5 research outputs found

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Myriad : a distributed machine vision application framework

    Get PDF
    This thesis examines the potential for the application of distributed computing frameworks to industrial and also lightweight consumer-level Machine Vision (MV) applications. Traditional, stand-alone MV systems have many benefits in well-defined, tightly- controlled industrial settings, but expose limitations in interactive, de-localised and small-task applications that seek to utilise vision techniques. In these situations, single-computer solutions fail to suffice and greater flexibility in terms of system construction, interactivity and localisation are required. Network-connected and distributed vision systems are proposed as a remedy to these problems, providing dynamic, componentised systems that may optionally be independent of location, or take advantage of networked computing tools and techniques, such as web servers, databases, proxies, wireless networking, secure connectivity, distributed computing clusters, web services and load balancing. The thesis discusses a system named Myriad, a distributed computing framework for Machine Vision applications. Myriad is composed components, such as image processing engines and equipment controllers, which behave as enhanced web servers and communicate using simple HTTP requests. The roles of HTTP-based distributed computing servers in simplifying rapid development of networked applications and integrating those applications with existing networked tools and business processes are explored. Prototypes of Myriad components, written in Java, along with supporting PHP, Perl and Prolog scripts and user interfaces in C , Java, VB and C++/Qt are examined. Each component includes a scripting language named MCS, enabling remote clients (or other Myriad components) to issue single commands or execute sequences of commands locally to the component in a sustained session. The advantages of server- side scripting in this manner for distributed computing tasks are outlined with emphasis on Machine Vision applications, as a means to overcome network connection issues and address problems where consistent processing is required. Furthermore, the opportunities to utilise scripting to form complex distributed computing network topologies and fully-autonomous federated networked applications are described, and examples given on how to achieve functionality such as clusters of image processing nodes. Through the medium of experimentation involving the remote control of a model train set, cameras and lights, the ability of Myriad to perform traditional roles of fixed, stand-alone Machine Vision systems is supported, along with discussion of opportunities to incorporate these elements into network-based dynamic collaborative inspection applications. In an example of 2D packing of remotely-acquired shapes, distributed computing extensions to Machine Vision tasks are explored, along with integration into larger business processes. Finally, the thesis examines the use of Machine Vision techniques and Myriad components to construct distributed computing applications with the addition of vision capabilities, leading to a new class of image-data-driven applications that exploit mobile computing and Pervasive Computing trends

    MATLAB

    Get PDF
    This excellent book represents the final part of three-volumes regarding MATLAB-based applications in almost every branch of science. The book consists of 19 excellent, insightful articles and the readers will find the results very useful to their work. In particular, the book consists of three parts, the first one is devoted to mathematical methods in the applied sciences by using MATLAB, the second is devoted to MATLAB applications of general interest and the third one discusses MATLAB for educational purposes. This collection of high quality articles, refers to a large range of professional fields and can be used for science as well as for various educational purposes

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered
    corecore