
	

AN ABSTRACT OF THE THESIS OF

Christopher M. Sullivan for the degree of Master of Science in Molecular and Cellular
Biology presented on June 03, 2021

Title: Creating High Throughput Low Cost Analysis of Different Labor-Intensive
Repetitive Research Processes

Abstract approved: __

 Robyn L. Tanguay

Many research projects suffer from limited data causing poor statistical analysis or

limited results. The movement to high throughput methods has been building for many

years and cross many different disciplines. Lots of these methods start out using

pathways that generate large amounts of data but have limited methods to process or

analyze that data. Most of this data collection and analysis generates tremendous labor

and reduces accuracy of input. In this thesis I present two new methods and software

tools to help reduce labor and increase the scope of data analysis around high throughput

research. These include a method to analyze RNA-Seq data and identify the statistically

relevant optimal number of reads needed for the transcriptome analysis. This allows

groups to avoid unnecessary excessive number of reads from a given sample and instead

opt for increasing the number of samples and/or replicates they can incorporate to an

analysis at the same costs. Often the limited costs outweigh the sequencing of adequate

number of samples and replicates. The second major high throughput image analysis tool

I developed involves automation, machine learning and image processing to score for

potential use in object identity and phenotyping. To increase throughput and build

consistency over analysis by a human, machine learning methods are used increasingly

on a wide array of data types.

	

	

ÓCopyright by Christopher M. Sullivan
June 03, 2021

All Rights Reserved

	

Creating High Throughput Low Cost Analysis of Different Labor-Intensive Repetitive
Research Processes

by
Christopher M. Sullivan

A THESIS

Submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 03, 2021
Commencement June 2021

	

Master of Science thesis of Christopher M. Sullivan presented on June 03, 2021.

APPROVED:

 __
Major Professor, representing Molecular and Cellular Biology

__
Director Molecular and Cellular Biology Program

__
Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

__
Christopher M. Sullivan, Author

	

ACKNOWLEDGEMENTS

The author expresses sincere appreciation to the Center for Genome Research and

Biocomputing for all the computational resources. The author would also like to thank

the Sinnhuber Aquatic Research Laboratory (SARL) at Oregon State University for

providing the zebrafish and lab work around the RNA-Seq and Spotter experiments. On

the RNA-Seq and Spotter work the author would like to thank B. Tate, L. St. Mary, A.

Rito, L. Truong, and R. Tanguay for the help on lab work and processing data. For the

work on AVIANn the author thanks Z. Ruff, D. Lesmeister, L. Duchac, and B.

Padmaraju for the work with me on CNN and data processing pipeline. Also, for the

work on the AVIANn project the author thanks C. Cardillo, M. Corr, D. Culp, T. Garrido,

E. Guzmán, A. Ingrassia, D. Jacobsma, E. Johnston, R. Justice, K. McLaughlin, P.

Papajcik, and W. Swank for field assistance in collecting data and C. Cardillo, D. Culp,

Z. Farrand, R. Justice, A. Munes, and S. Pruett for validating CNN output and locating

additional training data.

Funding: This work was largely supported by the National Institutes of Health NIEHS

Superfund Research Program (P42 ES016465), Core Center Grant (P30 ES000210), and

the NIEHS Training Grant (T32 ES007060). Pacific North west National Laboratory is a

multi-program national laboratory operated by Battelle Memorial Institute for the DOE

under contract number DE-AC05-76RLO1830 and National Science Foundation award

[IOS #1340112].

	

TABLE OF CONTENTS

Page
1 Introduction	………………………………………………..……………………………………..............	1	

2 RNA-Seq	Analysis...…………………………………………………..…………………………………..	2	

2.1 Optimization	of	RNA-seq	Depth	Required	for	Differential	Expression	

Analysis	in	Danio	rerio	...…………………………………………………..………………..	4	

2.1.1 RNA-Seq	Data	Set	Generation………………………………………………	5	

2.1.2 Alignment	of	Sequence	Data	Set…………………………………………..	6	

2.1.3 Statistical	Analysis	for	Differential	Expression……………………..	7	

2.2 Results	of	High	Throughput	Low	Cost	RNA-Seq	Analysis…………………….	7	

2.3 Discussion	and	Future	Thoughts	to	Reduce	Costs…………………….………..10	

2.4 RNA-Seq	Analysis	Conclusions…………………………………………………………	11	

3 Using	Image	Analysis	to	Reduce	Labor	and	Increase	Accuracy……………………..	12	

3.1 Spotter:	A	Tool	to	Quantify	Circular	Objects	in	Images………………………	12	

3.1.1 OpenCV’s	Hough	Circle	Transform……………………………………..	13	

3.1.2 Running	the	Program	and	Saving	Results……………………………	15	

3.1.3 Experimental	Procedure	Testing	Throughput……………………..	16	

3.1.3.1 Counting	Zebrafish	Embryos……………………………...	17	

3.1.3.2 Counting	Fluorescent	Cells	in	Zebrafish	Tails……...	18	

3.1.3.3 Limits	to	Spotter	Image	Counting……………………….	18	

3.1.4 Results	of	Spotter	Image	Analysis………………………………………	19	

3.1.4.1 Counting	Embryos…………………………………………….	19	

3.1.4.2 Counting	fluorescence……………………………………….	20	

3.1.5 Discussion	and	Future	Thoughts	to	Reduce	Costs……………….	21	

3.2 AVIANn:	Automated	identification	of	avian	vocalizations	with	deep	

convolutional	neural	networks	………………………………………………………..	23	

3.2.1 Target	Species…………………………………………………………………...	25	

	

	

TABLE OF CONTENTS (Continued)

 Page
3.2.2 Methods	for	Processing	Sound	Data……………………………………	25	

3.2.3 Convolutional	neural	network	model…………………………………	28	

3.2.3.1 Test	Data	Collected	in	2018………………………………..	29	

3.2.3.2 Data	Processing	of	WAV	files……………………………...	29		

3.2.3.3 Model	Performance	and	Validation…………………….	30	

3.2.4 Results	of	CNN	for	Image	Processing………………………………….	31		

3.2.5 Discussion	and	Future	Plans	to	Reduce	Costs……………………...	33	

4 Conclusions	……………………………………………………………………………………………....	37	

5 Figures	….….………………………………………………………………………………………..……..	38	

6 Tables	………………………………………………..……………………………………………………..	56	

Bibliography …..……….………………………………………………………………. 62	

	

	

1	

1. Introduction	

Researchers often encounter bottlenecks and problems associated with many labor-

intensive repetitive research processes. These problems include items like limited

scope creating statistical errors, inconsistent accuracy creating problems with

normalization and increased costs around lab personnel to create or process data. To

address these problems, we looked at the current process and how they align with

the research goals of the Tanguay lab at Oregon State University using zebrafish as a

toxicology model and recently developed automated high throughput

instrumentation to accelerate phenotype discovery and define the mechanisms by

which chemicals, drugs and nanoparticles interact with and adversely affect

vertebrate development and function. This was followed by looking at previous

research in an effort to find tools and methods already in existence but possibly

being used in other areas of research or industry. After finding some methods and

tools, I worked to create pathways to use them along with original code and new

pathways as needed. After looking at many of the processes within the Tanguay lab

at Oregon State University, I noticed a need to change the scope of work we can do

around RNA-Seq allowing the lab to increase the number of samples being done for

the same costs while maintaining statistical relevance. Another area I worked at

changing was the labs’ ability to increase accuracy and reduce labor around

managing zebrafish embryos. My work shown in this paper will focus on these two

areas of increasing throughput while maintaining or increasing accuracy. Many

research labs are challenged with being awarded grants from the hypercompetitive

environment we currently operate within. Due to this many groups are forced to

make every dollar provided go as far as possible while being able to show the

granting agency the meaningful outcomes that provide value. At the same time these

research labs are being asked to increase the scope and remove bias around their

data collection and statistical methods. These two processes are creating a pinch

point for labs trying to proceed forward without knowledge or resources to go

	

	

2	

around them. In many cases labs that traditionally have had continued funding seem

to be able to over shoot the needs of their data collection, while groups lean on

funding have to be creative and find workarounds like mining public data sets for

information. As we proceed forward this problem we continue to grow and we need

to start looking at the overall cost of data collection and generation before we

commit to the project. Right now, groups start down a pathway with no idea of the

amount of computer hard drive space that will be used, no idea if tools can do the

work they are asking, or what data will be collected over the life of the experiment.

Trying to address these issues after the project is funded and initiated is very

difficult. Users think of all the ways they can collect data from images, video and

technology; however, rarely do any use it for more other than the research question

being asked. As so data is at the heart of computational science and drives all costs,

can we use this data to help reduce overall cost of future experiments as well as our

labor while increasing the scope and removing bias?

Currently, we have many labs around the world using our established tools to

analyze gene expression across genomes using RNA Sequencing (RNA-Seq). This

method has become very popular and many studies have been done to show how

replicates play a role in the statistical analysis being (1, 2, 3). But very little has been

done to show how to calculate the minimum number of reads needed to accomplish

a specific analysis allowing the lab to put more runs through for less money. In this

paper, we will look at a method that can be used on different genomes to calculate

the reads needed in an RNA-Seq experiment to ensure statistical relevance. This

allows the lab to put more samples through for each experiment increasing scope. 	

