, this corresponds to the situation in which

the annotator is close to the diagonal of the ROC plot,

as shown in Figure 2. Annotators close to the diagonal

of the ROC provide no useful discriminatory power and

their annotations should be ignored or removed if they

are detected in the population.

Although annotators tend to fall into one of the

three classes, the distinction is not always easy to make.

For example, an annotator may start off as random or

adversarial, but improve their accuracy as they are ex-

posed to more instances. Conversely, an annotator’s ac-

curacy can also decrease over time.

In addition to evaluating the accuracy, a number of

other properties of the annotators were assessed when

comparing the three tasks. We measured how strongly

the annotators were correlated with each other and how

reliable they were in maintaining their accuracy for the

duration of the task. The results are presented in Sec-

tion 6.
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Annotations in the ranking class are easily cast in

a classification framework by considering the binary re-

lations that result from ordering the instances. We de-

note a ranking as correct if the two instances involved

are placed in their true order (obtained from the gold

standard or consensus) and incorrect if not.

Finally, the scoring task is cast in a classification

framework denoting a score as correct if it and the true

score are both greater than or equal to 4 (the middle

of the available range) or if both are less than or equal

to 4; otherwise the score is deemed incorrect. Although

other more sensitive loss functions might be used in this

context, this provides a common framework for evalu-

ating performance in all three tasks.

5 Simulation

In order to investigate the annotation tasks under vari-

ous conditions, simulated data was generated to model

annotators with different degrees of accuracy and per-

formance. In a simple model, whether each annotator

correctly annotates an instance could be modelled by

a draw from a Bernoulli distribution Be(π) with an

annotator-specific probability π. To provide a richer

model, accounting for the variability in each annota-

tor’s performance, the probability π was modelled by a

beta distribution [Gelman et al., 2013]. The beta dis-

tribution is defined by

p(π;α, β) =
Γ (α+ β)

Γ (α)Γ (β)
πα−1(1− π)β−1 (9)

where the two parameters α > 0 and β > 0 control the

mean and spread of the distribution. The values of α

and β were assumed to be annotator specific.

6 Empirical Results

6.1 Accuracy of Annotators

Estimates of the annotator parameters for the beta

distribution were obtained using maximum likelihood

and the observed accuracy on the gold standard. The

beta distributions using these parameter estimates are

shown for each of the annotators using each of the dif-

ferent annotation paradigms in Figure 3. The ranking

task distributions tend to be more sharply peaked com-

pared to the other two tasks, with mean µ = 0.75 and

standard deviation σ = 0.09 for the mean distribution.

This indicates that there was less variation in accuracy

among the annotators. The participants from the clas-

sification (µ = 0.75, σ = 0.15) and scoring (µ = 0.68,

σ = 0.17) tasks tended to be less reliable in their esti-

mates, obtaining a wider range of accuracies.

Using these parameter estimates, ROC curves of

simulated annotators corresponding to each of the ac-

tual annotators were obtained for the different tasks.

Figure 4 shows the results; note that a small jitter was

added to the curves to aid visualisation, as annotators

with very high accuracy tend to be concentrated around

the top-left corner of the ROC plots. The ROC curves

derived from the mean parameter estimates are shown

in bold. A number of annotators were close to the diag-

onal of the ROC, indicating the presence of spammers

in the population. Adversarial annotators can also be

clearly identified in each of the tasks, as shown by the

curves lying below the diagonal of the ROC. The mean

curves are seen to obtain good performance, with the

ranking task in particular being near-optimal.

The accuracy of the annotators was also evaluated

in relation to the consensus (majority vote) annotations

for the images. Figure 5 shows the consensus accuracy

for annotators versus the number of image annotations

they made. As can be seen, the consensus accuracy of

the annotators tended to remain stable, with no large

increase or decrease in the accuracy as more annota-

tions were made. Figure 5 also shows the number of

annotators who made a given number of annotations in

each of the three paradigms. Here it is clear that rank-

ing annotators made relatively fewer annotations than

scorers or classifiers, but note that, although each rank-

ing task is more time-consuming, information on three

images is obtained from each annotation.

In terms of the overall accuracy, the ranking task

obtained the best performance. The greater proportion

of annotators with high accuracy was reflected in the

performance of the consensus estimates.

