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We provide a new gossip algorithm to investigate the problem of opinion consensus with the time-varying influence factors and
weakly connected graph among multiple agents. What is more, we discuss not only the effect of the time-varying factors and the
randomized topological structure but also the spread of misinformation and communication constrains described by probabilistic
quantized communication in the social network. Under the underlying weakly connected graph, we first denote that all opinion
states converge to a stochastic consensus almost surely; that is, our algorithm indeed achieves the consensus with probability one.
Furthermore, our results show that themean of all the opinion states converges to the average of the initial states when time-varying
influence factors satisfy some conditions. Finally, we give a result about the square mean error between the dynamic opinion states
and the benchmark without quantized communication.

1. Introduction

Individuals form beliefs on various economic, political, and
social state based on information they receive from others,
including friends, neighbors, and coworkers as well as local
leaders and news sources. The society may face the tradeoff
whether this process of information aggregation will lead to
the formation of more accurate beliefs or to certain bias,
which is led by the limit of communication and the change of
mutual influence. Gossips, rumors, and other misinforma-
tion are an important form of social communications, and
their spreading plays a significant role in human affairs. The
spread of them can shape the public opinion in a country,
greatly impact financial markets, and cause panic in a soci-
ety during wars and epidemics outbreaks. The information
content of rumors can range from simple gossip to advanced
propaganda and marketing material. In practice, social

groups are often swayed by misleading ads, media out-
lets, and political leaders, so they may hold on to incorrect
and inaccurate beliefs. A central question we are interested
in is to study the conditions under which exchange of infor-
mation will lead to aggregation of dispersed information. We
also pay attention to the gap between this consensus and the
true value of the underlying state in society.

Social networks constitute a new method of studying
social mechanism that has grown tremendously over the last
decade. Decentralized is the inevitable trend of the develop-
ment of network technology. In addition, the unprecedented
number of interacting agents, the time-varying topology of
agent interactions, and the unreliability of agents are key
challenges for the analysis and design of this mechanism.
Gossip algorithms, as an asynchronous time algorithm, have
the special feature that each agent exchanges information and
decisions with at most one neighboring agent in each time
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slot. So, gossip algorithms have been proven to be an effi-
cacious approach to achieve fault-tolerant information dis-
semination. Furthermore, these algorithms can be applied in
such a decentralized, large scale, and dynamically distributed
network very well. In social networks, gossip algorithms to
solve consensus problems have attracted a lot of interest.
Based on probabilistic quantized communication, whether a
group of agents has to agree under the weakly connected
graph and time-varying influence factors in the communi-
cation process, starting from different initial estimates is the
problem we need to study in this paper.

Consensus problems have been discussed through the
great number of different opinion formation models by a lot
of people. To relax the requirement of the global clock
synchronization, Boyd et al. [1] proposed a compelling gossip
algorithms, which provides an asynchronous approach to
treat average consensus and describe the randomized node
interaction. Based on social network, Acemoglu et al. in [2]
provided a gossip model to investigate the tension between
information aggregation and the spread of misinformation,
which individuals meet pairwise and exchange information,
which is modeled as both individuals adopting the average of
their beliefs. In [3], Shi and Johansson considered and solved
a randomized optimal consensus problem formultiagent sys-
tems with stochastically time-varying topology.

Since communication constraints play a major role in
consensus and related problems, Carli et al. in [4] considered
the average consensus problem based on a deterministic or
a randomized quantizer and studied the convergence based
on pairwise gossip communications and updates. Yuan et al.
[5] dealt with a more general probabilistic quantization case
which is that the mixing parameter ranges from 0 to 1. In [6],
Ceragioli and his collaborators considered continuous-time
average consensus dynamics in which the agent’s states are
communicated through uniform quantizers. Recently, Wang
et al. in [7] studied the problem of broadcast gossip aver-
age consensus with quantization constraints in the wireless
sensor network. With the similar problem, Cai and Ishii [8]
proposed the directed graphs with the least restrictive con-
nectivity requirements.

We can know that the consensus problems in gossip algo-
rithms [1–3] were important for large-scale information dis-
semination on the Internet, in the sensor network, and in
peer-to-peer file sharing applications. Considering commu-
nication constraints and the spread of misinformation, more
scholars [4–8] studied a class of gossip algorithms based on
quantized communication, at the same time, they paid more
attention to the time-invariant influence factors. According
to the character of social network, we will not only consider
communication constraints on strongly connected graph but
also study with the broader topology and time-varying
influence factors.

Our work has been influenced by reading the papers [8]
which one based on strongly connected graph and [5] which
also has the quantized communication. Compared to the for-
mer paper, our contribution is under the weaker assumption
about the underlying topology, and thus broader discussion
of opinion evolution will be given. Compared to the latter
paper, we allow the information exchange between agents

with time-varying influence factors, rather than the constant
factors which one more precise and realistic in social net-
work.