2. RNA-Seq Analysis
RNA	sequencing	(RNA-Seq)	has	become	the	new	gold	standard	method	for	

	

	

3	

toxicogenomic	differential	gene	expression	(DGE)	analyses	in	a	variety	of	in	

vivo	and	in	vitro	models	(1).	The	process	uses	high-throughput	sequencing	

(HTS)	technology	to	generate	millions	of	reads	prepared	from	total	or	mRNA	

fractions	taken	from	biological	samples,	giving	a	global	transcript-level	

snapshot	of	expression	(by	way	of	abundance)	at	an	individual	point	in	time.	By	

leveraging	this	technology,	researchers	are	able	to	successfully	identify	

differences	between	treatment	conditions	or	time	points.	A	common	goal	of	

toxicogenomic	studies	is	to	identify	expression	changes	that	may	lead	to	

biological	effects	of	a	chemical	or	material	under	investigation,	and	to	

distinguish	between	multiple	exposure	groups	or	samples.	Researchers	need	to	

reliably	and	sensitively	identify	transcripts	that	are	DGE	across	the	

transcriptome,	and	process	millions	of	sequence	reads	with	an	array	of	

computational	and	statistical	tools	aimed	at	maximizing	the	signal	to	noise	ratio	

while	minimizing	the	number	of	false	positives	(9).	The	ability	to	detect	a	

reliable	signal	(true	positives)	depends	on	many	factors,	including	both	the	

number	of	reads	sequenced	per	sample	(sequencing	depth)	and	the	number	of	

biological	or	technical	replicates	sequenced	per	experimental	group.	Because	

some	experimental	systems	require	extensive	biological	replication	to	detect	a	

statistically	significant	signal,	cost	per	sample	remains	a	consideration	that	

causes	some	researchers	to	favor	other	technologies	over	RNA-seq.		

Multiplexing	option,	which	allows	each	lane	on	a	sequencer	to	run	multiple	

samples	at	one	time,	has	become	a	standard	practice	and	can	reduce	the	cost	of	

sequencing	per	sample	which	also	results	in	reducing	the	number	of	

sequencing	reads	per	sample	(3).	It	is	important,	however,	that	samples	are	

sequenced	with	sufficient	coverage	to	study	expression	of	transcripts	of	

interest.	Predicting	the	sequencing	depth	required	to	identify	differential	

expression	in	an	RNA-seq	experiment	is	a	challenging	but	critical	component	of	

the	study	design.	Historically	this	information	has	been	estimated	based	on	the	

number	of	transcripts	or	repetitiveness	of	the	genome,	precedence	in	the	

	

	

4	

literature,	or	a	researcher’s	past	experience.		Actual	sequencing	coverage	is	

affected	by	the	nucleotide	composition	of	the	euchromatin,	size	and	expression	

level	of	transcripts	and	sample	library	preparation	(4).	These	factors	impact	the	

statistical	analysis	and	add	to	the	difficulty	of	predicting	the	sequence	depth	

needed	for	the	best	expression	signal,	and	the	amount	of	replication	required	

for	sufficient	statistical	power.		

	
2.1. Optimization of RNA-seq Depth Required for Differential

Expression Analysis in Zebrafish (Danio rerio)

The zebrafish research community routinely uses RNA-seq data for analyzing gene

expression and assembly of transcriptomes to infer roles of genes, splicing, expression

(by way of abundance) and their regulation associated with development, growth and

responses to treatments. Often researchers use about 120x coverage or about 10-12

million cDNA reads per sample to analyze the transcriptomes. A transcriptome

experiment typically requires a minimum of three biological replicates for a control and

treatment/staged samples, however, due to costs or sample, preparation, sequencing,

storage and analysis, often researchers reduce the number of replicates that affects the

statistical analysis and confidence in the study. Determining the minimum number of

reads necessary to answer a question will maximize the number of replicates and samples

that can be processed. As a solution, if the number of sequence reads needed for each

sample is reduced, the use of toxicogenomic research using zebrafish could increase and

sufficient number of reads would be included by everyone. However, there is currently a

lack of consensus on read depth required for DGE analysis, with a range of values from

10 million to over 40 million suggested depending on sequencing technology, sequencing

errors and other factors (4). Studies have examined sequencing depth and replication for

DE analysis in other genomes, particularly mammalian models. Liu et al concluded that

over 10 million reads were required, and replication increased statistical power regardless

	

	

5	

of sequencing depth (4). In the study done by Soneson,	C.	and	M.	Delorenzi, however,

specifically uses the zebrafish genome and RNA collected from the whole zebrafish

larvae with the diversity of cell types in these samples. In a recently published study (5),

50 bp paired-end RNA-seq was used to identify transcriptional changes that lead to

developmental toxicity in zebrafish when treated with two structurally-related Polycyclic

Aromatc Hydrocarbons (PAHs) (5). The PAHs, Benzanthrone (BEZO) and

benz(a)anthracene-7,12-dione (7,12-B[a]AQ) induce developmental toxicity via distinct

mechanisms that depend on the aryl hydrocarbon receptor (AHR). Transcriptional

profiling identified clusters of transcripts, including redox-homeostasis genes that were

affected similarly by these two Oxygenated PAHs (OPAHs), as well as clusters that were

unique to each OPAH. We conducted a systematic re-analysis of the data and report the

minimum number of sequences needed per sample to identify a comparable list of DGE

transcripts and predicted biological pathways identified from the full dataset. Our

approach can be used to efficiently utilize the total sequencing space in current next-

generation sequencers when designing toxicogenomic experiments.

2.1.1. RNA-Seq Data Set Generation

This original work was done with paired end sequence data with length of 50 nucleotides

generated on an Illumina HiSeq 2000 sequencer. The original fastq experiment sequence

files contained between 35 million and 55 million reads each per sample before they were

trimmed and filtered based on Illumina quality scores. For the experiment I want to find

the minimum number of sequence reads needed to reproduce the DGE found in the

original study. This will allow investigating and developing a method to reduce costs,

increase the number of samples and replicates while answering the underlying research

question. Because I am looking to find ways to reduce costs or extend the analysis, I used

only read one (R1) from the original data set providing us with single end data of the

same length. From the R1 files generated subset datasets between one million and 22

	

	

6	

million total reads computationally through random sampling. There were three replicates

generated for each sampled dataset allowing the analysis to gauge the variation within the

sampling method. Unique datasets were built using the seqtk tool

(http://ged.msu.edu/angus/tutorials-2013/seqtk_tools.html; version 1.0-r72-dirty), which

takes advantage of reservoir sampling and does not allow a sequence to be sampled more

than one time from the original dataset. It is important to note that the seqtk algorithm

uses sampling without replacement, which is integral for this type of analysis. Initially

random processing used by other algorithms that sampled with replacement, and found

that this method led to false DGE signals due to unique sequences being sampled

multiple times. By ensuring that each unique sequence was only used once within each

subset no false signal was introduced that was not within the original data set. After each

dataset was generated, they were checked to ensure there were the correct number of

sequences and that all identification lines for each sequence were not repeated ensuring

we had a unique list. The plan was to limit the number of replicates to three for each test

dataset as this is generally the maximum number of replicates that are used and this

experiment is also focused on how to keep costs down.

2.1.2. Alignment of Sequence Data Set

An overview of the analysis pipeline is shown in Figure 1. In brief, each replicate for

every randomly pulled sequence data was aligned independently against the zebrafish

genome version 9.70 (56, 57) using Tophat 2.0.7 (7). This study will focus on genes

already defined within the zebrafish genome and not search for novel genes. We used the

same general feature format (GFF) file from the original experiment to ensure we have

the same transcripts used. The settings used in Tophat were the same as used with the

original experiment and any options associated to processing paired end data were

removed since we were working with only read one data file. This pipeline is well

established for gene expression analysis and has been used throughout the zebrafish

	

	

7	

research community. Aligned reads were counted using htseq-count and processed in R

through the differential expression tool, edgeR, which models the data as a negative

binomial (NB) distribution (8)(9). Transcripts with a log2 fold change ≥ 1.0 and FDR-

adjusted p-value ≤ 0.05 were identified as significantly DGE.

2.1.3. Statistical Analysis for Differential Expression

Principal Component Analysis (PCA) was conducted on both sequencing read data, and

the significant DGE gene counts for all the subset samples and the original dataset using

custom R scripts. For the sequencing data, we were interested in visualizing how

sequencing depth influences the separation of the subset samples with respect to the

original samples. This allows us to find the depth where the subset samples and the

original samples converge. For the DGE gene count data, the number of DGE genes

observed in each subset sample was used to determine the point where the greatest

overlap in significant DGE gene calls as the original data was found. This analysis will

not only show the scaling of the variables and bring out strong patterns within the

subsets, but demonstrates which variables have the most influence on the separation of

the subset samples. For example, if we have only two variables and they have the same

sample variance and are positively correlated, the PCA will have a rotation of 45° and the

loadings for the two variables with respect to the principal component will be equal (12).

Once we found a sequence depth that shows the proper groupings using the above

analyses, we looked at individual genes and their expression level to verify we have the

proper DGE response when compared to the original experiment.

2.2. Results of High Throughput Low Cost RNA-Seq Analysis

Each of the alignment output datasets for each subset was analyzed for the number of

	

	

8	

sequence reads that hit the genome as well as the number that hit each gene. The output

alignment files were also mined to determine the number of sequences that have one,

two, four or many hits to the genome. This allowed us to ensure we had similar

percentages of sequences in each container to the original experiment as we increased the

reads in each subset. After subset datasets were aligned to the zebrafish genome, PCA

plots were generated for all replicate subset datasets and compared to the original

datasets. The comparison with the PCA plot showed that as the number of sequences

sampled increased, we were able to recapture the main genes that were driving the

expression responses of the BaAQ and BEZO samples at the level of the mapped

sequencing read counts. The low read depth replicates PCA plots show all samples

separate based on the original experiment and the subset dataset. As we increase the read

depth, we can see the samples group together for both the original experiment and the

subset dataset. Around 20 million the sample grouping has the same layout as the original

experiment, indicative of these two datasets having essentially the same sequence read

distribution and expression response.

After statistical analysis of each subset replicate for each treatment using edgeR,

histograms were generated for each subset replicate dataset to the original dataset (Figure

3 and 4). These help to visualize how each data set compared to the original DGE gene

list. For each treatment, there is a clear trend that as we increase the number of randomly

pulled sequences from the original files, the histograms show an increase in the

intersection genes until around 20 million reads where it starts to level off. Figure 2

shows a small region within a standard genome browser where there is increased

expression for each subset dataset as we increase the read depth (11). As the read depth

approaches 20 million the expression plots become more similar to the top track that

displays the original data. This trend was consistent throughout the genome for most of

the genes sampled within this experiment.