6.2 Inter-Annotator Agreement

The inter-annotator agreement provides a measure of

the consensus among multiple annotators, which en-

ables a comparison between different annotation tasks

in terms of the agreement among the participants. We

used the Spearman rank correlation [Lehmann, 2006]

for the comparison, which is a non-parametric statistic

measuring the strength of association between two sets

of data. Let {yji } and {yki }, i = 1, . . . , R, be the sets

of image annotations in common between annotators

j and k. The Spearman correlation between the two

annotators is then defined as

ρjk = 1−
6
∑R
i=1(σji − σki )2

R(R2 − 1)
(10)
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Fig. 3 Annotator beta distributions for the classification, scoring and ranking tasks, respectively. Shown in bold are the
distributions for the mean parameter estimates.
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Fig. 4 ROC curves of simulated annotators using the parameter estimates from the experiment. From left to right, the plot
shows the results from the classification, scoring and ranking tasks. The ROC curves for the mean parameter estimates are
shown in bold. A small jitter has been added to these curves to separate them for visualisation.

where σji is the rank of yji in the set of annotations

{yji }. By evaluating the correlation between each pair of

annotators, we can compute the average agreement for

individual annotators. The agreement can also be used

to distinguish between the different types of annotators

described in Section 4. Adversarial annotators will tend

to have negative agreement with the good annotators,

whereas spammers (random annotators) will tend to

have an average agreement near to 0.

The mean inter-annotator agreement was obtained

for each annotator by computing their average Spear-

man correlation with all other annotators assigned the

same task. From Figure 6a it can be seen that there

were also relatively few negatively correlated annota-

tors, with the large majority obtaining positive aver-

age correlations. However, it can be seen that partic-

ipants carrying out the classification task had signif-

icantly lower agreement than those from the ranking

and scoring tasks. In addition there were more spam-

mers (with correlation close to 0) for the classification

task, which is evident from the individual ROC curves

shown in Figure 4.

Figure 6b is the result of bootstrapping on the set

of mean inter-annotator agreements from each task. It

shows 1000 bootstrapped sample estimates of the mean

and standard deviation for each task. The separation

of the classification task from the other two is clear,

with the annotators showing only small variations in

agreement. The scoring and ranking tasks on the other

hand show more variation in addition to a higher mean

agreement.

As the results show, the ranking task obtained the

highest level of agreement among the annotators. The

participants from the classification task obtained signif-

icantly lower agreement. This is partly to be expected

due to the nature of the task, as there is no notion of

the degree to which classifiers agree on an instance, only

whether they agree or disagree.

6.3 Reliability of Annotators

In order to test the reliability of the annotators, we

calculated their accuracy in relation to the consensus

scores on both the original and rotated images. Analy-

sis of variance (ANOVA) [Bailey, 2008] was then used

to compare the consensus accuracy on the original and

rotated images. This gives an idea of how consistently
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Fig. 5 The top figure shows the mean consensus accuracy
of annotators plotted versus the number of annotations they
made. The bottom figure shows how many annotators made
a particular number of annotations.

Table 2 Results from ANOVA on the consensus accuracy
for the original and rotated images. The table reports the
F -ratios and p-values obtained for each task.

Task F (1, 62) p
Classification 0.554 0.458
Scoring 0.36 0.85
Ranking 0.003 0.953

the annotators maintained their accuracy throughout

the duration of the tasks. The results are shown in Ta-

ble 2.

None of the tasks showed a statistically significant

difference between the accuracies on the original and

rotated images. The ranking task showed a particularly

strong similarity between the two sets of accuracies, in-

dicating that the annotators were reliable in estimating

the degree of clumpiness present in the images.

An indication of the correspondence between an-

notators from each of the tasks is seen in Figure 7.

The plot shows the combined scores on both the origi-

nal and rotated images, sorted in increasing order and

translated to a common scale. Note that all consen-

sus scores from all three tasks agree on the position

in which images should be placed in order of clumpi-

ness. The scores at the two endpoints of the plot show

less of a divergence between the three tasks than those

around the middle. This suggests that the annotators

had more difficulty in determining the degree of clumpi-

ness in the middle range, compared to the more obvi-

ously clumpy/not-clumpy images at the two ends of the

scale.

6.4 Required Number of Annotators

While the accuracy of the overall population of annota-

tors has been considered, in this section we investigate

the minimum number of annotators required in order

to obtain accurate consensus estimates. By repeatedly

sampling at random from the population, the accuracy

was evaluated for different numbers of annotators by

taking the consensus over those annotators and com-

paring with the gold standard; 10000 samples were used

here. Figure 8 shows plots of the obtained accuracy for

each of the tasks.

Comparing the results reveals that the increase in

accuracy is more apparent during approximately the

first 20 annotations, after which the accuracy begins

to converge. The scoring task showed no improvement

after the number of annotators increased beyond 20,

whereas the classification and ranking tasks continued

to show a gradual improvement as the sample size was

increased past 50 annotators. The ranking task was ul-

timately able to reach a higher mean accuracy than the

other two tasks.

