756 research outputs found

    Scalable Machine Learning Model for Highway CCTV Feed Real-Time Car Accident and Damage Detection

    Get PDF
    This study investigates the potential advantages of employing computer vision algorithms to enhance real-time accident detection and response on highways using CCTV feed. Traditional techniques rely on retrospective data, which can decrease response times and precision. Computer vision algorithms have the potential to enhance detection speed and precision, resulting in quicker emergency response and monitoring of traffic flow. The primary objective of this study is to identify the advantages of utilising computer vision algorithms and the data gathered through them to enhance road safety measures and reduce the occurrence of accidents. This study is anticipated to result in quicker emergency response times, the identification of areas where statistically more accidents are likely to occur, and the use of collected data for research purposes, which can lead to enhanced road safety measures. Using computer vision algorithms for accident detection and response has the potential to reduce the human and monetary costs associated with traffic accidents

    Development and evaluation of a smartphone-based system for inspection of road maintenance work

    Get PDF
    Abstract. In the road construction industry, doing work inspection is a laborious and resource-consuming job because of the distributed work site. Contractors in Finland require to capture photos of every road fix they have done as proof of their work. It is well-established that with the help of smartphone technology, these kinds of manual work can be reduced. This thesis aims to develop and evaluate a smartphone-based system to capture video evidence of task completion. The system, designed and developed in this thesis, consists of an Android application named ’Road Recorder’ and a web tool for managing the content collected by Road Recorder. While mounted to a vehicle’s dashboard used in construction work, the Road Recorder can record the videos of road surface and geo-location information and some other metadata and send them to a remote server that is inspected using the web tool. Users of different backgrounds were given the system to accomplish some tasks and were observed closely. The users were interviewed at the end, and responses were analyzed to find the usability of the applications. The results indicate the high usability of the Road Recorder application and reveal possible improvements for the Road Recorder management web application. Overall, Road Recorder is a great step towards the automation of such construction work inspection. Though there were some limitations in the evaluation process, it demonstrates that Road Recorder is easy to use and can be a useful tool in the industry

    Visual Concept Detection in Images and Videos

    Get PDF
    The rapidly increasing proliferation of digital images and videos leads to a situation where content-based search in multimedia databases becomes more and more important. A prerequisite for effective image and video search is to analyze and index media content automatically. Current approaches in the field of image and video retrieval focus on semantic concepts serving as an intermediate description to bridge the “semantic gap” between the data representation and the human interpretation. Due to the large complexity and variability in the appearance of visual concepts, the detection of arbitrary concepts represents a very challenging task. In this thesis, the following aspects of visual concept detection systems are addressed: First, enhanced local descriptors for mid-level feature coding are presented. Based on the observation that scale-invariant feature transform (SIFT) descriptors with different spatial extents yield large performance differences, a novel concept detection system is proposed that combines feature representations for different spatial extents using multiple kernel learning (MKL). A multi-modal video concept detection system is presented that relies on Bag-of-Words representations for visual and in particular for audio features. Furthermore, a method for the SIFT-based integration of color information, called color moment SIFT, is introduced. Comparative experimental results demonstrate the superior performance of the proposed systems on the Mediamill and on the VOC Challenge. Second, an approach is presented that systematically utilizes results of object detectors. Novel object-based features are generated based on object detection results using different pooling strategies. For videos, detection results are assembled to object sequences and a shot-based confidence score as well as further features, such as position, frame coverage or movement, are computed for each object class. These features are used as additional input for the support vector machine (SVM)-based concept classifiers. Thus, other related concepts can also profit from object-based features. Extensive experiments on the Mediamill, VOC and TRECVid Challenge show significant improvements in terms of retrieval performance not only for the object classes, but also in particular for a large number of indirectly related concepts. Moreover, it has been demonstrated that a few object-based features are beneficial for a large number of concept classes. On the VOC Challenge, the additional use of object-based features led to a superior performance for the image classification task of 63.8% mean average precision (AP). Furthermore, the generalization capabilities of concept models are investigated. It is shown that different source and target domains lead to a severe loss in concept detection performance. In these cross-domain settings, object-based features achieve a significant performance improvement. Since it is inefficient to run a large number of single-class object detectors, it is additionally demonstrated how a concurrent multi-class object detection system can be constructed to speed up the detection of many object classes in images. Third, a novel, purely web-supervised learning approach for modeling heterogeneous concept classes in images is proposed. Tags and annotations of multimedia data in the WWW are rich sources of information that can be employed for learning visual concepts. The presented approach is aimed at continuous long-term learning of appearance models and improving these models periodically. For this purpose, several components have been developed: a crawling component, a multi-modal clustering component for spam detection and subclass identification, a novel learning component, called “random savanna”, a validation component, an updating component, and a scalability manager. Only a single word describing the visual concept is required to initiate the learning process. Experimental results demonstrate the capabilities of the individual components. Finally, a generic concept detection system is applied to support interdisciplinary research efforts in the field of psychology and media science. The psychological research question addressed in the field of behavioral sciences is, whether and how playing violent content in computer games may induce aggression. Therefore, novel semantic concepts most notably “violence” are detected in computer game videos to gain insights into the interrelationship of violent game events and the brain activity of a player. Experimental results demonstrate the excellent performance of the proposed automatic concept detection approach for such interdisciplinary research

    Cyclist Detection, Tracking, and Trajectory Analysis in Urban Traffic Video Data

    Full text link
    The major objective of this thesis work is examining computer vision and machine learning detection methods, tracking algorithms and trajectory analysis for cyclists in traffic video data and developing an efficient system for cyclist counting. Due to the growing number of cyclist accidents on urban roads, methods for collecting information on cyclists are of significant importance to the Department of Transportation. The collected information provides insights into solving critical problems related to transportation planning, implementing safety countermeasures, and managing traffic flow efficiently. Intelligent Transportation System (ITS) employs automated tools to collect traffic information from traffic video data. In comparison to other road users, such as cars and pedestrians, the automated cyclist data collection is relatively a new research area. In this work, a vision-based method for gathering cyclist count data at intersections and road segments is developed. First, we develop methodology for an efficient detection and tracking of cyclists. The combination of classification features along with motion based properties are evaluated to detect cyclists in the test video data. A Convolutional Neural Network (CNN) based detector called You Only Look Once (YOLO) is implemented to increase the detection accuracy. In the next step, the detection results are fed into a tracker which is implemented based on the Kernelized Correlation Filters (KCF) which in cooperation with the bipartite graph matching algorithm allows to track multiple cyclists, concurrently. Then, a trajectory rebuilding method and a trajectory comparison model are applied to refine the accuracy of tracking and counting. The trajectory comparison is performed based on semantic similarity approach. The proposed counting method is the first cyclist counting method that has the ability to count cyclists under different movement patterns. The trajectory data obtained can be further utilized for cyclist behavioral modeling and safety analysis

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    The perceptual flow of phonetic feature processing

    Get PDF
    • …
    corecore