We were then interested to see if we would observe a similar response after statistically

identifying the significant DGE genes. For each subset, we computed the significant DGE

	

	

9	

genes using edgeR and compared those genes with the significant genes observed in the

original dataset for each treatment. This allowed us to identify the DGE genes that were

unique to the original dataset (OGL), the genes unique to each subset (RUGL), as well as

the genes that intersected between both datasets (IGL) for each sampling subset. Using

these gene counts, we conducted a PCA analysis for each treatment in order to identify

the point where the sequencing depth of the subsets had the greatest overlap with the

DGE genes in the original dataset. Table 1 summarizes the proportion of the variance

captured and the loadings of the OGL, RUGL, and IGL variables for the first two

principal components. For both treatments, the first principal component captures 99% of

the variance, with the remaining variance explained in the second component. The

loading values show which variables contributed the most to each principal component

and, for both BEZO and 7,12-B[a]AQ, the OGL and IGL variables had the largest effect

for the first principal component, while the RUGL variable contributed most to the

second principal component. Comparing the PCA score plots to the loading plots allow a

direct visualization of the relationship between the variables and the samples; where the

location of the loading variable and the scores are highly correlated. The PCA score plots

for both treatment subset samples show three apparent clusters separated mainly by the

total sequencing reads that mirror the locations of the three loading variables. This is

indicative that the separation of the samples on the score plot is due to the contribution of

the variable loadings. For example, the low total sequencing read subset samples’ (one

and two million sequences) are separated from the higher total sequences subset samples

(20 and 22 million sequences) is driven by the number of unique significant genes from

the original dataset and the number of intersecting significant genes of the subsets,

respectively. Overall, these plots show that once the number of total sequences in each

subset reaches 15-22 million total reads, depending on the treatment, we have captured

most of the significant DGE genes observed in the original dataset; with 20 million reads

being the minimum depth that has the most consistent response compared to samples

with lower total sequencing reads.

Finally, we need to determine the individual expression for specific genes demonstrated

	

	

10	

to be DGE in the original experiment and how close the expression values were between

the different datasets. Table 2 shows the same table created in the original experiment

with the values from our 20 million replicate datasets included. Looking at the table we

can see that all but five entries found similar expression. Three of these found expression

at different levels of reads below the 20 million showing an artifact from the random pull

process that did have a small effect on the overall outcome. The other two entries did not

show expression and values from the original experiment were very low in comparison.

2.3. Discussion and Future Thoughts to Reduce Costs

Based on these results, only half of the reads used in the original experiment were needed

to observe the same gene expression response. This means twice as many samples could

have been analyzed for roughly the same cost. Reducing the number of total reads would

also speed up the analysis time and reduce file space needed to complete the experiment.

All of the factors reduce costs and bring this technology into a space that can be used by a

larger group of researchers. Because of our experimental design, we could not look at the

impact of increasing the number of biological replicates since the data files within the

original experiment limited us. Others have shown that an increasing biological

replication increases statistical power; however, increasing the number of biological

replicates for each sample will increase costs and there is no clear determination where

increasing the number of replicates stops providing an increase in statistical power (Liu et

al., 2014). Because of this, we suggest that doing this experiment using the standard three

biological replicates will provide a basis of what genes are found using different number

of reads per sample. Researchers can then increase the number of replicates after they

have established the minimum values for number of samples and read depth to answer the

question and stay on budget. This analysis did not look for novel genes within the

samples provided since these genes may be rare and require a greater depth of

sequencing. This type of analysis was not done in the original experiment and greater

depth to find rare genes would have changed the outcome of this analysis. Looking into

	

	

11	

the future, the new Illumina Hi-Seq 3000 (http://www.illumina.com/systems/hiseq-3000-

4000.html) provides a great opportunity to lower prices or change the number of

replicates and samples processed from increased number of reads for each lane. When

compared to it predecessor, the Hi-Seq 3000 will produce over double the throughput of

the previous sequencer. This increases the number of reads from 125k reads per lane to

over 300k reads per lane on average. This means if a research group is currently using a 6

plex setup on each lane of Hi-Seq 2000 they would be able to increase to a 14 plex setup

significantly changing the way this technology is used. Since this analysis was done using

single end sample data, paired end data can be used as well just with the increased costs

for paired end sample preparation and sequencing.

2.4. RNA-Seq Analysis Conclusions

The research aims to suggest a benchmark for sequencing depth when researchers are

planning toxicogenomic studies using the zebrafish, or similar non-mammalian, model.

By adopting such a benchmark, researchers would maximize the likelihood of

discovering important expression signatures, increase statistical power, and more

efficiently utilize the total sequencing read space afforded on each lane of a sequencer.

The increased read count when used in an expression analysis may simply increase the

costs of the experiment, data storage and other factors with no advantage to the analysis.

There may be a limit to this analysis in that very rare or low expression transcripts may

not show up as under expression using this method. Finally, this experiment was

conducted using RNA collected from whole zebrafish at 48hpf, thus numerous tissues

and cell types contributed the analyzed RNA. Since each genome has a different number

of genes, transcripts, isoforms, repeat regions and other features we recommend

replicating this process to find the minimum value of reads needed for the genome and

version of interest. Since the zebrafish genome has been well established at this point and

we saw little or no difference in results when using earlier versions of the genome from

the current version. This may not be the case with novel genomes that are not well

	

	

12	

sequenced and may contain more errors. This analysis aims to provide a method of

maximizing the information gained from and RNA-Seq experiment while minimizing

costs and resources. The impact on resources like processing time and data storage will

again limit the scope of work accomplished if we are working with data that was not

needed for an analysis. Sequencing depth has a direct effect on all of these resources

including labor and can change the way researchers use this technology.

3. Using Image Analysis to Reduce Labor and

Increase Accuracy

Researchers may want to identify and/or count the occurrences of an object within an

image, whether that object is an embryo, a cell of interest, or a seed. However, resources

currently available to researchers for such an undertaking are limited to: 1) estimating the

number of cells, which lacks accuracy; 2) counting them by hand, which is labor

intensive; or 3) using commercially available software tools that are typically overly

complicated and/or expensive. In this paper, we introduce a new software tool called

Spotter with a quick configuration time that can easily find round objects within images.

Our tool is both open source and runs on multiple operating systems.

3.1. Spotter: A Tool to Quantify Circular Objects in Images

Researchers are challenged daily with converting data collected by laboratory staff into

digital information that can be used in computers for meaningful processing. Oftentimes,

generally hands on human labor are used to convert the information and input it back into

the computer. Problems arise from the length of time to convert data to digital

information and maintaining the consistency of reading raw data to preventing the loss of

	

	

13	

the data’s overall accuracy. Converting data can be time consuming, costly, and

inaccurate, all of which affects data reliability.

One of the largest areas of required human input for laboratories is identifying and

counting of objects, such as cells. Counting cells, fluorescent objects, seeds, or any

polygon-shaped object is required prior to performing many types of experiments. The

process is time consuming, labor intensive and remains inaccurate. Numerous groups

have spent many days and hours working on configurating tools like ImageJ (12) to count

items, but with limited success. Other groups pay for commercial software that provides

an easy-to-use graphical interface that consumes time for configuration to help count

items found in pictures (13). These pathways are generally proprietary and costly to bring

online and are not easily changed without significant time spent to create a new

configuration.

This paper presents the ideation and development of a new open-source tool called

Spotter, that quickly analyzes images and counts objects. Since so many objects being

counted in labs have curved edges, it is important to have a tool that is versatile and can

focus on that feature, and one that can be used constructively to find and count data. The

program was designed with a limited set of parameters that can be easily adjusted to find

a configuration that works on the objects defined in an experiment. Since color or

patterning of the object being counted causes problems and much of the time the

configuring of other tools is meant to deal with these problems, our methods easily

overcome these limitations.

3.1.1. OpenCV’s Hough Circle Transform

OpenCV’s built-in Hough Circle Transform algorithm (15, 16) was used to detect mostly

circular objects within a given set of parameters applied to an image. All numerical

	

	

14	

parameters HoughCircle’s accepted, including minimum and maximum radius, minimum

distance between object centers, edge threshold, accumulator threshold, and resolution

ratio were included as adjustable dials to allow for maximum flexibility. The three

parameters that the users will most commonly adjust between runs are minimum and

maximum radius and the minimum distance. Minimum and maximum radius can be used

to narrow the size range of the circles being searched and minimum distance can then

help prevent the detection of false circles by excluding circles that overlap or are too

close together to be considered distinct. An example of the three parameters’ usefulness

is how they can be used together to ensure that the yolk and chorion of a given embryo

are only counted once. The other three parameters – edge threshold, accumulator

threshold, and resolution ratio – are more technical. Although in many cases they do

require altering to achieve an accurate count, they are often helpful with images less

clean or images with less consistent objects. The edge threshold parameter can be thought

of as how “picky” the algorithm will be about what constitutes an edge in the input

image, whereas the accumulator threshold represents pickiness about counting the shapes

as circles made by these edges (14). Lowering either of these parameters too much may

result in the detection of false circles, especially when background noise is present in the

image. The resolution ratio (or dp, as it is called in the OpenCV documentation) is a

representation of the ratio of input image resolution to the resolution of the accumulator

used by the algorithm (14). This parameter can be fine-tuned for better detection, but it

often does not need to be changed. HoughCircles often has difficulty picking out circles

from images with significant noise. For this reason, we included an option to first smooth

the image(s) by applying OpenCV’s GaussianBlur (14) method to the image prior to a

run through the circle detection algorithm.

Once a user has found a combination of parameter values that work well for their needs,

they are given the option to save those values in a configuration file. Any configuration

file can then be saved and re-loaded at a later time from the same screen to instantly

change any parameters specified in the file. Configuration file content can also be typed

using any text editor to create a file that specifies at least one parameter value with the

	

	

15	

correct formatting and saved as a “.conf” file type. At any time, the “Restore Defaults”

button can be selected to restore all parameters to their start default values.