In this paper, we provide a new gossip consensus algo-
rithm based on weakly connected graph to describe the ran-
domized agent interactions and contain probabilistic quan-
tized communication with time-varying influence factors.
The paper is organized as follows: Section 2 introduces some
descriptions of algorithm environment and our assumption,
and gives a detailed description of the proposed algorithm.
Section 3 provides the results that our algorithm indeed
converges to a consensus almost surely, which is that all agents
have the same opinion states, and this consensus value is
a random variable. We also give a characterization of the
expected value of this consensus with the influence factors
satisfying some conditions. We also provide a result char-
acterizing the convergence performance of the square mean
error between the dynamic opinion and the average initial
states. Section 4 gives some lemmas and the detailed proofs
of the above results. We conclude the paper in Section 5.

2. Algorithm Description and Assumptions

In the following, we describe briefly the distributed average
consensus problem along with the proposed consensus algo-
rithm.

2.1. Description of the Environment. We consider a set 𝑉 =

{1, 2, . . . , 𝑁} of agents interacting and denote 𝜁 = (𝑉, 𝐸) as
a directed and randomized graph, which we refer to as the
social network. So, (𝑖, 𝑗) ∈ 𝐸 and (𝑗, 𝑖) ∈ 𝐸 are different. Each
vertex of the graph is referred to as an agent, and each agent
𝑖 begins with an initial belief 𝑥

𝑖
(𝑡) which evolves in discrete

time 𝑡 and represents its belief or opinion for every 𝑖 ∈ 𝑉.The
belief can be active when 𝑥

𝑖
> 0; otherwise, it can be negative

and misleading when 𝑥
𝑖
< 0. Opinion belief represents the

value of information. We devote (1/𝑁)∑
𝑁

𝑖=1
𝑥
𝑖
(0) as the true

value of the underlying aggregation statewhich represents the
average of the dispersed initial states.

We use an asynchronous time algorithm introduced in
[4] to describe interactions between agents. Particularly, we
recognize that the information exchange results frombilateral
communication under the circumstance of gossip, rumors,
and misinformation. Moreover, each individual meets the
other in her social neighborhoods according to a prespecified
stochastic process and considers this stochastic process is
representing an underlying social network such as friend-
ships and information network. So, we assume that each agent
communicates with the other agent at instances defined by a
rate-one Poisson process independent of other agents.

In this algorithm, without loss of generality, at most, one
node ismeeting another at a given time [1]. Agent interactions
are characterized by an 𝑛 × 𝑛 matrix 𝐴 = [𝑎

𝑖𝑗
] where 𝑎

𝑖𝑗
≥ 0,

and we can associate a unique diagraph 𝜁
𝐴

= (𝑉, 𝐸
𝐴
) with 𝐴

such that (𝑖, 𝑗) ∈ 𝐸
𝐴
if and only if 𝑎

𝑖𝑗
> 0. We call 𝜁

𝐴
= (𝑉, 𝐸

𝐴
)

the induced graph 𝐴. We discretize time and suppose at time
𝑘 ≥ 0, agent 𝑖 is chosen with probability 1/𝑁. In this case,
agent 𝑖 will meet agent 𝑗 ∈ 𝑉 with probability 𝑎

𝑖𝑗
. Following

a meeting between 𝑖 and 𝑗, there is a potential exchange
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of information. Throughout, we assume that all events that
happen in a meeting are independent of any other event that
happened in the past. According to the above description, we
can get the following definition.

Definition 1 (selection probabilities). Independent of time
and agent state, at time 𝑘 ≥ 0,

(i) an agent 𝑖 ∈ 𝑉 is selected with probability 1/𝑁,
(ii) for all 𝑖, the probabilities 𝑎

𝑖𝑖
= 0,

(iii) agent 𝑖 picks the edge (𝑖, 𝑗) with probability 𝑎
𝑖𝑗
, where

𝑎
𝑖𝑗
≥ 0 for all 𝑖, 𝑗, ∑𝑁

𝑗=1
𝑎
𝑖𝑗
= 1.

From (iii), this implied that 𝐴 is a row stochastic matrix.
In the social network, we want to reflect communication

constraints by means of probabilistic quantization Φ(⋅). For
example, there exist the fact that words can’t express meaning
and everyone has different understanding so as to update par-
tial information. In addition, people can understand them-
selves with the vague or fuzzy recognition sometimes. So we
can use probabilistic quantization to show the actual opinion
belief.

