634 research outputs found

    Co-Design with Myself: A Brain-Computer Interface Design Tool that Predicts Live Emotion to Enhance Metacognitive Monitoring of Designers

    Full text link
    Intuition, metacognition, and subjective uncertainty interact in complex ways to shape the creative design process. Design intuition, a designer's innate ability to generate creative ideas and solutions based on implicit knowledge and experience, is often evaluated and refined through metacognitive monitoring. This self-awareness and management of cognitive processes can be triggered by subjective uncertainty, reflecting the designer's self-assessed confidence in their decisions. Despite their significance, few creativity support tools have targeted the enhancement of these intertwined components using biofeedback, particularly the affect associated with these processes. In this study, we introduce "Multi-Self," a BCI-VR design tool designed to amplify metacognitive monitoring in architectural design. Multi-Self evaluates designers' affect (valence and arousal) to their work, providing real-time, visual biofeedback. A proof-of-concept pilot study with 24 participants assessed its feasibility. While feedback accuracy responses were mixed, most participants found the tool useful, reporting that it sparked metacognitive monitoring, encouraged exploration of the design space, and helped modulate subjective uncertainty

    Positive Media: An Introductory Exploration

    Get PDF
    Media has become an increasingly large part of our lives, and therefore plays a crucial role in our well-being. Positive psychology, the science of well-being, can be complemented through the new potentialities of media, which in many ways also seeks to improve the human experience. I create the context for a new dialogue about what positive media might be. By adopting a positive lens and discussing exemplars in different formats, this paper explores the ways media effectively incorporates elements of well-being. Through this positive approach, we gain an appreciation for what media does well. The paper also recommends ways that people can consume media in support of their well-being, and ways media creators can design content that optimizes human flourishing. Lastly, the paper encourages a dialogue between the important fields of positive psychology and media. With a partnership between these fields, it posits the opportunity for dramatically increasing global well-being

    Non-verbal communication in instant messaging: conveying emotion through voice interfaces

    Get PDF
    Instant Messaging has become a keystone of human personal communication, where the biggest application WhatsApp is currently serving over 2 billion people. Plenty of research confirms people use non-verbal communication in computer mediated communication, allowing for emotional communication at distance. At the same time, Virtual Personal Assistants, such as the Google Assistant and Apple Siri, are continuously expanding their market share. Recently, they have included support for voice-based instant messaging, which includes reading aloud instant messages. As instant messages are synthesised, included digital non-verbal communication traits may be lost or omitted. This study aims to explore the impact of text-to-speech conversion of instant messages by virtual personal assistants on recognition of non-verbal cues by the receiving party. Secondly, the research aims to explore and test methods to include non-verbal communication traits in instant messages to speech synthesis, by the inclusion of spatial arrays (emojis) and modification of synthetic voice prosody. Sentiment analysis and emotion detection are explored and applied to extract emotional data from instant messages, which can be used to modify speech synthesis characteristics, such as pitch and speech rate, to mimic human paralanguage and vocal non-verbal communication to convey emotion

    Special Libraries, Fall 1989

    Get PDF
    Volume 80, Issue 4https://scholarworks.sjsu.edu/sla_sl_1989/1003/thumbnail.jp

    Structural failure and fracture of immature bone

    Get PDF
    Radiological features alone do not allow the discrimination between accidental paediatric long bone fractures or those caused by child abuse. Therefore, for those cases where the child is unable to communicate coherently, there is a clinical need to elucidate the mechanisms behind each fracture to provide a forensic biomechanical tool for clinical implementation. 5 months old ovine femurs and tibiae were used as surrogates for paediatric specimens and were subjected to micro-CT scans to obtain their geometrical and material properties. A novel methodology to align long bones so that they would be loaded in a state of pure bending and torsion was developed and compared against the use of a standard anatomical coordinate system. The second moment of area and its coefficient of variation (COV) for each alignment method were calculated to ascertain the reference axes that minimised the effect of eccentric loading. Wilcoxon-signed rank test showed a significant reduction in COV of the second moment of area using this new method, indicating that the bone has a more regular cross-section when this methodology is implemented. The algorithm generated the locations of subject-specific landmarks that can be used as a reference to align the bones in experimental testing. A low-cost platform that synchronized the data acquisition from the tensile testing machine and the strain gauges was built and used with a high speed camera to capture the fracture pattern in four-point bending at three strain rates and in torsion at two different strain rates, following commonly reported case histories. Finite element (FE) models of ovine tibiae in their optimised alignment were generated to replicate the fracture patterns that were obtained. Fracture initiation and propagation was simulated through the use of element deletion with a maximum principal strain criterion. The experiments produced transverse, oblique, and spiral fractures consistently, which were correlated with the finite element analysis, demonstrating the ability of this pipeline to now be adapted for use in forensic analysis.Open Acces