3.1.2. Running the Program and Saving Results

The program window has three tabs: “Run,” “Edit,” and “Help.” Upon starting the app,

the Run (Figure 7) tab will open to show contains two buttons – “Count” and “Edges” –

as well as three checkboxes: “Save results,” “Display output image,” and “Save output

image.” The Edit tab (Figure 8) contains six sliders and six spin boxes used to adjust each

of the six parameters, a checkbox to control the smoothing option, and three buttons of

“Save Configuration,” “Load Configuration,” and “Restore Defaults.” The Help tab

contains information to help the user run the program and obtain accurate results.

Pressing the Count button on the app’s Run tab begins the process of selecting and

running images by opening a browse window. The program was designed so that any or

all images in a directory can be run at the same time by selecting multiple images when

browsing. This allows for the possibility of running large data sets without the need for

much human interaction. Checking the save results box, which is checked by default, will

cause the results to be saved in a CSV that is specific to the given directory of images.

The CSV is saved in a new output subdirectory located in the same directory as the

image(s) being counted in the form of a simple table: the first column holds the output

filenames, the second holds the corresponding count, and the third through fifth hold the

minimum, maximum, and average circle areas. The CSV will then be appended with

subsequent runs and identical runs will be automatically excluded. We also included

options to display and/or save the image with circles drawn on top for verification and

identification purposes. To do so, we simply loop through the output vector populated by

HoughCircles and draw each circle with the given radius and center coordinates onto the

original image. Saving the output image will add it to the same output subdirectory as the

	

	

16	

results CSV. Simply displaying the output image or the results without saving is useful

for fine-tuning the parameters, as it allows the user to see how well the program is

accurately detecting circles within the current parameters.

The second button on the main tab of the application, labeled “Edges,” allows the user to

see an intermediary step of the circle detection process, which may help the user to

understand why they are experiencing difficulties obtaining accurate counts for a given

image. It will display and/or save the image of edges the algorithm finds and used to

detect circles. The only parameter that will affect this button’s functionality is the edge

threshold, so using the Edges button can be quite useful for fine-tuning that parameter.

The Edit tab is where the user adjusts the parameters discussed above. Typing a precise

value, clicking the arrows on the spin box, or adjusting the corresponding slider can

adjust each parameter. Each parameter is limited to a specific range; the app

automatically validates that the minimum radius is not larger than the maximum radius.

Also on this tab are the buttons for saving and loading configuration files and the button

for restoring the default configuration. The restore defaults button adjusts all the sliders

and spin boxes to represent the default values and the save and load configuration buttons

each open a new browse window. The save configuration button allows the user to

choose the name and location of a new .conf file that will hold the current values of each

parameter. The default name for the config file will be six numbers, separated by

hyphens, each representing one of the parameters and in the order, they appear on the

user interface. But the user can name the files as they choose without affecting the ability

to load. The load configuration button allows the user to search their computer for

any .conf file. The program will then read the file and automatically adjust any

parameters specified in the file.

3.1.3. Experimental Procedure Testing Throughput

	

	

17	

Needing	a	pathway	to	verify	the	throughput	on	the	system	I	created	several	

methods	to	test	the	count	data.	We	needed	to	test	both	speed	of	the	counting	

process	as	well	as	the	accuracy	of	the	count.		

3.1.3.1. Counting Zebrafish Embryos
	

The	primary	focus	of	our	experiment	was	to	determine	the	speed	and	accuracy	of	

our	method	when	compared	with	hand	counting,	which	is	the	closest	method	to	our	

program	in	terms	of	a	learning	curve.	Our	test	used	each	of	the	three	different	

methods	on	three	different	dishes	of	varying	numbers	of	zebrafish	embryos.		

	 The	first	method	involved	counting	the	embryos	as	they	were	individually	

moved	into	their	respective	dishes	to	obtain	a	known	count	for	each	dish	to	

establish	an	accurate	base	count	to	compare	with	other	methods.	The	count	for	each	

dish	was	recorded,	but	the	other	methods	the	known	count	remained	unknown	to	

avoid	introducing	bias.	Next,	images	of	each	dish	were	taken	using	a	high-resolution	

scanner	for	use	with	the	other	counting	methods.	For	the	second	method,	the	

embryos	in	each	of	the	images	were	counted	by	hand.	Dots	were	placed	on	each	of	

the	objects	in	the	images	using	Adobe	Photoshop’s	count	tool	

(https://helpx.adobe.com/photoshop/using/counting-objects-image.html),	which	

automatically	increased	the	tally	when	a	new	dot	was	placed.	Both	time	and	count	

were	recorded	for	the	hand	counting	method.	Finally,	Spotter	was	used	to	count	the	

objects	in	each	image.	The	parameters	were	set	as	outlined	above	and	then	we	

simultaneously	ran	the	program	on	all	three	images.	Spotter	produced	the	results	

CSV	recording	the	count	for	each	image	and	the	time	was	measured	manually	using	

a	stopwatch.	The	configuration	time	was	measured	first,	and	then	the	total	time	was	

measured	using	the	lap	function	to	record	the	time	for	each	of	the	three	dishes.	The	

individual	times	were	prone	to	more	inaccuracy,	so	the	average	run	time	was	used	

for	most	of	the	analysis.	

	

	

18	

3.1.3.2. Counting Fluorescent Cells in Zebrafish Tails

In	addition	to	using	Spotter	to	count	embryos	in	a	dish,	we	tested	its	performance	

on	objects	much	less	consistently	circular:	fluorescent	dyed	cells	that	had	been	

injected	into	a	zebrafish.	Twelve	images	were	first	hand-counted	to	obtain	a	known	

value	to	compare	with	the	other	two	methods’	accuracy.	The	time	to	hand-count	

each	image	was	also	recorded.	The	images	were	then	each	run	through	ImageJ	using	

a	process	that	involved	adjusting	their	over/under	thresholds	manually,	processing	

and	analyzing,	and	then	counting	the	resulting	particles.	The	counts	and	times	were	

recorded	for	each	image.	Finally,	the	images	were	run	through	our	tool,	which	

involved	configuring	the	parameters	as	outlined	above	and	then	running	all	twelve	

images	at	the	same	time.	Total	time	for	configuration	and	counting	were	measured	

separately	and	Spotter	automatically	recorded	the	counts.	

	

	

3.1.3.3. Limits to Spotter Image Counting

We	ran	a	series	of	tests	to	determine	the	limits	of	Spotter’s	ability	to	detect	round	

objects.	First,	we	used	Microsoft	Paint	to	create	a	series	of	perfect	circles	with	

known	diameters	ranging	from	1-23	pixels	and	ran	Spotter	on	the	image	to	

determine	the	smallest	circle	that	Spotter	could	detect.	Spotter	detected	every	circle	

greater	than	6	pixels.	Looking	at	the	edge	output,	clearly	circles	of	6	pixels	diameter	

and	below	show	up	as	squares,	which	explains	why	Spotter	is	ultimately	unable	to	

detect	and	count	them.	Figure	9	through	14	show	the	original	image,	the	edge	

output,	and	the	final	count	output	for	many	different	types	of	tests.		

	

The	next	limit	we	tested	was	Spotter’s	ability	to	detect	objects	that	are	not	perfectly	

circular.	For	our	first	test	we	created	ellipses	of	a	given	width	and	heights	that	

	

	

19	

decreased	by	one	pixel	for	each	subsequent	ellipse.	Figure	12	shows	the	results	with	

ellipses	each	50	pixels	wide	and	Figure	13	shows	the	results	with	25-pixel	wide	

ellipses.	Figure	14	shows	another	test	that	demonstrates	Spotter’s	ability	to	

demonstrate	non-circular	objects.	

	

Lastly,	tests	were	run	to	determine	the	effects	of	internal	pattern	and	color	on	

Spotter’s	ability	to	detect	a	circle.	Figure	14	also	shows	a	test	where	sixteen	circles	

of	uniform	diameter	were	drawn,	each	with	different	patterning.	Spotter	failed	to	

pick	up	one	of	the	circles	with	the	default	accumulator	threshold,	but	by	lowering	

the	threshold,	it	detected	all	sixteen	objects.	Since	Spotter	works	by	detecting	

circles’	edges,	color	was	not	expected	to	affect	its	ability	to	detect	circles.	To	test	

this,	we	created	an	image	with	eight	circles	of	uniform	diameter	and	varying	color	as	

well	as	copies	of	those	eight	circles	at	50%	opacity.	Fig.	14	shows	that	in	the	first	run	

the	light-yellow	circle	was	not	detected,	but	by	reducing	the	edge	threshold	all	

circles	were	counted.	

3.1.4. Results of Spotter Image Analysis

3.1.4.1. Counting Embryos

The	results	of	counting	the	same	three	dishes	with	each	of	our	methods	are	shown	

in	Table	3.	There	is	a	clear	difference	in	the	amount	of	time	to	count	the	dishes	with	

each	method.	Our	program	took	464.16	seconds	to	configure	and	run	all	three	

images,	which	is	over	100	seconds	faster	than	hand-counting	any	one	dish	alone.	

With	hand	counting,	each	of	the	three	dishes	was	counted	to	within	1%	accuracy.	

Our	program,	meanwhile,	varied	from	0.51%	to	4.34%	from	the	actual	count.	Figure	

15	charts	the	counts	of	each	method	in	a	bar	graph.	Figure	16	shows	the	accuracy	of	

each	count	against	the	actual	count	to	illustrate	each	method’s	accuracy.	As	the	

actual	number	of	embryos	in	the	dishes	increased	by	about	two	hundred,	there	was	

	

	

20	

an	increase	in	the	time	to	count	them	by	hand.	When	using	Spotter,	however,	there	

was	no	such	increase	on	the	tested	scale	(Figure	17).	

	

After	running	a	two-way	ANOVA	test	on	the	total	time	to	count	each	dish	using	each	

method,	a	resulting	p-value	of	0.5	indicates	the	dish	being	counted	had	no	

significant	impact	on	the	time	to	count	it.	However,	with	a	p-value	of	0.027,	we	

found	a	statistically	significant	difference	in	the	throughput	of	counting	dishes	with	

Spotter	versus	hand	counting.	