The probabilistic quantization has been introduced in [9].
The probabilistic quantization Φ : 𝑅 → 𝑅 is defined as fol-
lows: suppose that𝑥 ∈ 𝑅 is bounded to a finite interval [−𝐼, 𝐼],
and the interval is equally divided into𝑀−1 subintervals with
quantization points defined by the set 𝜃 = {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑀
},

where 𝜃
1
= −𝐼, 𝜃

𝑀
= 𝐼. Denote the interval as Δ = 𝜃

𝑖+1
− 𝜃
𝑖
,

for 𝑖 ∈ {1, 2, . . . ,𝑀 − 1}. Then, for 𝑥 ∈ [𝜃
𝑖
, 𝜃
𝑖+1

), Φ(𝑥) is a
random variable defined by

Φ (𝑥) =

{{{{

{{{{

{

𝜃
𝑖
, with probability

(𝜃
𝑖+1

− 𝑥)

Δ

𝜃
𝑖+1

, with probability
(𝑥 − 𝜃

𝑖
)

Δ
.

(1)

The following lemma gives two important properties of
the probabilistic quantization.

Lemma 2 (see [10]). For every 𝑥 ∈ [𝜃
𝑖
, 𝜃
𝑖+1

),

𝐸 [Φ (𝑥)] = 𝑥, 𝐸 [(𝑥 − Φ (𝑥))
2
] ≤

Δ
2

4
. (2)

Note that Φ(𝑥) is unbiased uniform quantization; that is, the
quantized data Φ(𝑥) is an unbiased representation of 𝑥.

2.2. Assumption. We consider a social network with the finite
set 𝑉 = {1, . . . , 𝑁} (𝑁 ≥ 3) of agents interacting. Each
agent 𝑖 ∈ 𝑉 starts with an initial belief which we denote by
𝑥
𝑖
(0) ∈ [−𝐼, 𝐼]. Moreover, the underlying graph indicates

potential interactions between agents.

Assumption 3 (connectivity see [11]). The underlying graph
𝜁
𝐴
is weakly connected.
Note that the graph 𝜁

𝐴
is the random graph. Here, we

require that 𝜁
𝐴
keep the character of the weak connectivity.

Remark 4. Here, we can have a weaker assumption and a
more extensive network. In the standing assumption of [8],

the matrix 𝐴 is supposed to have its largest eigenvalue equal
to 1 and all other 𝑁 − 1 eigenvalues strictly less than 1 in
magnitude. This condition is equivalent with the underlying
graph that is quasi-strongly connected. In order to guarantee
convergence for the gossip algorithm discussed below, the
assumption cannot be further weakened based on the fol-
lowing argument. If the weaker hold, they will be divide into
two isolated groups at least in the network. As a result, agents
in each group can only communicate with the others in the
same group. So, the convergence for the whole network is
impossible. If there is no-communication groups in fact, we
also can apply our algorithm to each group. Moreover, most
subsets of society are connected bymeans of several links, and
the same seems to be true for indirect link via the Internet [2].
Therefore, Assumption 3 is a weaker assumption and weakly
connected and random topology of social network reflects a
wider social scope and relationship.

2.3. Description of the Consensus Algorithm. In society, we
can usually listen to advice from other people, receive the
influence of others, and eventually form their own views. Due
to the change in the relationship over time and the limit in the
communication, we will construct our average gossip algo-
rithm based on quantized communication and time-varying
impact factors. The gossip algorithms, as the name suggests,
are built upon a gossip or rumor style unreliable, asyn-
chronous information exchange protocol. At the same time,
we use the symmetric gossip algorithm which is based on
mutual trust between information exchangers. Let 𝑥(𝑡)

denote the vector of all individual opinion value at the end
of time instant 𝑡. Then, agent 𝑖 and 𝑗 can be connected with
probability𝐴

⟨𝑖,𝑗⟩
= (1/𝑁)(𝑎

𝑖𝑗
+ 𝑎
𝑗𝑖
), and based bounded con-

fidence and bilateral communication, the states of agent 𝑖 and
𝑗 evolve as follows:

𝑥
𝑖 (𝑡 + 1) = (1 − 𝑆 (𝑡)) 𝑥𝑖 (𝑡) + 𝑆 (𝑡) 𝑥𝑗 (𝑡) ,

𝑥
𝑗 (𝑡 + 1) = 𝑆 (𝑡) 𝑥𝑗 (𝑡) + (1 − 𝑆 (𝑡)) 𝑥𝑖 (𝑡) ,

𝑥
𝑘 (𝑡 + 1) = 𝑥

𝑘 (𝑡) for 𝑘 ̸= 𝑖, 𝑗,

(3)

where 𝑥(𝑡) = Φ(𝑥(𝑡)) = [Φ
1
(𝑥(𝑡)), Φ

2
(𝑥(𝑡)), . . . , Φ

𝑁
(𝑥(𝑡))]

and 𝑆(𝑡) ∈ (0, 1) is called the influence factor. The time-
varying influence factor shows the size of the influence of
each other, and each agent 𝑖 ∈ 𝑉 starts with an initial belief
𝑥
𝑖
(0) ∈ 𝑅 and it is bounded to a finite interval [−𝐼, 𝐼]. The

agents’ beliefs evolve according to the following stochastic
update process. Furthermore, for the quantized version, the
opinion states evolvement can be compactly written accord-
ing to the following equation:

𝑥 (𝑡 + 1) = 𝐴 (𝑡) 𝑥 (𝑡) , (4)

where the random matrix 𝐴(𝑡) satisfies

Prob (𝐴 (𝑡) = 𝐼 − 𝑆 (𝑡) (𝑒𝑖 − 𝑒
𝑗
) (𝑒
𝑖
− 𝑒
𝑗
)
𝑇

) = 𝐴
⟨𝑖,𝑗⟩

, (5)

and we define 𝐴𝑖𝑗(𝑡) = 𝐼 − 𝑆(𝑡)(𝑒
𝑖
− 𝑒
𝑗
)(𝑒
𝑖
− 𝑒
𝑗
)
𝑇, where 𝑒

𝑖
, 𝑖 =

1, . . . , 𝑁 denotes the column vector in 𝑅
𝑁 having all entries

equal to 0 except at a 1 in the 𝑖th position.
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In the social network, we consider that probabilistic
quantization Φ(⋅) reflects communication constraints. For
example, there exist the fact that words can not expressmean-
ing and everyone has different understanding so as to update
partial information. In addition, people can understand
themselveswith the vague or fuzzy recognition in some times.
But as time goes on and the increase of the number of the
communication and information can get accurate expression
with using 𝐸[Φ(𝑥)] = 𝑥. Furthermore, we are concerned that
if each individual holds one opinion at the initial time, then
can the dispersed group converge to a consensus? And if they
can, what conditionsmust be needed? According to the above
algorithm, we will talk about these problems as follows.

First, we know the convergence to a consensusmeans that
a final unanimous consensus will be reached in someway. But
what does the word “consensus” mean? From the view of the
opinion algorithm, it means that an opinion vector in which
all elements are the same. In other words, all individuals have
the same opinion, whichmeans a unanimous one.While final
compromise means a compromise is reached for 𝑡 → ∞.

Then, in order to be convenient, we will follow the
assumptions as above and give the results about the consen-
sus.

3. Main Results

In this section, we provide ourmain convergence result based
on the above algorithm. Particularly, we denote that despite
the presence of quantized communication, with potentially
very different initial opinions, the group will converge to a
consensus almost surely, which all agents have the same opin-
ion states.This consensus value is a random variable. We also
provide the characterization of the expected value of this con-
sensus under some conditions. In addition, we give a result
about the square mean error between the dynamic opinion
and the average initial states.

Here, we give a convergence theorem based on the topol-
ogy of the underlying social network.

Theorem 5. A global gossip consensus achieves the probabilis-
tic consensus; that is,

Pr { lim
𝑡→∞

𝑥 (𝑡) = 𝑐1̃} = 1, (6)

where 1̃ ∈ 𝑅
𝑁 denotes the vector with all its entries equal to 1

and the random variable 𝑐 ∈ 𝑅 satisfies

𝐸 [𝑐] =
1

𝑁
1̃𝑥 (0) , (7)

when 𝑆(𝑡) satisfies ∑∞
𝑡=0

𝑆(𝑡) = ∞.

Remark 6. This result implies that the society will reach a
dynamic consensus almost surely despite the presence of the
quantized communication and the effect of influence factor
under a weaker assumption that the underlying graph is
weakly connected. Based on the network and the pattern of
communication, all agents endowed with the different initial
opinion will form the common opinion with probability 1,

and the expected value of the common opinion will tend
to be the true value of the underlying aggregation opinion
when 𝑆(𝑡) satisfies some conditions. We also will discover
that the above second conclusion still shows that even 𝑆(𝑡) is
constant satisfying 0 to 1. In addition, either 𝑆(𝑡 + 1) > 𝑆(𝑡) or
𝑆(𝑡+1) < 𝑆(𝑡) for all 𝑡; that is, 𝑆(𝑡) ismonotone, the conclusion
is achieved only if∑∞

𝑡=0
𝑆(𝑡) = ∞. Finally, inmathematics, the

condition of divergent sequence is easier satisfied than that of
convergent sequence. So, our condition can be satisfied in a
rather wide range.

The following proposition provides the expectation of
the error between the opinion states and the static average
consensus.

Theorem 7. The evolution of the square mean error from con-
sensus of the algorithm satisfies

𝐸(

𝑥 (𝑡) − 𝑥 ave (𝑡) 1̃



2

) ≤ (1 −
2

𝑁
𝑆
∗
𝜆
∗

2
)

𝑡

𝑥 (0) − 𝑥 ave 1̃



2

+
Δ
2
𝑁(𝑁 − 4𝑆

∗
− 1)

4𝑆∗𝜆
∗

2

,

(8)

where 𝑆∗ = inf
𝑖∈𝑁

{𝑆(𝑖)(1 − 𝑆(𝑡))}, 𝜆∗
2
= 𝜆
∗

2
(𝐷 − (𝐴

𝑇
+ 𝐴)) for

the given 𝑁, Δ.

