14 research outputs found

    Randomized Consensus with Attractive and Repulsive Links

    Full text link
    We study convergence properties of a randomized consensus algorithm over a graph with both attractive and repulsive links. At each time instant, a node is randomly selected to interact with a random neighbor. Depending on if the link between the two nodes belongs to a given subgraph of attractive or repulsive links, the node update follows a standard attractive weighted average or a repulsive weighted average, respectively. The repulsive update has the opposite sign of the standard consensus update. In this way, it counteracts the consensus formation and can be seen as a model of link faults or malicious attacks in a communication network, or the impact of trust and antagonism in a social network. Various probabilistic convergence and divergence conditions are established. A threshold condition for the strength of the repulsive action is given for convergence in expectation: when the repulsive weight crosses this threshold value, the algorithm transits from convergence to divergence. An explicit value of the threshold is derived for classes of attractive and repulsive graphs. The results show that a single repulsive link can sometimes drastically change the behavior of the consensus algorithm. They also explicitly show how the robustness of the consensus algorithm depends on the size and other properties of the graphs

    Emergent Behaviors over Signed Random Networks in Dynamical Environments

    Full text link
    We study asymptotic dynamical patterns that emerge among a set of nodes that interact in a dynamically evolving signed random network. Node interactions take place at random on a sequence of deterministic signed graphs. Each node receives positive or negative recommendations from its neighbors depending on the sign of the interaction arcs, and updates its state accordingly. Positive recommendations follow the standard consensus update while two types of negative recommendations, each modeling a different type of antagonistic or malicious interaction, are considered. Nodes may weigh positive and negative recommendations differently, and random processes are introduced to model the time-varying attention that nodes pay to the positive and negative recommendations. Various conditions for almost sure convergence, divergence, and clustering of the node states are established. Some fundamental similarities and differences are established for the two notions of negative recommendations

    Gossip Consensus Algorithm Based on Time-Varying Influence Factors and Weakly Connected Graph for Opinion Evolution in Social Networks

    Get PDF
    We provide a new gossip algorithm to investigate the problem of opinion consensus with the time-varying influence factors and weakly connected graph among multiple agents. What is more, we discuss not only the effect of the time-varying factors and the randomized topological structure but also the spread of misinformation and communication constrains described by probabilistic quantized communication in the social network. Under the underlying weakly connected graph, we first denote that all opinion states converge to a stochastic consensus almost surely; that is, our algorithm indeed achieves the consensus with probability one. Furthermore, our results show that the mean of all the opinion states converges to the average of the initial states when time-varying influence factors satisfy some conditions. Finally, we give a result about the square mean error between the dynamic opinion states and the benchmark without quantized communication

    Dynamics over Signed Networks

    Full text link
    A signed network is a network with each link associated with a positive or negative sign. Models for nodes interacting over such signed networks, where two different types of interactions take place along the positive and negative links, respectively, arise from various biological, social, political, and economic systems. As modifications to the conventional DeGroot dynamics for positive links, two basic types of negative interactions along negative links, namely the opposing rule and the repelling rule, have been proposed and studied in the literature. This paper reviews a few fundamental convergence results for such dynamics over deterministic or random signed networks under a unified algebraic-graphical method. We show that a systematic tool of studying node state evolution over signed networks can be obtained utilizing generalized Perron-Frobenius theory, graph theory, and elementary algebraic recursions.Comment: In press, SIAM Revie

    Belief Dynamics in Social Networks: A Fluid-Based Analysis

    Get PDF
    The advent and proliferation of social media have led to the development of mathematical models describing the evolution of beliefs/opinions in an ecosystem composed of socially interacting users. The goal is to gain insights into collective dominant social beliefs and into the impact of different components of the system, such as users' interactions, while being able to predict users' opinions. Following this thread, in this paper we consider a fairly general dynamical model of social interactions, which captures all the main features exhibited by a social system. For such model, by embracing a mean-field approach, we derive a diffusion differential equation that represents asymptotic belief dynamics, as the number of users grows large. We then analyze the steady-state behavior as well as the time dependent (transient) behavior of the system. In particular, for the steady-state distribution, we obtain simple closed-form expressions for a relevant class of systems, while we propose efficient semi-analytical techniques in the most general cases. At last, we develop an efficient semi-analytical method to analyze the dynamics of the users' belief over time, which can be applied to a remarkably large class of systems.Comment: submitted to IEEE TNS
    corecore