	

A	two-way	ANOVA	was	also	run	on	each	method’s	accuracy,	measured	by	the	

percent	difference	from	the	actual	count,	for	each	dish	to	determine	if	either	the	

number	of	embryos	or	the	method	of	counting	had	any	impact	on	the	accuracy	of	

the	count.	With	p-values	of	0.53	and	0.33,	respectively,	we	found	no	indication	that	

either	the	number	of	embryos	or	the	counting	method	impacted	the	accuracy	of	the	

results.

3.1.4.2. Counting fluorescent cells

Tables	2-4	show	the	time	it	took	to	count	each	of	the	twelve	fluorescent	images	by	

hand,	Spotter,	and	ImageJ.	Since	Spotter	ran	all	the	images	at	the	same	time	and	

finished	too	quickly	to	time	each	individual	image’s	run	by	hand,	only	the	total	time	

to	configure	the	parameters	and	the	total	time	to	run	all	the	images	together	were	

recorded.	

	

Table	5	shows	the	counts	for	each	of	the	twelve	images	by	both	Spotter	and	ImageJ	

and	the	accuracy	of	each	of	those	counts.	Figure	15	shows	a	bar	graph	of	the	counts	

of	each	image	by	each	of	the	three	methods.	Figure	16	shows	the	effect	of	the	actual	

number	of	fluorescent	cells	in	an	image	on	the	accuracy	of	counts	from	Spotter	and	

ImageJ.	It	should	be	noted	that	two	of	the	images,	D3	and	H1,	had	a	great	deal	of	

	

	

21	

fluorescent	background	noise,	which	affected	Spotter	more	significantly	than	

ImageJ.	A	comparison	of	one	of	these	noisy	images	(image	D3)	and	one	of	the	others	

(image	B1)	is	shown	in	Figure	18.	

	

A	two-way	ANOVA	run	on	the	time	to	count	each	of	the	twelve	images	by	hand,	

Spotter,	and	ImageJ	indicated	a	significant	difference	in	throughput	between	the	

three	methods	(p	<	0.0001).	Further	comparison	with	only	Spotter	and	ImageJ	using	

a	two-way	ANOVA	also	indicated	a	significant	difference	between	the	two	methods	

(p	=	0.0001),	but	a	comparison	of	Spotter	and	hand-counting	throughput	showed	no	

significant	difference	(p	=	0.7164).

A	two-way	ANOVA	was	then	run	on	the	accuracy	of	Spotter’s	and	ImageJ’s	counts	for	

each	of	the	twelve	images,	measured	as	a	percent	difference	from	the	actual	count.	A	

p-value	of	0.1361	does	not	indicate	a	significant	difference	in	accuracy	between	the	

two	methods.	

3.1.5. Discussion and Future Thoughts to Reduce Costs

Among	the	three	methods	tested,	we	found	Spotter	to	be	the	most	robust	for	

accuracy,	throughput,	and	versatility.	Whether	counting	zebrafish	embryos	or	

fluorescent	cells,	no	significant	difference	was	found	in	Spotter’s	accuracy	when	

compared	with	hand-counting	and	ImageJ;	yet,	Spotter	was	found	to	be	significantly	

faster.	It	is	also	worth	noting	that	about	89.5%	of	the	time	to	count	the	embryo	

images	and	92.8%	of	the	time	to	count	the	fluorescence	images	using	Spotter	was	

spent	setting	up	the	configuration	parameters.	Due	to	how	little	Spotter’s	time	is	

spent	processing	the	images,	it	can	be	safely	assumed	that	the	program	would	

statistically	become	even	faster,	relative	to	the	other	methods,	with	more	images	

run	at	the	same	time	with	the	same	parameters.		

	

	

	

22	

Although	ImageJ	is	a	highly	versatile	tool,	it	is	also	complicated	and	learning	to	use	it	

can	be	a	daunting	task.	It	also	requires	users	to	create	a	new	protocol	whenever	

they	want	to	use	it	on	a	different	type	of	image	or	object.	By	comparison,	Spotter	

works	on	a	wide	variety	of	objects,	so	users	only	need	to	familiarize	themselves	

once	with	its	parameters	to	use	it	on	circular	shapes.	Spotter	is	easier	to	configure	

for	a	set	of	images.	The	ImageJ	protocol	used	required	that	each	image	be	configured	

and	counted	separately	because	each	image	was	run	with	slightly	different	

parameters,	which	raises	the	potential	of	bias	being	introduced	to	the	counts.	

	

As	shown	in	the	tests	run	on	the	fluorescence	images,	Spotter’s	tendency	is	to	detect	

more	false	objects	than	the	more	background	noise	within	an	image.	We	did	not	

encounter	this	problem	with	ImageJ	to	the	same	degree	likely	because	each	image	is	

run	individually,	so	each	result	is	subject	to	a	scan	by	the	human	eye	which	knows	

what	should	be	counted.	Spotter’s	accuracy	could	also	be	improved	in	these	cases	by	

manually	adjusting	the	accumulator	threshold	for	each	image.	However,	this	would	

increase	the	time	to	run	a	large	directory	of	images.	Also,	as	mentioned	previously,	

running	images	individually	would	increase	the	potential	for	the	introduction	of	

bias.	Given	our	statistical	finding	that	these	two	outliers	in	Spotter’s	accuracy	did	

not	significantly	impact	its	overall	accuracy	compared	with	that	of	ImageJ,	

researchers	must	make	their	own	judgements	on	a	case-by-case	basis	whether	they	

want	to	run	their	directories	all	at	once	or	one	image	at	a	time.	

	

We	have	provided	a	website	to	host	the	Spotter	download	and	information,	

currently	located	at	http://tanguaylab.com/software.	This	site	will	have	the	current	

version	as	well	as	any	change	logs	associated	to	updates.	Installation	of	Spotter	on	

Windows	uses	standard	Windows-based	installation	methods	where	the	user	can	

choose	the	installation	location	and	other	parameters.	Installation	on	Mac	uses	a	

dmg	file.	A	test	image	of	zebrafish	embryos	is	provided	in	the	installation	folder.	

	

	

	

23	

3.2. AVIANn: Automated identification of avian vocalizations

with deep convolutional neural networks

Passive acoustic monitoring (PAM) is an emerging alternative to traditional surveys for

wildlife monitoring. Modern autonomous recording units (ARUs) can record

continuously for days or weeks at a time, generating large amounts of audio data with

minimal collection effort. Any species that makes characteristic sounds may be a good

candidate for PAM, and this approach has been successfully applied in studies of insects

(29), amphibians (19), bats (46), cetaceans (39), elephants (55), primates (31), and

various avian species (27, 47, 54).

Researchers are typically interested in isolating a particular signal within the data, such as

the vocalizations of some target species. Locating and identifying these signals within a

large body of field recordings is a necessary first step in any analysis. Previous work has

explored various methods for automating the detection of target signals, including hidden

Markov models (50), template matching with dynamic time warping (21, 48), and

artificial neural networks (54). Here we demonstrate the use of a deep convolutional

neural network (CNN) for automating the detection of owl vocalizations in field

recordings from the Pacific Northwest (PNW) region of the United States (Figure 19).

We wanted to evaluate deep neural networks as a method of automating the detection of

owls, especially northern spotted owls Strix occidentalis caurina (hereafter “spotted

owl”) and barred owls Strix varia, in field recordings made for bioacoustic study. We had

previously searched recordings for owl calls semi-manually to detect signals of interest.

We felt that deep neural networks would scale up better to match the increasing pace of

our data collection and would eventually require less human supervision. We opted to use

a CNN operating on spectrogram images in part due to the successful use of this

approach for large-scale bird call classification in the BirdCLEF competition by Kahl et

	

	

24	

al. (2017).

CNNs have inspired great interest in recent years, spurred by the outstanding

performance of “AlexNet” (36) in the ImageNet Large Scale Visual Recognition

Challenge competition (http://www.image-net.org/challenges/LSVRC/). These networks

have undergone rapid development since then; they continue to define the state of the art

in computer vision and image classification tasks and have been widely adopted in

commercial settings for applications such as facial recognition and self-driving vehicles.

The suitability of CNNs for image classification is partly due to their structure,

conceptualized as a stack of layers in which the output (or activation) of each layer is

passed as input to the following layer. Activations in higher layers can represent

increasingly complex features of the original input (37), enabling the network to parse the

image as an arrangement of meaningful elements rather than a field of unrelated pixels.

Another appealing aspect of CNNs is that the visual features used to discriminate

between different image classes need not be explicitly programmed. Rather, the network

learns these features automatically from labeled examples through a supervised training

process. Thus, researchers can bypass a great deal of tedious and error-prone coding,

provided sufficient training data are available. The availability of large pre-labeled

training datasets has helped drive the refinement of such models, as have improvements

in the use of graphics processing unit (GPU) computing to accelerate training.

CNNs fit our purposes for several reasons. First, we have a large body of labeled training

data from a previous study in which audio data from ARUs was semi-manually searched

and annotated for target vocalizations (L. Duchac, unpublished data). Second, CNNs

process inputs efficiently and generate scores for all target classes simultaneously. Third,

CNNs can easily be modified to incorporate new target species, or additional training

data for an existing target species, as needed. Finally, accuracy increases with the

addition of further training data, allowing for continual improvements in network

performance.

	

	

25	

3.2.1. Target Species

For the present analysis we had six focal species: northern saw-whet owl Aegolius

acadicus (hereafter “saw-whet owl”), great horned owl Bubo virginianus, northern

pygmy-owl Glaucidium gnoma (“pygmy owl”), western screech-owl Megascops

kennicottii (“screech owl”), spotted owl, and barred owl. The spotted owl was listed in

1990 as threatened under the US Endangered Species Act (USFWS 1990), and

monitoring of populations as directed by the Northwest Forest Plan (USDA and USDI

1994) has revealed continuing population declines due to a wide range of environmental

stressors (26,38). Barred owl is the only focal species not native to the study area; this

species is native to eastern North America but has become established throughout the

PNW since the 1970s (41). The range expansion of the barred owl has brought it into

direct competition with spotted owls for territory and food resources (30). Being larger,

more aggressive, and more generalist in its prey and cover selection, the barred owl has

become a major contributor to the decline of the spotted owl (26, 38, 53).