Remark 8. We try to study the character of its square mean
convergence and find that it does not meet this convergence.
But from the above proposition, we can see the square mean
error has an upper bound and estimate the convergence speed
of the upper bound.The limit of the bound is (Δ2𝑁(𝑁−4𝑆

∗
−

1))/4𝑆
∗
𝜆
∗

2
which depends on the quantized revolution, the

second smallest eigenvalue of Laplacian matrix and the time-
varying factors when 𝑆

∗
̸= 0.

4. Lemmas and Proofs

4.1. Average Matrix Properties

Lemma 9. Define the expected value of 𝐴(𝑡) as

𝐴 = 𝐸 [𝐴 (𝑡)] =
1

𝑁
∑

𝑖,𝑗

𝑎
𝑖𝑗
𝐴
𝑖𝑗

, 𝐴 = 𝐸 [𝐴(𝑡)
𝑇
𝐴 (𝑡)] ,

(9)

then

𝐴 = 𝐼 −
𝑆 (𝑡)

𝑁
[𝐷 − (𝐴 + 𝐴

𝑇
)] ,

𝐴 = 𝐼 −
2𝑆 (𝑡) (1 − 𝑆 (𝑡))

𝑁
[𝐷 − (𝐴 + 𝐴

𝑇
)] ,

(10)

where𝐷 = diag([𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑁
]) is the diagonal matrix with

entries satisfying

𝐷
𝑖
= (∑

𝑗 ̸= 𝑖

(𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
)) , (11)
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and for all 𝑆(𝑡) ∈ (0, 1), 𝐴, and 𝐴, respectively satisfies

𝐴1̃ = 1̃, 1̃
𝑇
𝐴 = 1̃

𝑇
,

𝐴1̃ = 1̃, 1̃
𝑇
𝐴 = 1̃

𝑇
, 𝜌 (𝐴) = 1,

(12)

where 1̃ ∈ 𝑅
𝑁 denotes the vector with all its entries equal to 1.

Proof. From the fact that 𝐴 = 𝐸[𝐴(𝑡)] = (1/𝑁)∑
𝑖,𝑗

𝑎
𝑖𝑗
𝐴
𝑖𝑗, we

can deduce that

𝐴
𝑖𝑖

= 1 −

𝑆 (𝑡) [∑
𝑗 ̸= 𝑖

𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖
]

𝑁
, 𝐴

𝑖𝑗
=

𝑆 (𝑡) (𝑎𝑖𝑗 + 𝑎
𝑗𝑖
)

𝑁
,

(13)

then we can substitute these into the matrix 𝐴, in the similar
way, we can get 𝐴.

It is easy to see that the matrix 𝐴 is the symmetric matrix
and the sum of the row in 𝐴 is 1. So, we have

𝐴1̃ = 1̃, 1̃
𝑇
𝐴 = 1̃

𝑇
. (14)

From the above equation, 𝐴 have the same character. So
1̃ is the eigenvector of the eigenvalue 1. Using the Gersgorin
disc theorem [12], we have

0 ≤ 𝜆 (𝐷 − (𝐴
𝑇
+ 𝐴)) ≤ 2𝑁, (15)

where 𝜆(⋅) denotes the eigenvalue of a symmetric matrix.
Therefore,

0 ≤ 2𝑆 (𝑡) (1 − 𝑆 (𝑡)) 𝜆 (𝐷 − (𝐴
𝑇
+ 𝐴)) ≤ 4𝑆 (𝑡)

× (1 − 𝑆 (𝑡)) ≤ 4(
𝑆 (𝑡) + 1 − 𝑆 (𝑡)

2
)

2

= 1.

(16)

Then, the spectrum of 𝐴 is 1.

Lemma 10 (see [13]). Define {𝑇
𝑘
} is a sequence of real numbers

with 𝑇
𝑘
∈ [0, 1) for all 𝑘 ∈ [0, +∞), then

∞

∑

𝑘=0

𝑇
𝑘
= ∞ iff

∞

∏

k=0
(1 − Tk) = 0. (17)

4.2. The Proof of Theorem 5. Proof of Theorem 5: in the first
part, we will prove the character of convergence. with loss of
probability, we consider the integer quantization in the range
[1, 𝑚]. Define a discrete Markov chain 𝑀 with initial state
𝑥(0), and the transition matrix is defined by the combination
of the quantized gossip consensus algorithm 𝑥(𝑡 + 1) =

𝐴(𝑡)𝑥(𝑡) and the probabilistic quantization operator Φ(⋅).
Define 𝑥ave(𝑡) = (1/𝑁)1̃