7 Optimising Weighting Parameters for

Consensus Annotations

7.1 Description of Model

An important consideration when estimating the con-

sensus annotations is how to weight the annotators ac-

cording to their quality. The results reported thus far

have given equal weight to annotators, but it is clear

from the ROC curves shown in Figure 4 that both

spammers and adversarial annotators are present. Us-

ing the consensus accuracy on the gold standard as

the objective, we optimised weighting parameters for

the annotators using an evolutionary algorithm. The
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Fig. 6 (a) The mean inter-annotator agreement of annotators from each task, plotted as the mean correlation of each annotator
with the others. For each task the annotators are ordered by correlation. (b) Bootstrapped sample estimates of the mean and
standard deviation of the inter-annotator agreements. The plot shows 1000 bootstrapped sample estimates for each task.
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Fig. 7 Combined image scores (original and rotated) from
each of the tasks, in increasing order and translated to a com-
mon scale. The classification scores are the fraction of positive
classifications for an image. The values for the scoring task
are the mean scores for the images. Finally, the ranking task
values are the derived scores described in Section 2.2.

weighted consensus estimate of an instance was ob-

tained using

yi =

R∑
j=1

wjy
j
i (11)

where wj is the weighting parameter for annotator j.

The weights themselves constrained so that wj ∈ [−1, 1]

and

λ

R∑
j=1

|wj | = 1 (12)

This normalises the consensus estimates and allows ad-

versarial and spamming annotators to be assigned neg-

ative and zero weights respectively. In a similar manner

to the LASSO method [Tibshirani, 1996] this l1-norm

penalty acts to promote sparseness. The constant λ con-

trols the degree of sparsity, with larger values leading

to more annotators being assigned weights close to 0.

Optimum weights were found by minimising the av-

erage error on the gold standard instances penalised

by (12) using a straightforward elitist evolutionary al-

gorithm similar to the well-known Pareto Archived Evo-

lution Strategy (PAES) [Knowles and Corne, 1999], but

without explicit diversity control. At each generation

the algorithm randomly perturbed the annotator weights

of selected members of a population of weights, retain-

ing the best members of the population for the succeed-

ing generation. Algorithm 1 shows pseudocode for the

procedure. The value of λ was chosen experimentally

for each task by evaluating the optimisation within a

specified range and selecting the value which resulted

Algorithm 1 Weighted consensus optimisation
Require: Annotations for each xi ∈ x from R annotators
1: Initialise archive E of weights
2: repeat
3: Select weights w from E
4: Perturb current weights w → w′

5: Evaluate accuracy of (11) with w′

6: if accuracy improves then
7: Replace w with w′ in E
8: end if
9: end
Ensure: Final optimised weights in w
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Fig. 8 Mean consensus accuracy of the classification, scoring and ranking tasks as a function of the number of annotators. For
each sample size, the figures show the mean accuracy of 10000 random samples of that size from the population of annotators.
One standard deviation error bars are also shown.

Table 3 Results from LOO cross-validation on the gold stan-
dard. The table shows the average accuracy obtained on both
the training and test data.

Task Training Acc Test Acc
Classification 1.0 1.0
Scoring 1.0 0.86
Ranking 0.95 1.0

in the best overall performance on the gold standard

instances. Typically, λ ranged from 0.01 to 0.075.

7.2 Model Validation

In order to validate the model, leave-one-out (LOO)

testing was carried out to assess how well the model

generalises to unseen data. On each training run, one

of the gold standard instances was held out and the
weights were optimised on the remaining instances; the

accuracy was then evaluated on the held out instance

using the optimised weights to obtain the test accuracy.

This was repeated for all of the instances in the gold

standard. Table 3 shows the training and test accuracy

for each task averaged over the independent runs. The

λ constant was set to 0.075, 0.025 and 0.015 for the

classification, scoring and ranking tasks, respectively.

The consensus estimates from all three of the tasks

were able to obtain high training and test accuracy on

the gold standard using the optimised weighting param-

eters. For comparison, the standard (equally-weighted)

consensus accuracy was 0.86, 0.57 and 0.86 for the clas-

sification, scoring and ranking tasks, respectively. Given

that the annotators tended to be reliable in maintaining

their accuracy, this means a significant improvement in

the overall quality of the consensus estimates can be

expected.

The top row of Figure 9 shows plots of the opti-

mised annotator weightings for each of the tasks, av-

eraged over all training runs of the cross-validation. It

can be seen that annotators were assigned a range of

weights, indicating differences in quality. The annota-

tors assigned weights close to 0 can be assumed to in-

clude spammers, while those assigned negative weights

are more adversarial. It is interesting to observe that

in each task just a few annotators are assigned signifi-

cantly larger weights than the majority, but each task

had a few effectively adversarial annotators.