The present study began as an attempt to determine whether PAM could effectively

supplement or replace traditional playback surveys for spotted owl monitoring and for

studying competitive interactions between spotted and barred owls. The non-Strix owls

were only tangentially related to this central question, but we felt that including them

would potentially yield new insights into the behavior of the PNW forest owl assemblage

as a whole. Furthermore, all our target species are nocturnally active and vocalize at low

frequencies, so we believed that including these additional species might improve our

model’s discriminative ability.

3.2.2. Methods for Processing Sound Data

	

	

26	

We drew training data from a set of audio recordings collected in 2017 from 3 historic

spotted owl study sites in Oregon (Coast Range and Klamath) and Washington (Olympic

Peninsula). Field sites were selected from a layer of 5 km2 hexagons. We selected 10

non-adjacent hexagons in each study area, preferring sites where nesting spotted owls

were reported the previous year, and we deployed 5 ARUs per hexagon. ARUs were

attached to small trees and were placed randomly on mid and upper slopes >200 m from

the hexagon edge, with a minimum distance of 500 m between units. These placement

rules were designed to randomly sample the hexagons, maximize detectability for each

species, avoid double-counting birds that might move between adjacent hexagons, and to

ensure that ARUs would not be exposed to excessive noise from roads or streams.

We recorded audio using Song Meter SM4 ARUs (Wildlife Acoustics). Each SM4 is

equipped with two omnidirectional microphones with a sensitivity of -33.5 dB ± 3 dB

and a signal-to-noise ratio of 80 dB at 1 kHz. ARUs recorded in stereo (one channel from

each microphone) at a sampling rate of 32 kHz. Audio data were stored as hour-long

WAV files. ARUs recorded from 1 hour before sunset to 2 hours after sunrise each night,

a period that varied from 11 to 15 hours over the course of the season. ARUs were

deployed beginning in mid-March and ending in late July 2017 and collected

approximately 150,000 hours of audio data.

Target species calls were located and annotated in the 2017 data using the Simple

Clustering feature of Kaleidoscope Pro software (Wildlife Acoustics). This software

detects sounds that meet user-defined criteria and uses a hidden Markov model to cluster

detected sounds by similarity. We searched for sounds 0.5 – 7.5 seconds in duration,

between 0 and 1200 Hz, with a maximum inter-syllable gap of 2 seconds. These

parameters were intended to maximize the detection of spotted owl calls but were

suitable for detecting other target species as well. We then reviewed the resulting

clusters, tagging calls from our target species. We constructed our training set from these

annotated sounds, selecting a single call type for each species.

	

	

27	

We chose call types that were highly stereotyped and diagnostic to each species,

preferring calls that were produced frequently. For barred owl we used 3,920 unique

examples of the two-phrase hoot as described by Odom and Mennill (2010). This call

typically consists of eight notes divided into two distinct phrases (Figure 20), ending with

a drawn-out, descending “hooahhh,” which is diagnostic for this species (Odom and

Mennill 2010). For spotted owl we used 3,801 unique examples of the four-note location

call as described by Forsman et al. (1984). This call consists of an initial note, a pause, a

pair of notes in quick succession, another pause, and a terminal note (Figure 20). In

practice the first note is often omitted; our training set included examples of both the

typical four-note version and the three-note variant.

For saw-whet owl, we used 3,338 unique examples of the advertising call (45), an

extended series of whistled notes given at a steady rate of 2-3 s-1 (Figure 20). For great

horned owl, we used 3,353 unique examples of the territorial hoot (20), a low-pitched call

consisting of 3-6 syllables (Figure 20). For pygmy owl, we used 3,337 unique examples

of the primary song (32), which is similar to the advertising call of the saw-whet owl but

slower, with intervals of 1-2 s between notes (Figure 8). For screech owl, we used 3,346

unique examples of the “bouncing ball” song and the closely related double trill call (23),

both consisting of a rapid series of very brief hoots (Figure 20). For the noise class, we

extracted 10,003 unique clips at random from the raw recordings, which we reviewed to

ensure that they contained no target species calls.

To better reflect the variation present in field recordings, we augmented our training data

by creating multiple spectrograms with slightly different parameters for each unique call

(Figure 20). We randomized the position of the call within the 12 s spectrogram window

by adding a random offset to the timestamp of the call itself. We created spectrograms

from both channels of the stereo recordings, since the channels differed slightly in the

volume of the call as well as the pattern of background noise. We varied the dynamic

range of the spectrograms, using a random value between -100 and -90 dBFS as the lower

end of the intensity scale; this affected the contrast in the resulting images, mimicking the

	

	

28	

effect of the call being louder or quieter relative to the background noise. For the noise

category we simply created one spectrogram at random from each raw audio file recorded

at several sites, covering the range of conditions encountered across the three study areas.

After generating the spectrograms, we reviewed them visually to ensure that each image

included visible call signatures of only the labeled class. Our final training data set

included spectrograms for all target species: saw-whet owl (n = 10,003), great horned owl

(n = 9,999), pygmy owl (n = 10,003), screech owl (n = 10,004), spotted owl (n = 22,373),

and barred owl (n = 22,204). Our training set consists of weakly labeled data – we label

each image with the correct class but provide no information about where in the image

the relevant features might occur.

3.2.3. Convolutional neural network model

To detect calls within our dataset we developed a CNN, which we implemented in

Python (Python Foundation) using the Keras API (25) with a TensorFlow backend (18).

Our CNN contained four convolutional layers followed by two fully connected layers.

The first and second convolutional layer each contained 32 3x3 pixel filters and the third

and fourth convolutional layer each contained 64 3x3 pixel filters. Each convolutional

layer used rectified linear unit (ReLU) activation and was followed by 2x2 max pooling

and 20% dropout. Output from the fourth convolutional layer was flattened and then

passed to a 64-unit fully connected layer with L2 regularization, ReLU activation and

50% dropout. The final layer was a 7-unit fully connected layer with softmax activation,

whose activation tensor comprised the class scores for each of our target classes. Softmax

activation is normalized so that the scores for a given image sum to 1; we interpret the

scores as the relative probability of the image belonging to each of our target classes.

Our CNN takes input in the form of 500- by 129-pixel grayscale spectrograms, each

representing 12 s of audio. We chose this interval as it cleanly divides an hour of audio

(the standard length of our field recordings), creates a tractable number of images given

	

	

29	

the volume of data we have to work with, and is long enough to fully contain any of the

owl calls. We trained our model for 100 epochs on a set of ca. 95,000 labeled images

with a 4:1 training-validation split. We trained the model using categorical cross-entropy

loss and saved the model only after epochs in which validation loss decreased to prevent

overfitting. We used the Adam optimization algorithm (34) with a learning rate of

0.0001.

3.2.3.1. Test Data Collected in 2018

We drew test data from recordings collected during a broad-scale survey effort in 2018

from 88 hexagons in the Olympic Peninsula and 120 hexagons in the Oregon Coast

Range (D. Lesmeister, unpublished data). In each study area we generated a pool of 5-

km2 hexagons that were >50% federal ownership and >50% forested, and randomly

selected hexagons for sampling. Placement of ARU stations within each hexagon

followed the same rules used in 2017, as described above. In 2018 the ARUs were

programmed to record from 1 h before sunset to 3 hours after sunset and from 2 hours

before sunrise to 2 hours after sunrise, for a total of 8 hours recording time in each 24

hour period. ARUs were deployed at each site for approximately 6 weeks between March

and August of 2018, and during this field season we collected ca. 350,000 hours of audio.

3.2.3.2. Data Processing of WAV files

To process the data we used Python to segment the raw audio files collected in 2018 into

12 s clips, then used the program SoX (version 14.4, http://sox.sourceforge.net/) to

generate spectrograms from the short clips. Spectrograms were generated from only one

channel of the audio, using a Hann window, at 500 by 129 pixel resolution, using a 6 kHz

sample rate, and intensity was represented in grayscale with a dynamic range of -90 to 0

	

	

30	

dBFS. The sample rate meant that the frequency range represented in the spectrograms

was truncated at approximately 3 kHz. All other parameters were left at default settings.

The spectrograms were then fed into the trained CNN, which predicted a set of scores for

each clip.

3.2.3.3. Model Performance and Validation

Our results are based on a subset of data from the 2018 season; these data consist of

predictions that were made by the CNN and subsequently verified by experienced human

technicians. These predictions covered approximately 4,976 h of recordings from 14

ARU stations in 3 hexagons in the Coast Range study area. We first performed a “naïve”

classification, in which we assigned each clip to the class with the highest score (pMax).

We validated all clips that were tagged as target species under the naïve classification

scheme (some with pMax as low as 0.190) as well as 1% of clips that were tagged as noise;

the subset of noise clips reviewed were randomly selected.

These segments were extracted from the original recordings as 12 s clips and reviewed

using Kaleidoscope Pro software, which allows users to attach species identification tags

to each clip using the GUANO metadata specification (https://guano-md.org/). Although

we assigned exactly one label to each clip based on CNN output, technicians could assign

multiple labels if the clip contained calls from multiple species. We considered a ‘hit’ to

be a positive match if the list of species detected in the clip by a human technician

included the label that was assigned based on the CNN output. It should be noted that

although the CNN made predictions visually based on the spectrogram alone, technicians

could both see the spectrogram and listen to the recording, and could identify species

based on either or a combination of both.

We compared the labels assigned by human technicians to those assigned based on the

class scores from the CNN output to generate figures for precision and recall, which

	

	

31	

measure Type I and Type II error, respectively. Precision is defined as the proportion of

true positives among apparent detections for each species (Figures 21 through 24). Recall

is defined as the proportion of real target vocalizations in the dataset that are detected and

correctly labeled by the classifier (Figures 25 and 26). Having calculated these figures for

the naïve classification, we began discarding segments whose maximum class score fell

below an increasingly high threshold value and recalculating the above figures to

quantify their response to increasing selectivity. In this way we were able to explore the

tradeoff involved in validating only a subset of model output, which greatly reduces the

need for human labor but will result in some vocalizations being overlooked.

