46 research outputs found

    How do we empathize with someone who is not like us? A functional magnetic resonance imaging study

    Full text link
    Abstract Previous research on the neural underpinnings of empathy has been limited to affective situations experienced in a similar way by an observer and a target individual. In daily life we also interact with people whose responses to affective stimuli can be very different from our own. How do we understand the affective states of these individuals? We used functional magnetic resonance imaging to assess how participants empathize with the feelings of patients who reacted with no pain to surgical procedures but with pain to a soft touch. Empathy for pain of these patients activated the same areas (insula, medial/anterior cingulate cortex) as empathy for persons who responded to painful stimuli in the same way as the observer. Empathy in a situation that was aversive only for the observer but neutral for the patient recruited areas involved in self-other distinction (dorsomedial prefrontal cortex) and cognitive control (right inferior frontal cortex). In addition, effective connectivity between the latter and areas implicated in affective processing was enhanced. This suggests that inferring the affective state of someone who is not like us can rely upon the same neural structures as empathy for someone who is similar to us. When strong emotional response tendencies exist though, these tendencies have to be overcome by executive functions. Our results demonstrate that the fronto-cortical attention network is crucially involved in this process, corroborating that empathy is a flexible phenomenon which involves both automatic and controlled cognitive mechanisms. Our findings have important implications for the understanding and promotion of empathy, demonstrating that regulation of one's egocentric perspective is crucial for understanding others

    Empathy: shared circuits and their dysfunctions

    Get PDF
    Observing another individual acting upon an object triggers cerebral activity well beyond the visual cortex of the observer in areas directly involved in planning and executing actions. This we will call action simulation. Importantly, the brain does not solely simulate the actions of others but also the sensations they feel, and their emotional responses. These simulation mechanisms are most active in individuals who report being very empathic. Simulation may indeed be instrumental for our understanding of the emotional and mental state of people in our sight, and may contribute heavily to the social interactions with our peers by providing a first-person perspective on their inner feelings. Simulation mechanisms are at work at an early stage of social development and might be defective in young individuals with autism spectrum disorders (ASD). However, the results to date regarding ASD are not clearcut, and an equal number of studies report positive and negative findings

    Racism and the Empathy for Pain on Our Skin

    Get PDF
    Empathy is a critical function regulating human social life. In particular, empathy for pain is a source of deep emotional feelings and a strong trigger of pro-social behavior. We investigated the existence of a racial bias in the emotional reaction to other people's pain and its link with implicit racist biases. Measuring participants’ physiological arousal, we found that Caucasian observers reacted to pain suffered by African people significantly less than to pain of Caucasian people. The reduced reaction to the pain of African individuals was also correlated with the observers’ individual implicit race bias. The role of others’ race in moderating empathic reactions is a crucial clue for understanding to what extent social interactions, and possibly integration, may be influenced by deeply rooted automatic and uncontrollable responses

    The influence of mimicry on empathy for pain

    Get PDF

    Role of the anterior insula in task-level control and focal attention

    Get PDF
    In humans, the anterior insula (aI) has been the topic of considerable research and ascribed a vast number of functional properties by way of neuroimaging and lesion studies. Here, we argue that the aI, at least in part, plays a role in domain-general attentional control and highlight studies (Dosenbach et al. 2006; Dosenbach et al. 2007) supporting this view. Additionally, we discuss a study (Ploran et al. 2007) that implicates aI in processes related to the capture of focal attention. Task-level control and focal attention may or may not reflect information processing supported by a single functional area (within the aI). Therefore, we apply a novel technique (Cohen et al. 2008) that utilizes resting state functional connectivity MRI (rs-fcMRI) to determine whether separable regions exist within the aI. rs-fcMRI mapping suggests that the ventral portion of the aI is distinguishable from more dorsal/anterior regions, which are themselves distinct from more posterior parts of the aI. When these regions are applied to functional MRI (fMRI) data, the ventral and dorsal/anterior regions support processes potentially related to both task-level control and focal attention, whereas the more posterior aI regions did not. These findings suggest that there exists some functional heterogeneity within aI that may subserve related but distinct types of higher-order cognitive processing

    Multiple-Brain connectivity during third party punishment: an EEG hyperscanning study

    Get PDF
    Compassion is a particular form of empathic reaction to harm that befalls others and is accompanied by a desire to alleviate their suffering. This altruistic behavior is often manifested through altruistic punishment, wherein individuals penalize a deprecated human's actions, even if they are directed toward strangers. By adopting a dual approach, we provide empirical evidence that compassion is a multifaceted prosocial behavior and can predict altruistic punishment. In particular, in this multiple-brain connectivity study in an EEG hyperscanning setting, compassion was examined during real-time social interactions in a third-party punishment (TPP) experiment. We observed that specific connectivity patterns were linked to behavioral and psychological intra- and interpersonal factors. Thus, our results suggest that an ecological approach based on simultaneous dual-scanning and multiple-brain connectivity is suitable for analyzing complex social phenomena

    Lying about the Valence of Affective Pictures: An fMRI Study

    Get PDF
    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception

    Recognition of pain as another deficit in young males with high callous-unemotional traits

    Get PDF
    Prior research on callous-unemotional (CU) traits supports a deficit in recognizing fear in faces and body postures. Difficulties recognising others’ emotions may impair the typical behavioural inhibition for violent behaviour. However, recent research has begun to examine other distress cues such as pain. The present study examined emotion recognition skills, including pain, of school-excluded boys aged 11–16 years (N = 50). Using dynamic faces and body poses, we examined the relation between emotion recognition and CU traits using the youth psychopathic traits inventory (YPI) and the inventory of CU traits. Violent delinquency was covaried in regression analyses. Although fearful facial and fearful bodily expressions were unrelated to CU traits, recognition of dynamic pain facial expressions was negatively related to CU traits using the YPI. The failure to replicate a fear and sad deficit are discussed in relation to previous research. Also, findings are discussed in support of a general empathy deficit for distress cues which may underlie the problem behaviour of young males with CU traits

    Increased activation in the bilateral anterior insulae in response to others in pain in mothers compared to non-mothers

    Get PDF
    Empathy allows us to share emotions and encourages us to help others. It is especially important in the context of parenting where children’s wellbeing is dependent on their parents’ understanding and fulfilment of their needs. To date, little is known about differences in empathy responses of parents and non-parents. Using stimuli depicting adults and children in pain, this study focuses on the interaction of motherhood and neural responses in areas associated with empathy. Mothers showed higher activation to both adults and children in pain in the bilateral anterior insulae, key regions of empathy for pain. Additionally, mothers more strongly activated the inferior frontal, superior temporal and the medial superior frontal gyrus. Differences between adult and child stimuli were only found in occipital areas in both mothers and non-mothers. Our results suggest a stronger neural response to others in pain in mothers than non-mothers regardless of whether the person is a child or an adult. This could indicate a possible influence of motherhood on overall neural responses to others in pain rather than motherhood specifically shaping child-related responses. Alternatively, stronger responses to others in pain could increase the likelihood for women to be in a relationship and subsequently to have a child.Peer Reviewe
    corecore