𝑇
𝑥(𝑡) and 𝑥ave = (1/𝑁)1̃

𝑇
𝑥(0),

when 𝑡 > 0. Note that the gossip consensus algorithm satisfies

𝑥 (𝑡 + 1) − 𝑥ave (𝑡 + 1) 1̃


≤


𝑥 (𝑡) − 𝑥ave (𝑡) 1̃


, (18)

the equality holds when the two agents chosen at time instant
𝑡 have the same quantized state value.Thus, there is a nonzero

probability that the strict inequality holds when the consen-
sus is not achieved. Moreover, using the fact that 𝑐𝐴(𝑡)1̃ = 𝑐1̃,
we can derive

𝑥 (𝑡 + 1) = Φ [𝐴 (𝑡) 𝑥 (𝑡)] = Φ [𝑥 (𝑡)] = 𝑥 (𝑡) , (19)

when 𝑥(𝑡) = 𝑐1̃. Then, following a similar line as in the proof
ofTheorem 1 in [13], we can prove that there exists a sequence
of transitions with nonzero probability whose application
yields absorption; that is, the probabilistic consensus is
achieved.

In the second part, we will consider the character of mean
about the state value.

We can use the Lebesgue dominated convergence theo-
rem [14] to give

𝐸 (𝑐1̃) = 𝐸 [ lim
𝑡→∞

𝑥 (𝑡)] = lim
𝑡→∞

𝐸 [𝑥 (𝑡)] . (20)

Then, we can derive the expression of lim
𝑡→∞

𝐸[𝑥(𝑡)] and
use the above equality to get the desired result. Now, define
the quantization error as

𝑢 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) . (21)

We can get

𝑥 (𝑡 + 1) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐴 (𝑡) 𝑢 (𝑡) . (22)

Noting the property of the probabilistic quantization; that
is,𝐸[𝑢(𝑡)] = 0 and the fact that𝐴(𝑡) and 𝑢(𝑡) are independent,
so we can see that

𝐸 [𝑥 (𝑡 + 1)] = 𝐸 [𝐴 (𝑡)] 𝐸 [𝑥 (𝑡)] + 𝐸 [𝐴 (𝑡)] 𝐸 [𝑢 (𝑡)]

= 𝐴𝐸 [𝑥 (𝑡)] .
(23)

Therefore,

𝐸 [𝑥 (𝑡 + 1)] − 𝑥ave1̃



2

= {𝐴𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}
𝑇

{𝐴𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}

= {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}
𝑇

(𝐴
𝑇
𝐴) {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}

= {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃}
𝑇

[𝐼 −
𝑆 (𝑡)

𝑁
(𝐷 − (𝐴

𝑇
+ 𝐴))]

2

× {𝐸 [𝑥 (𝑡)] − 𝑥ave1̃} .

(24)

Define 𝑦(𝑡) = 𝐸[𝑥(𝑡)] − 𝑥ave1̃, we can see 𝑦(0) ⊥ 1̃, fur-
thermore, on the basis of Lemma 9, we can see 𝑦(𝑡) ⊥ 1̃,

𝜌(𝐴) = 1, and every possible sample of𝐴 is doubly stochastic,
each sample of 𝐴𝑇𝐴 is also doubly stochastic. This implied
that 1̃ is the eigenvector corresponding to eigenvalue 1 of
𝐴
𝑇
𝐴. Thus, we can conclude from the above equation that


𝐸 [𝑥 (𝑡 + 1)] − 𝑥ave1̃



2

≤ 𝜆
2
(𝐴
𝑇
𝐴)


𝐸 [𝑥 (𝑡)] − 𝑥ave1̃



2

,

(25)

where 𝜆
2
(𝑊) for a stochastic matrix 𝑊 denotes the largest

eigenvalue in magnitude excluding the eigenvalue at one.
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Therefore,

𝑦 (𝑡 + 1)


2
≤ [1 −

𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇
+ 𝐴))]

2

𝑦 (𝑡)


2
.

(26)

Note that𝐷−(𝐴
𝑇
+𝐴) is actually the (weighted) Laplacian

of the graph 𝜁
𝐴+𝐴
𝑇 . With Assumption 3, apparently 𝐴 + 𝐴

𝑇

is symmetric, and thus 𝜁
𝐴+𝐴
𝑇 one connected graphs [15], we

have the multiple of 𝜆∗
1
is one and 𝜆

∗

2
> 0, where 𝜆∗

𝑘
is the 𝑘th

smallest eigenvalue of𝐷−(𝐴
𝑇
+𝐴). On the other hand, since

𝐴 is a stochastic matrix, it is straightforward to see that

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
+ 𝑎
𝑗𝑖

< 𝑛 (27)

for all 𝑖 = 1, 2, . . . , 𝑁. According to Gersgorin’s circle theo-
rem, every eigenvalue of𝐷 − (𝐴

𝑇
+ 𝐴) is 𝜆∗ ∈ [0, 2𝑁].