    Music Synchronization, Audio Matching, Pattern Detection, and User Interfaces for a Digital Music Library System

    Get PDF
    Over the last two decades, growing efforts to digitize our cultural heritage could be observed. Most of these digitization initiatives pursuit either one or both of the following goals: to conserve the documents - especially those threatened by decay - and to provide remote access on a grand scale. For music documents these trends are observable as well, and by now several digital music libraries are in existence. An important characteristic of these music libraries is an inherent multimodality resulting from the large variety of available digital music representations, such as scanned score, symbolic score, audio recordings, and videos. In addition, for each piece of music there exists not only one document of each type, but many. Considering and exploiting this multimodality and multiplicity, the DFG-funded digital library initiative PROBADO MUSIC aimed at developing a novel user-friendly interface for content-based retrieval, document access, navigation, and browsing in large music collections. The implementation of such a front end requires the multimodal linking and indexing of the music documents during preprocessing. As the considered music collections can be very large, the automated or at least semi-automated calculation of these structures would be recommendable. The field of music information retrieval (MIR) is particularly concerned with the development of suitable procedures, and it was the goal of PROBADO MUSIC to include existing and newly developed MIR techniques to realize the envisioned digital music library system. In this context, the present thesis discusses the following three MIR tasks: music synchronization, audio matching, and pattern detection. We are going to identify particular issues in these fields and provide algorithmic solutions as well as prototypical implementations. In Music synchronization, for each position in one representation of a piece of music the corresponding position in another representation is calculated. This thesis focuses on the task of aligning scanned score pages of orchestral music with audio recordings. Here, a previously unconsidered piece of information is the textual specification of transposing instruments provided in the score. Our evaluations show that the neglect of such information can result in a measurable loss of synchronization accuracy. Therefore, we propose an OCR-based approach for detecting and interpreting the transposition information in orchestral scores. For a given audio snippet, audio matching methods automatically calculate all musically similar excerpts within a collection of audio recordings. In this context, subsequence dynamic time warping (SSDTW) is a well-established approach as it allows for local and global tempo variations between the query and the retrieved matches. Moving to real-life digital music libraries with larger audio collections, however, the quadratic runtime of SSDTW results in untenable response times. To improve on the response time, this thesis introduces a novel index-based approach to SSDTW-based audio matching. We combine the idea of inverted file lists introduced by Kurth and Müller (Efficient index-based audio matching, 2008) with the shingling techniques often used in the audio identification scenario. In pattern detection, all repeating patterns within one piece of music are determined. Usually, pattern detection operates on symbolic score documents and is often used in the context of computer-aided motivic analysis. Envisioned as a new feature of the PROBADO MUSIC system, this thesis proposes a string-based approach to pattern detection and a novel interactive front end for result visualization and analysis

    The Murray Ledger and Times, March 9, 1996

    Get PDF

    The anthropometric, environmental and genetic determinants of right ventricular structure and function

    Get PDF
    BACKGROUND Measures of right ventricular (RV) structure and function have significant prognostic value. The right ventricle is currently assessed by global measures, or point surrogates, which are insensitive to regional and directional changes. We aim to create a high-resolution three-dimensional RV model to improve understanding of its structural and functional determinants. These may be particularly of interest in pulmonary hypertension (PH), a condition in which RV function and outcome are strongly linked. PURPOSE To investigate the feasibility and additional benefit of applying three-dimensional phenotyping and contemporary statistical and genetic approaches to large patient populations. METHODS Healthy subjects and incident PH patients were prospectively recruited. Using a semi-automated atlas-based segmentation algorithm, 3D models characterising RV wall position and displacement were developed, validated and compared with anthropometric, physiological and genetic influences. Statistical techniques were adapted from other high-dimensional approaches to deal with the problems of multiple testing, contiguity, sparsity and computational burden. RESULTS 1527 healthy subjects successfully completed high-resolution 3D CMR and automated segmentation. Of these, 927 subjects underwent next-generation sequencing of the sarcomeric gene titin and 947 subjects completed genotyping of common variants for genome-wide association study. 405 incident PH patients were recruited, of whom 256 completed phenotyping. 3D modelling demonstrated significant reductions in sample size compared to two-dimensional approaches. 3D analysis demonstrated that RV basal-freewall function reflects global functional changes most accurately and that a similar region in PH patients provides stronger survival prediction than all anthropometric, haemodynamic and functional markers. Vascular stiffness, titin truncating variants and common variants may also contribute to changes in RV structure and function. CONCLUSIONS High-resolution phenotyping coupled with computational analysis methods can improve insights into the determinants of RV structure and function in both healthy subjects and PH patients. Large, population-based approaches offer physiological insights relevant to clinical care in selected patient groups.Open Acces
    • …
    corecore