We compared the CNN’s performance to our previous approach of using Kaleidoscope

Pro software to detect sounds meeting criteria for frequency range, duration, and inter-

syllable gap and cluster them by similarity and then scanning these clusters for owl

vocalizations. We also examined the effect of increasing selectivity of the resulting data

that would be used in a broader analysis in an occupancy-based framework (40). To this

end, we generated weekly single-species encounter histories for each of our target species

at the hexagon level, first based on naïve classification, and then successively filtering the

detections by maximum class score with an increasing degree of selectivity to see how

this would affect the encounter histories and, by extension, the likely conclusions about

site use by each species

3.2.4. Results of CNN for Audio/Sound Processing

The validated dataset included 164,210 12 s clips. Overall, technicians confirmed 71,963

clips as containing calls from one or more target species. These included clips containing

screech owl (n = 29,252), pygmy owl (n = 27,458), saw-whet owl (n = 12,342), barred

owl (n = 5,387), great horned owl (n = 1,643), and spotted owl (n = 94) calls. A total of

4,123 clips were tagged as containing multiple target species; 4,033 clips contained 2

	

	

32	

target species and 90 clips contained 3 target species. A total of 89 clips originally

labeled Noise were found to contain target species; these included screech owl (n = 62),

pygmy owl (n = 20), barred owl (n = 3), great horned owl (n = 3), and saw-whet owl (n =

2). Because these false negatives were discovered through a review of 1% of clips labeled

Noise, we multiplied each of these numbers by 100 and added the result to the

denominator when calculating recall for each species. Recall based on naïve classification

was highest for spotted owl (91.5%), followed by pygmy owl (91.4%), saw-whet owl

(90.4%), great horned owl (77.6%), screech owl (67.2%), and barred owl (63.1%).

Precision based on naïve classification was highest for saw-whet owl (77.1%), followed

by screech owl (72.6%), pygmy owl (57.1%), barred owl (25.7%), great horned owl

(6.5%), and spotted owl (0.4%).

When we discarded clips with maximum class score (pMax) < 0.75, recall diminished

somewhat, but was balanced by significantly greater precision. Considering only clips

with pMax ≥ 0.75, recall was highest for saw-whet owl (84.2%), followed by spotted owl

(84.0%), pygmy owl (84.0%), great horned owl (65.0%), screech owl (57.9%), and

barred owl (52.2%) (Fig. 13). At the same threshold, precision was highest for saw-whet

owl (89.5%), followed by screech owl (85.2%), pygmy-owl (68.3%), barred owl (48.4%),

great horned owl (11.2%), and spotted owl (0.9%) (Fig. 14).

Considering clips with pMax ≥ 0.9, recall was highest for saw-whet owl (78.8%), followed

by pygmy owl (76.3%), spotted owl (74.5%), great horned owl (52.7%), screech owl

(50.7%), and barred owl (45.0%). At the same threshold, precision was highest for saw-

whet owl (93.5%), followed by screech owl (87.2%), pygmy owl (74.3%), barred owl

(59.6%), great horned owl (15.5%), and spotted owl (1.2%).

As a somewhat extreme case, considering only clips with pMax ≥ 0.99, recall was highest

for saw-whet owl (66.7%), followed by spotted owl (61.7%), pygmy owl (58.2%),

screech owl (36.9%), barred owl (28.8%), and great horned owl (27.2%). At this

threshold, precision was highest for saw-whet owl (96.5%), followed by screech owl

	

	

33	

(89.2%), pygmy owl (84.2%), barred owl (73.4%), great horned owl (22.9%), and spotted

owl (2.3%). Precision and recall for all target species across the full range of threshold

values are given in Figs 2 and 3.

Compared to vocalizations detected by human technicians using Kaleidoscope for three

hexagons, the CNN detected and correctly tagged as many or more vocalizations from all

species: saw-whet owl (11,334 vs 1,147 with Kaleidoscope), great horned owl (1,506 vs

761), pygmy-owl (26,906 vs 13,830), screech owl (23,823 vs 11,798), spotted owl (86 vs

44), and barred owl (3,591 vs 2,940). The discrepancy for pygmy owl and saw-whet owl

is somewhat inflated because Kaleidoscope only reports sound’s that fall within the

user’s specified frequency range; pygmy owl and saw-whet owl often call at frequencies

higher than our upper limit of 1200 Hz, so many calls from these species are likely to be

missed using this method. The numbers for pygmy owl are further distorted because

pygmy owl at one site called at an unusually slow rate, with pauses of 3–4 s between

syllables; this caused each syllable to appear as a separate vocalization in the

Kaleidoscope output, inflating the number of calls reported for that site.

Great horned owls were detected at 2 hexagons and the other 5 target species were

detected at each of the 3 hexagons for which CNN output was fully validated. At the

level of the hexagons, naïve occupancy (≥1 detection at a hexagon) was consistently

unchanged after increasing the detection threshold from 0 to 0.99. Weekly encounter

histories did change somewhat with increasing detection threshold, which would decrease

detection probabilities in an occupancy analysis; with the change in threshold some

species were detected earlier or later in the season, but the overall patterns were

remarkably consistent (Table 7).

3.2.5. Discussion and Future Plans to Reduce Costs

Our results suggest that CNNs can be highly successful at classifying owl calls correctly

	

	

34	

when the species are present at a site and may identify more calls than other analytical

methods. This finding is encouraging given the desire of many researchers and

management agencies to use bioacoustic methods for broad-scale, long-term monitoring

of avian populations. In a review of the existing literature on automated birdsong

recognition, Priyadarshani et al. (2018) (44) found that while many researchers have

reported strong results for single species in short recordings, few have successfully

automated the recognition of multiple species in noisy, long-form field recordings. Work

on automatic recognizers with owls has been limited; Wood et al. (2019) obtained

precision of 40% and recall of 87% for California spotted owls considering calls

exceeding a template matching score of 0.75 using Raven Pro, while Shonfield et al.

(2018) (47) report precision of 1.7%, 72%, and 99% for barred owl, great horned owl,

and boreal owl respectively using template matching in Song Scope, although the latter

study did not assess recall at the level of individual detections. Our results, with recall

(true positive rate) ranging from 63.1 – 91.5% from only a single training of the CNN,

demonstrate the potential for high throughput data processing, but given the large

percentage of false positives (range 22.9 – 99.6%), further refinement of the CNN would

be required for us to be confident that the output accurately reflects the number of calls of

a given species. The rate of misclassification of irrelevant sounds as target vocalizations

will require that human input be used to validate the output, and subsequent trainings will

be necessary to improve performance of the CNN. However, the need for human labor

can be reduced by validating only the subset of apparent detections with classification

scores exceeding a predetermined threshold, which can greatly reduce the volume of false

positives while leaving the majority of real vocalizations available for verification, as

illustrated in Fig. 16.

Because our CNN is designed to recognize visual patterns occurring in spectrograms, it is

useful to consider the nature of spectrograms and the variation inherent in this type of

plot. To produce a spectrogram, we take a sound recording – a digital representation of

energy as a periodic function of time – and apply a discrete-time Fourier transform

(DFT), which decomposes the signal into its constituent frequencies, allowing us to plot

	

	

35	

energy as a function of both frequency and time. The output from the DFT is then plotted

visually with time on the x-axis and frequency on the y-axis with energy levels mapped

to a color scale. Trained human observers can recognize signals of interest from cursory

inspection of a spectrogram; here we demonstrated significant strides in developing a

neural network that can reliably accomplish the same task.

Compared to three-dimensional objects in a video or photograph, target signals in a

spectrogram have limited degrees of freedom; they do not diminish in size with distance

and only occur in a fixed orientation within a two-dimensional plane. However, there are

several forms of variation which the CNN should disregard while making predictions.

The intensity of the signal varies greatly, as animals produce sound at inconsistent

volume and at varying positions and orientations relative to the recorder; this effect is

compounded by variation in background noise levels. Intensity also varies within each

call as the vocalizing animal places more stress on some syllables or parts of syllables

than others; less intense parts of the call tend to fade out as the sound attenuates with

distance, changing the apparent shape of the signal. The signal may be compressed or

expanded slightly in time or frequency due to individual variation in sound production.

Finally, the signal may blur along the time axis due to echoes or obstacles between the

source and the recorder; this can obscure the separation between syllables, causing the

call to appear as a cloud or smear. Such a call might still be recognizable but will be more

challenging to identify. All of these forms of variation will be present in varying

combinations in field recordings. To make the CNN more reliable, the training set should

contain similar variation. This can be accomplished organically, by drawing training

examples from recordings made under varying conditions, but it can also be simulated

through data augmentation as described above.

Because our 12 s segments do not overlap, calls are occasionally split between two

segments. If this consistently hinders identification, such calls could be under-counted;

conversely, if the model can reliably identify partial calls, split calls might be double

counted. Neither scenario represents a major concern for us because we are less interested

	

	

36	

in producing an exact count of calls than in reliably detecting a species at a station over

several weeks of recordings, producing encounter histories to which we can fit models to

understand underlying drivers in patterns of site occupancy, detection probability, and co-

occurrence.

The presence of non-target species and other sounds can confound our ability to assess

model performance in a general way. Precision can vary dramatically due to the presence

of sounds similar to those made by a target species. These sounds, which the CNN may

classify as target species with high confidence, greatly increase the need for human

verification to avoid biasing model results. Hence, efforts to refine the model will be

more productive if, rather than treating the CNN’s classifications as simply correct or

incorrect, we instead identify persistent sources of error and work to counter these errors

in future trainings. For example, the presented iteration of our CNN regularly

misclassifies band-tailed pigeon Patagioenas fasciata calls as great horned owl, as both

calls are similar in frequency and “shape.” To mitigate these errors, we can expand the

training set to include examples of band-tailed pigeon calls, either in the catch-all

“Noise” class, or, if we have an adequate number of examples, as a new target class. A

CNN is by nature modular; adding a new target class is as simple as increasing the

number of nodes in the output layer and retraining the network with new training data.