Then, we assume 𝜆
∗

2
[𝐷 − (𝐴

𝑇
+ 𝐴)] > 𝑁, for the trace of

𝐷 − (𝐴
𝑇
+ 𝐴) is 2𝑁; then

𝑁

∑

𝑘=2

𝜆
∗

2
[𝐷 − (𝐴

𝑇
+ 𝐴)] > 𝑁 × (𝑁 − 1) (28)

since𝑁 ≥ 3, ∑𝑁
𝑘=2

𝜆
∗

2
[𝐷 − (𝐴

𝑇
+ 𝐴)] > Tr[𝐷 − (𝐴

𝑇
+ 𝐴)].

It is impossible. So,

𝜆
∗

2
[𝐷 − (𝐴

𝑇
+ 𝐴)] ≤ 𝑁. (29)

Now we conclude that for all 𝑡,

[1 −
𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇
+ 𝐴))]

2

≤ 1 −
𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇
+ 𝐴)) < 1.

(30)

Then,

𝑦 (𝑡 + 1)


2
≤

∞

∏

𝑡=0

[1 −
𝑆 (𝑡)

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇
+ 𝐴))]

𝑦 (0)


2
.

(31)

Therefore, based on Lemma 10, we have

lim
𝑡→∞

𝑦 (𝑡)
 = 0. (32)

So, we can get 𝐸[𝑐] = (1/𝑁)1̃𝑥(0) when 𝑆(𝑡) satisfies
∑
∞

𝑡=0
𝑆(𝑡) = ∞.
The proof is finished.

4.3. The Proof of Theorem 7. Proof of Theorem 7: defining

𝑧 (𝑡 + 1) = 𝑥 (𝑡 + 1) − 𝑥ave (𝑡 + 1) 1̃ = (𝐼 − 𝐽) 𝑥 (𝑡 + 1) , (33)

where 𝐽 = (1/𝑁)1̃1̃
𝑇; then, we can get

𝑧 (𝑡 + 1) = (𝐼 − 𝐽) 𝑥 (𝑡) = 𝐴 (𝑡) 𝑧 (𝑡) + (𝐼 − 𝐽)𝐴 (𝑡) 𝑢 (𝑡) .

(34)

So,

𝐸 [‖𝑧 (𝑡 + 1)‖
2
| 𝑧 (𝑡)]

= 𝑧(𝑡)
𝑇
𝐸 [𝐴(𝑡)

𝑇
𝐴 (𝑡)] 𝑧 (𝑡)

+ 𝐸 [𝑧(𝑡)
𝑇
𝐴(𝑡)
𝑇
(𝐼 − 𝐽) 𝐴 (𝑡) 𝐴 (𝑡) 𝑢 (𝑡)]

+ 𝐸 [𝑢(𝑡)
𝑇
𝐴(𝑡)
𝑇
(𝐼 − 𝐽) 𝐴 (𝑡) 𝐴 (𝑡) 𝑧 (𝑡)]

+ 𝐸 [𝑢(𝑡)
𝑇
𝐴(𝑡)
𝑇
(𝐼 − 𝐽) 𝐴 (𝑡) 𝐴 (𝑡) 𝑧 (𝑡)]

+ 𝐸 [𝑢(𝑡)
𝑇
𝐴(𝑡)
𝑇
(𝐼 − 𝐽)

2
𝐴 (𝑡) 𝐴 (𝑡) 𝑢 (𝑡)] .

(35)

Using the Proposition 3.4 in [4], it is easy to see that both
the second and the third term of the right hand side of the
above equation are zero. Thus, we can derive

𝐸 [‖𝑧 (𝑡 + 1)‖
2
| 𝑧 (𝑡)]

= 𝑧(𝑡)
𝑇
𝐸 [𝐴(𝑡)

𝑇
𝐴 (𝑡)] 𝑧 (𝑡)

+ 𝐸 [𝑢(𝑡)
𝑇
(𝐴(𝑡)
𝑇
𝐴 (𝑡) − 𝐽) 𝑢 (𝑡)]

= 𝑧(𝑡)
𝑇
𝐸 [𝐴(𝑡)

𝑇
𝐴 (𝑡)] 𝑧 (𝑡) +

𝑁

∑

𝑖=1

𝐴
𝑖𝑖
𝐸 [𝑢
2

𝑖
(𝑡)]

≤ 𝜆
2
(𝐴) ‖𝑧 (𝑡)‖

2
+

Δ
2

4
trace (𝐴)

= 𝜆
2
(𝐴) ‖𝑧 (𝑡)‖

2
+

Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1]

= 𝜆
2
(𝐴) ‖𝑧 (𝑡)‖

2
+

Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1]

= 𝜆
2
[𝐼 −

2𝑆 (𝑡) (1 − 𝑆 (𝑡))

𝑁

× (𝐷 − (𝐴
𝑇
+ 𝐴)) ] ‖𝑧 (𝑡)‖

2

+
Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1] ,

(36)

where 𝐴 = 𝐸[𝐴(𝑡)
𝑇
𝐴(𝑡) − 𝐽].

