39,448 research outputs found

    How Do Analysts Understand and Verify AI-Assisted Data Analyses?

    Full text link
    Data analysis is challenging as it requires synthesizing domain knowledge, statistical expertise, and programming skills. Assistants powered by large language models (LLMs), such as ChatGPT, can assist analysts by translating natural language instructions into code. However, AI-assistant responses and analysis code can be misaligned with the analyst's intent or be seemingly correct but lead to incorrect conclusions Therefore, validating AI assistance is crucial and challenging. Here, we explore how analysts across a range of backgrounds and expertise understand and verify the correctness of AI-generated analyses. We develop a design probe that allows analysts to pursue diverse verification workflows using natural language explanations, code, visualizations, inspecting data tables, and performing common data operations. Through a qualitative user study (n=22) using this probe, we uncover common patterns of verification workflows influenced by analysts' programming, analysis, and AI backgrounds. Additionally, we highlight open challenges and opportunities for improving future AI analysis assistant experiences

    Scoping analytical usability evaluation methods: A case study

    Get PDF
    Analytical usability evaluation methods (UEMs) can complement empirical evaluation of systems: for example, they can often be used earlier in design and can provide accounts of why users might experience difficulties, as well as what those difficulties are. However, their properties and value are only partially understood. One way to improve our understanding is by detailed comparisons using a single interface or system as a target for evaluation, but we need to look deeper than simple problem counts: we need to consider what kinds of accounts each UEM offers, and why. Here, we report on a detailed comparison of eight analytical UEMs. These eight methods were applied to it robotic arm interface, and the findings were systematically compared against video data of the arm ill use. The usability issues that were identified could be grouped into five categories: system design, user misconceptions, conceptual fit between user and system, physical issues, and contextual ones. Other possible categories such as User experience did not emerge in this particular study. With the exception of Heuristic Evaluation, which supported a range of insights, each analytical method was found to focus attention on just one or two categories of issues. Two of the three "home-grown" methods (Evaluating Multimodal Usability and Concept-based Analysis of Surface and Structural Misfits) were found to occupy particular niches in the space, whereas the third (Programmable User Modeling) did not. This approach has identified commonalities and contrasts between methods and provided accounts of why a particular method yielded the insights it did. Rather than considering measures such as problem count or thoroughness, this approach has yielded insights into the scope of each method

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    Analytical usability evaluation for digital libraries: A case study

    Get PDF

    A review of GIS-based information sharing systems

    Get PDF
    GIS-based information sharing systems have been implemented in many of England and Wales' Crime and Disorder Reduction Partnerships (CDRPs). The information sharing role of these systems is seen as being vital to help in the review of crime, disorder and misuse of drugs; to sustain strategic objectives, to monitor interventions and initiatives; and support action plans for service delivery. This evaluation into these systems aimed to identify the lessons learned from existing systems, identify how these systems can be best used to support the business functions of CDRPs, identify common weaknesses across the systems, and produce guidelines on how these systems should be further developed. At present there are in excess of 20 major systems distributed across England and Wales. This evaluation considered a representative sample of ten systems. To date, little documented evidence has been collected by the systems that demonstrate the direct impact they are having in reducing crime and disorder, and the misuse of drugs. All point to how they are contributing to more effective partnership working, but all systems must be encouraged to record how they are contributing to improving community safety. Demonstrating this impact will help them to assure their future role in their CDRPs. By reviewing the systems wholly, several key ingredients were identified that were evident in contributing to the effectiveness of these systems. These included the need for an effective partnership business model within which the system operates, and the generation of good quality multi-agency intelligence products from the system. In helping to determine the future development of GIS-based information sharing systems, four key community safety partnership business service functions have been identified that these systems can most effectively support. These functions support the performance review requirements of CDRPs, operate a problem solving scanning and analysis role, and offer an interface with the public. By following these business service functions as a template will provide for a more effective application of these systems nationally

    Digital analytics: an approach for data quality control

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceWith the emergence of the Digital Era, a new way of analyzing customers' behavior also emerged. It's not only about analyzing data from traditional data warehouses but also about measuring users' digital footprint on websites, mobile applications, and other digital data sources. Nowadays, companies collect data on their digital channels to improve website design and user experience, optimize e-commerce, track, and measure the success of actions and programs, identify problems, and improve the digital channels' performance. But the question that arises is how valid, accurate, and complete the data is. Do digital analysts understand each data point they have at their disposal? In this internship report will be given a detailed view of the critical points of digital analytics data quality, the adjacent problems and a solution will be presented to support and help the digital analysts overcome some of the challenges in this area
    • …
    corecore