By comparing the mean inter-annotator agreements,

it was found that the annotators assigned greater posi-

tive weights also tended to be more strongly correlated

than those with non-positive weights. This was true

for all three of the tasks, with the difference in mean

weight between annotators assigned positive and nega-

tive correlation being 0.09, 0.2 and 0.32 for the classi-

fication, scoring and ranking tasks, respectively. These

results suggest that optimising the accuracy on the gold

standard also indirectly optimised the inter-annotator

agreement.

7.3 Optimising Inter-Annotator Agreement

The results obtained by optimising the accuracy on

the gold standard show that the consensus estimates

can be improved by assigning unequal weights to the

annotators. As noted, this optimisation also improved

the inter-annotator agreement. To avoid using the gold

standard instances, which might not always be available

or, since they depend on only one or two “expert” an-

notators, may themselves be unreliable, we investigated

weighting annotators to maximise the inter-annotator

agreement. We adapted the optimisation procedure de-

scribed above to maximise the inter-annotator agree-

ment by assigning weights which increased the average

Spearman rank correlation between annotators. Table 4

summarises the results from the optimisation, show-
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Fig. 9 The top row shows the optimised weighting parameters averaged over all LOO training runs for the classification,
scoring and ranking tasks, respectively. The bottom row shows the weights obtained from optimising the inter-annotator
agreement. The dashed horizontal line indicates zero weighting.

Table 4 Results from optimisation of the inter-annotator
agreement. The table shows the average Spearman rank cor-
relation obtained before and after optimisation.

Task Orig ITA Optim ITA
Classification 0.124 0.148
Scoring 0.166 0.211
Ranking 0.302 0.307

ing the inter-annotator agreement obtained both before

and after optimisation. The value of λ was set to 0.075,

0.015 and 0.01 for the classification, scoring and ranking

tasks. We also evaluated the accuracy of the annotators

on the gold standard using the weights obtained from

the optimisation. While the classification and ranking

tasks maintained the same level of accuracy after opti-

misation, the scoring task increased from 0.57 to 0.71.

Note that the inter-annotator agreement of the scoring

task also increased the most during optimisation.

The second row of Figure 9 shows plots of the final

optimised weighting parameters for each task. The re-

sults show that the classification task required a sparser

set of weights in order to maximise the correlation. This

corresponds to the weights obtained from the LOO op-

timisation, which also show more annotators assigned

weights close to 0 for the classification task. We can

interpret this as indicating the presence of more spam-

mers in the population, which tend to decrease the ac-

curacy and inter-annotator agreement due to their low

correlation on average with the rest of the population.

Assigning them low weight reduces their influence and

enables a few higher quality annotators to dominate.

8 Conclusion

The use of citizen science for scoring annotations in mi-

croscopy images was shown to be viable. The annota-

tions can be used to reliably characterise the degree of

clumpiness within the images. They could also provide

additional insights by indicating images with highly

variable annotations, which may be due to anomalies

within the cell. The results also demonstrate that it is

possible for a relatively large number of image annota-

tions to be obtained from a comparatively small number

of non-expert annotators.

Although the tasks required significant effort from

the participants due to the variation and complexity of

the images, the accuracy of the annotators was still gen-

erally high. The annotator estimates on the gold stan-

dard compared favourably with the expert annotations

overall. Annotators from each task were also shown to

be consistent and reliable in their estimates, with those

from the ranking task in particular showing a strong



12 Hugo Hutt et al.

similarity between the original and rotated image an-

notations. This is easily understood on recognising that

annotators find it easier to order images rather than as-

signing images to an arbitrary scale or class, even when

exemplars of the scale are available.

A significant improvement in accuracy can be ob-

tained by optimising annotator weighting parameters.

This was demonstrated using an evolutionary algorithm

to improve the accuracy of the consensus estimates on

the gold standard. Using the optimised parameters, the

consensus for each task obtained a high level of accuracy

on the gold standard. It was also found that annotators

with higher mean inter-annotator agreement tended to

be assigned greater weight, suggesting a correlation be-

tween the accuracy on the gold standard and the overall

agreement among the annotators. By adapting the op-

timisation procedure to select weights which increase

the correlation between annotators, it was shown that

the inter-annotator agreement can also be optimised di-

rectly. For the scoring task, this also led to a significant

improvement in accuracy on the gold standard.

The annotations obtained from the experiment demon-

strate that the type of task presented to annotators had

a significant impact on the quality of the resulting data.

All three of the tasks showed clear differences in accu-

racy and inter-annotator agreement, with the ranking

task obtaining the best overall performance.
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