The second equality follows from the fact that
𝐸[𝑢
𝑖
(𝑡)𝑢
𝑗
(𝑡)] = 0 for 𝑖 ̸= 𝑗, and the inquiry follows from

𝐸[𝑢
𝑖
(𝑡)
2
] ≤ Δ

2
/4. Furthermore, the last equality is obtained

by using

trace (𝐴) = trace (𝐴 − 𝐽) = 𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1. (37)

Then, repeatedly conditioning and using the iteration
obtained above, we obtain, define 𝜆∗

2
= 𝜆
∗

2
(𝐷−(𝐴

𝑇
+𝐴)) < 𝑁

𝐸 [‖𝑧 (𝑡 + 1)‖
2
] ≤

𝑡

∏

𝑖=𝑘0

(1 −
2𝑆 (𝑖) (1 − 𝑆 (𝑖))

𝑁
𝜆
∗

2
)
𝑧 (𝑘
0
)


2

+
Δ
2

4

[

[

𝑡−1

∑

𝑖=𝑘0

(𝑁 − 4𝑆 (𝑖) (1 − 𝑆 (𝑖)) − 1)]

]
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×

𝑡

∏

𝑗=𝑖+1

(1 −
4𝑆 (𝑗) (1 − 𝑆 (𝑗))

𝑁
𝜆
∗

2
)

+
Δ
2

4
[𝑁 − 4𝑆 (𝑡) (1 − 𝑆 (𝑡)) − 1] ,

(38)

when 𝑡 ≥ 1, 𝑘
0
≤ 𝑡 − 1, 𝑘

0
∈ 𝑁
+ where

𝐸 [‖𝑧 (1)‖
2
] ≤ (1 −

2𝑆 (0) (1 − 𝑆 (0))

𝑁
𝜆
∗

2
) ‖𝑧 (0)‖

2

+
Δ
2

4
[𝑁 − 4𝑆 (0) (1 − 𝑆 (0)) − 1] ,

(39)

when 𝑡 = 0.
Define 𝑆

∗
= inf
𝑖∈𝑁

{𝑆(𝑖)(1 − 𝑆(𝑖))}.
Because of 𝑆

𝑖
∈ (0, 1), 𝑆∗ ∈ [0, 1); then

𝐸 (‖𝑧 (𝑡 + 1)‖
2
) ≤ [1 −

2

𝑁
𝑆
∗
𝜆
∗

2
(𝐷 − (𝐴

𝑇
+ 𝐴))] ‖𝑧 (0)‖

2

+
Δ
2

4
(𝑁 − 4𝑆

∗
− 1)

×

𝑡

∑

𝑖=0

[1 −
𝑆
∗

𝑁
𝜆
∗

2
(𝐷 − (𝐴

𝑇
+ 𝐴))]

≤ (1 −
2

𝑁
𝑆
∗
𝜆
∗

2
)

𝑡

‖𝑧 (0)‖
2

+
Δ
2

4
(𝑁 − 4𝑆

∗
− 1)

𝑡

∑

𝑖=0

(1 −
𝑆
∗

𝑁
𝜆
∗

2
)

𝑠

.

(40)

By Lemma 9, we can deduce that

𝐸 (‖𝑧 (𝑡 + 1)‖
2
) ≤ (1 −

2

𝑁
𝑆
∗
𝜆
∗

2
)

𝑡

‖𝑧 (0)‖
2

+
Δ
2
𝑁(𝑁 − 4𝑆

∗
− 1)

4𝑆∗𝜆
∗

2

.

(41)

This completes the proof.

5. Conclusions

In this paper, we have considered the consensus problem of
gossip algorithmbased on time-varying influence andweakly
connected graph in the social network. Based on the gossip
algorithm, we also pay attention to studying the effect of the
probabilistic quantized communication.

We show that the groupwill achieve the probabilistic con-
sensus value which is a random variable despite the presence
of quantized communication, with potentially very different
initial opinions. And we present the condition on the time-
varying influence factors that guarantee the mean of consen-
sus equals to the average initial states.We also provide a result
about the square mean error which has an upper bound and
the convergence speed of the upper bound can be estimated.

The limit of the bound is dependent on the quantized revolu-
tion, the second smallest eigenvalue of Laplacian matrix, and
the time-varying factors.

And some other interesting problems we will be con-
cerned with in further research, such as the existence of
agents who have different prejudices and whether the con-
sensus can be reached with partial trust.
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