1,011 research outputs found

    Self-Organizing and Scalable Routing Protocol (SOSRP) for Underwater Acoustic Sensor Networks

    Get PDF
    Las redes de sensores acústicas submarinas (UASN) han ganado mucha importancia en los últimos años: el 71% de la superficie de la Tierra está cubierta por océanos. La mayoría de ellos, aún no han sido explorados. Aplicaciones como prospección de yacimientos, prevención de desastres o recopilación de datos para estudios de biología marina se han convertido en el campo de interés para muchos investigadores. Sin embargo, las redes UASN tienen dos limitaciones: un medio muy agresivo (marino) y el uso de señales acústicas. Ello hace que las técnicas para redes de sensores inalámbricas (WSN) terrestres no sean aplicables. Tras realizar un recorrido por el estado del arte en protocolos para redes UASN, se propone en este TFM un protocolo de enrutamiento denominado "SOSRP", descentralizado y basado en tablas en cada nodo. Se usa como criterio para crear rutas una combinación del valor de saltos hasta el nodo recolector y la distancia. Las funciones previstas del protocolo abarcan: autoorganización de las rutas, tolerancia a fallos y detección de nodos aislados. Mediante la implementación en MATLAB de SOSRP así como de un modelo de propagación y energía apropiados para entorno marino, se obtienen resultados de rendimiento en distintos escenarios (variando nºextremo de paquetes, consumo de energía o longitud de rutas creadas (con y sin fallo). Los resultados obtenidos muestran una operación estable, fiable y adecuada para el despliegue y operación de los nodos en redes UASN

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Coverage issues in wireless sensor networks.

    Get PDF
    A fundamental issue in the deployment of a large scale Wireless Sensor Network (WSN) is the ability of the network to cover the region of interest. While it is important to know if the region is covered by the deployed sensor nodes, it is of even greater importance to determine the minimum number of these deployed sensors that will still guarantee coverage of the region. This issue takes on added importance as the sensor nodes have limited battery power. Redundant sensors affect the communications between nodes and cause increased energy expenditure due to packet collisions. While scheduling the activity of the nodes and designing efficient communication protocols help alleviate this problem, the key to energy efficiency and longevity of the wireless sensor network is the design of efficient techniques to determine the minimum set of sensor nodes for coverage. Currently available techniques in the literature address the problem of determining coverage by modeling the region of interest as a planar surface. Algorithms are then developed for determining point coverage, area coverage, and barrier coverage. The analysis in this thesis shows that modeling the region as a two dimensional surface is inadequate as most applications in the real world are in a three dimensional space. The extension of existing results to three dimensional regions is not a trivial task and results in inefficient deployments of the sensor networks. Further, the type of coverage desired is specific to the application and the algorithms developed must be able to address the selection of sensor nodes not only for the coverage, but also for covering the border of a region, detecting intrusion, patrolling a given border, or tracking a phenomenon in a given three dimensional space. These are very important issues facing the research community and the solution to these problems is of paramount importance to the future of wireless sensor networks. In this thesis, the coverage problem in a three dimensional space is rigorously analyzed and the minimum number of sensor nodes and their placement for complete coverage is determined. Also, given a random distribution of sensor nodes, the problem of selecting a minimum subset of sensor nodes for complete coverage is addressed. A computationally efficient algorithm is developed and implemented in a distributed fashion. Numerical simulations show that the optimized sensor network has better energy efficiency compared to the standard random deployment of sensor nodes. It is demonstrated that the optimized WSN continues to offer better coverage of the region even when the sensor nodes start to fail over time. (Abstract shortened by UMI.

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Analysis and design of concave grating-based devices for multi-wavelength optical networks.

    Get PDF
    This thesis is focused on the analysis and design of concave holographic gratings for applications in wavelength division multiplexed (WDM) optical network devices, such as multi/demultiplexers, routers and channel equalizers. The main advantage of this approach is that a single optical element can perform both functions of dispersion and imaging. However, the design of such gratings for operation in optical fibre communication networks requires the understanding and control of dominant optical aberrations, stray light, and polarization sensitivity. The solution of these problems forms the basis of the work in this thesis. Chapter 1 presents the motivation for the work, describes the major objectives and lists the main original contributions. Chapter 2 reviews related works in the field of WDM optical networks. Different published methods and techniques used for channel separation are described. Chapter 3 describes the analysis of crosstalk in free-space WDM demultiplexers and wavelength routers due to aberrations, diffraction at the aperture, and diffuse scattering from non-uniformities. It is demonstrated experimentally that holographic grating can give background crosstalk as low as -60 dB. Holographic grating-based wavelength routers are shown to be absolutely scalable from the coherent crosstalk point of view, allowing a large number of subscribers/nodes to be interconnected. Chapter 4 presents aberration analysis of concave grating. New general analytic formulae that define the parameters of concave grating mounts providing stationary and superstationary astigmatism are derived. These mounts offer diffraction-limited imaging within operating spectral range of WDM demultiplexers. A novel retro-reflective scheme of demultiplexer with concave grating and convex mirror resulting in double dispersion and large image field is proposed and analyzed. Chapter 5 describes in detail all stages of design and adjustment of an athermal 49-channel demultiplexer. The method for accurate calculation of transmission spectra is developed. Tolerances and environmental stability are analyzed and the experimentally measured performance characteristics of fully packaged device are presented. Chapter 6 presents the design and analysis of 91x91 wavelength router with 0.33 nm channel spacing based on stationary anastigmatic Littrow mount of concave grating. The problem of additional complexity with respect to a demultiplexer relating to the wide field of view in dispersion direction is successfully solved. Chapter 7 describes the design, analysis and experimental verifications of WDM channel equalizer based on concave grating. In chapter 8, novel method of flattening and broadening demultiplexer passband is proposed. The final chapter, presents a summary of the research, and provides suggestions for future work

    Decentralized and adaptive sensor data routing

    Get PDF
    Wireless sensor network (WSN) has been attracting research efforts due to the rapidly increasing applications in military and civilian fields. An important issue in wireless sensor network is how to send information in an efficient and adaptive way. Information can be directly sent back to the base station or through a sequence of intermediate nodes. In the later case, it becomes the problem of routing. Current routing protocols can be categorized into two groups, namely table-drive (proactive) routing protocols and source-initiated on-demand (reactive) routing. For ad hoc wireless sensor network, routing protocols must deal with some unique constraints such as energy conservation, low bandwidth, high error rate and unpredictable topology, of which wired network might not possess. Thus, a routing protocol, which is energy efficient, self-adaptive and error tolerant is highly demanded. A new peer to peer (P2P) routing notion based on the theory of cellular automata has been put forward to solve this problem. We proposed two different models, namely Spin Glass (Physics) inspired model and Multi-fractal (Chemistry) inspired model. Our new routing models are distributed in computation and self-adaptive to topological disturbance. All these merits can not only save significant amount of communication and computation cost but also well adapt to the highly volatile environment of ad hoc WSN. With the cellular automata Cantor modeling tool, we implemented two dynamic link libraries (DLL) in C++ and the corresponding graphic display procedures in Tcl/tk. Results of each model’s routing ability are discussed and hopefully it will lead to new peer to peer algorithms, which can combine the advantages of current models
    corecore