The demonstrated effectiveness of this approach for monitoring multiple owls suggests

that it may be a good choice for long-term monitoring of a range of species at a large

scale. We expect to achieve further improvements as we increase the volume of training

data and number of target classes, experiment with alternative model architectures, and

fine-tune the training procedure

	

	

37	

4. Conclusions

Looking at how to change throughput to decrease labor time and costs associated to

different computational research questions. there are many opportunities available. There

may be pipelines or specific processing steps that may be unique to the research that may

require some testing to identify the sweet spot of data analysis to usable answers. For

example, the RNA-Seq analysis will need to be done for each genome and sequencing

technology so that the lower threshold of read counts can be determined and used to

reduce costs and analysis time. Tools for this type of analysis could be provided by the

groups making the technology to ensure end users get the most value out of lab

equipment that can be extremely cost.

Image and video has long eluded researchers of extracting usable data. The goals of

image analysis can be simple in terms of counting items or more complex by associating

object detection to find different classes of items. There are older tools like OpenCV as

well as new tools like Tensorflow that can be easily used to extract data from visual data.

Here I was able to show data can converted to image data like spectrograms for analysis

that can accurately identify different species in the forests.

This algorithm was recently purchased by a commercial group for use on chicken and

turkey farms to monitor food stocks. The monitoring of the chickens will reduce loss of

birds from sickness by monitoring the cough sounds and other respiratory problems.

Right now, if birds are not found quickly the disease spreads rapidly and kills a large

amount of a hen house. This shows the ease of using visual data processing in both

research and commercial settings creates value, reduces labor and increases throughput

(more birds live).

	

	

38	

5. Figures

Figure 1. Processing Pipeline including the main processing pipeline using edgeR and
the secondary processing pipeline of Cuffdiff.

	

	

39	

Figure 2. GBrowse image of average read counts for each subset.

	

	

40	

Figure 3. Histogram plot for the original data set, each subset processing and the intersection with edgeR
algorithm for samples of DMSO versus BaAQ3.

	

	

41	

Figure 4. Histogram plot for the original data set, each subset processing and the intersection
with edgeR algorithm for samples of DMSO versus BEZO.

	

	

42	

Figure 5. Histogram plot for the original data set, each subset processing and the intersection with
edgeR algorithm for samples of DMSO versus BEZO.

	

	

43	

Figure 6. Histogram plot for the original data set, each subset processing and the intersection
with edgeR algorithm for samples of DMSO versus BEZO.

	

	

44	

Figure 7. Run tab. Spotter’s starting page, from which the user can count objects in an
image or analyze its edges, as well as decide what they want to do with the numerical
results and the output image.

Figure 8. Edit tab. Tab from which the user can adjust, save, and load
configuration parameters.

Figure 9. Diameter test. Twenty-three perfect circles were made to test the minimum
pixel diameter that could be detected by Spotter. The three images, from left to right are
the original image, the detected edges, and the detected circles.

	

	

45	

Figure 10. Large ellipse test. Twenty-five ellipses with widths of 50 pixels were made,
with heights ranging from 50 pixels down to 26 pixels. The highest height/width ratio
Spotter detected was 50/27, or about 1.85.

Figure 11. Small ellipse test. Sixteen ellipses with widths of 25 pixels were made, with
height ranging from 25 pixels down to 10 pixels. The highest height/width ratio Spotter
detected was 25/16, or about 1.56.

Figure 12. Shape test. Three images of Spotter’s output from an image filled with
various shapes. Parameters between each of the runs were identical except for
accumulator threshold. The accumulator thresholds used from left to right were 50, 20,
and 13. This shows that Spotter can detect non-circular objects, but it is up to the user
how much imperfection should be allowed.

	

	

46	

Figure 13. Pattern test. Two runs of Spotter on a set of circles with various fill patterns.
The left set was run with an accumulator threshold of 50 and missed one circle. By
lowering the accumulator threshold to 25 for the second run, all circles were counted.

Figure 14. Color test. Two runs of Spotter on a set of circles with various fill colors and
opacities of either 100% or 50%. The first run (top-left) missed the light yellow circle.
Running Spotter’s edges function showed that the inability to detect the circle’s edge
(top-right) as the cause. Once the edge threshold was lowered from 200 to 135 Spotter
detected all circles’ edges (bottom-right) and counted all sixteen circles (bottom-left).

	

	

47	

Figure 15. Counts of embryo dishes by each method. Number of embryos found using
each method, on each of the three dishes.

Figure 16. Actual count vs. accuracy for embryo dishes. Actual number of embryos in
each image compared against the percent distance achieved by counting by hand and
using Spotter.

	

	

48	

Fig 17. Actual count vs. time to count for embryo dishes. Comparison of the time
taken to count as a function of the number of embryos in the dish by the hand-counting
method and the Spotter method. Spotter times are listed as the average of the
configuration time (138.50 seconds) plus the individual time for the program to run each
image.

Figure 18. Comparison of images with and without significant background
fluorescence. Shown on the left is image 4, which contains very little background noise,
and shown on the right is image 8, which contains a great deal of background
fluorescence, which caused Spotter to detect many false positives.

	

	

49	

Figure 19. Example survey hexagon from the Olympic Peninsula study area,
Washington,USA. Each 5 km 2 hexagon (purple polygon) contains five survey stations
(red dots) randomly placed within the hexagon, avoidingareas with low topographic
position (e.g. valley bottoms), with ≥200 m between each station and the hexagon edge,
≥50 m between the station and any road or trail, and ≥500 m between any two points.
Elevation of topographic contours is given in feet above sea level. This hexagon is shown
for illustrative purposes and was not analyzed for the present study.

	

	

50	

Figure 20. Example spectrograms of each target species call. A = Barred owl, B = Great
horned owl, C = Northern pygmy-owl, D = Northern saw-whet owl, E = Spotted owl, F =
Western screech-owl. Spectrograms plot the energy present across a range of
combinations of time (on the x-axis) and frequency (on the y-axis), with lighter colors
representing higher levels of energy. The lowest level of each call is the base frequency,
which carries the most energy. Images A, B, E, and F include visible overtones,
indicating that these calls have a high signal-to-noise ratio. Each spectrogram is 500 9
129 resolution and represents 12 s of audio in the frequency range 0–3 kHz

	

	

51	

Figure 21. Recall vs threshold for six owl species. Recall is calculated as [True
Positives]/[True Positives + False Negatives], considering only clips with pMax ≥
Threshold, where pMax is the maximum class score predicted by the convolutional neural
network. Recall represents the proportion of target species calls present in the dataset that
were detected and correctly labeled by the convolutional neural network.

Figure 22. Precision vs threshold for six owl species. Precision or True Positive Rate is
calculated as [True Positives]/[True Positives + False Positives], considering only clips
with pMax ≥ Threshold, where pMax is the maximum class score predicted by the
convolutional neural network. Precision represents the proportion of apparent detections
that correspond to real target species calls.

	

	

52	

Figure 23. F1 score vs threshold for six owl species. F1 score is interpreted as a balanced
measure of overall classifier performance combining precision and recall. The F1 score
can be weighted to emphasize either precision or recall; we have plotted the unweighted
version, calculated as 2*[Precision * Recall]/[Precision + Recall], considering only clips
with pMax ≥ threshold, where pMax is the maximum class score predicted by the
convolutional neural network. The highest point on each curve represents the threshold at
which the model gives the best overall performance for each species if we consider
precision and recall to be equally important.

	

	

53	

Figure 23. Proportion of apparent detections remaining at various thresholds. This figure
illustrates the effect of thresholding on the number of apparent detections for each
species, including both real detections and false positives, considering only clips with
pMax ≥ threshold, where pMax is the maximum class score predicted by the convolutional
neural network. A value of 1.00 on the y-axis is the original number of apparent
detections of each type generated for each species by assigning each clip to the class with
the highest-class score. False positives are thinned quickly by thresholding, while the
majority of real detections remain even at thresholds of 90% or more.

	

	

54	

Figure 25. Receiver operating characteristic (ROC) curves for convolutional neural
network classification of six owl species. The ROC curve plots the recall (AKA true
positive rate) against the false positive rate. Recall is calculated as [True Positives]/[True
Positives + False Negatives]. False positive rate is calculated as [False Positives]/[False
Positives + True Negatives]. The area under the ROC curve (AUC) corresponds to the
probability that the classifier will assign a higher score to a randomly chosen true positive
than to a randomly chosen true negative. AUC values by species were: Barred owl,
0.872; Great horned owl, 0.934; Northern pygmy-owl, 0.967; Northern saw-whet owl,
0.959; Spotted owl, 0.961; Western screech-owl = 0.922. ROC curves were generated
using the PRROC package in R, which interpolates values across the full range of
threshold values.

	

	

55	

Figure 26. Precision-recall curves for convolutional neural network classification of six
owl species. The precision-recall curve illustrates the tradeoff between sensitivity (recall)
and specificity (precision). Area under the curve (AUC) serves as a general measure of
model performance; a classifier with perfect precision and perfect recall would have AUC
= 1. AUC values by species were: Barred owl, 0.473; Great horned owl, 0.166; Northern
pygmy-owl, 0.847; Northern saw-whet owl, 0.908; Spotted owl, 0.043; Western screech-
owl, 0.807. Precision-recall curves were generated using the PRROC package in R,
which interpolates values across the full range of threshold values.

	

	

56	

6. Tables

Unique
Reads PC1 PC2 PC3 OGL1 RUGL1 IGL1 OGL2 RUGL2 IGL2
1000000 0.91250 0.98908 1.00000 0.58740 0.55428 0.58969 -0.41542 0.83183 -0.36807
2000000 0.88440 0.97860 1.00000 0.59366 0.55058 0.58688 -0.32693 0.83142 -0.44929
4000000 0.90590 0.98850 1.00000 0.57242 0.55982 0.59911 -0.63611 0.76423 -0.10634
5000000 0.94260 0.97752 1.00000 0.57926 0.57339 0.57938 -0.41213 0.81925 -0.39873
8000000 0.91560 0.98551 1.00000 0.58006 0.55983 0.59171 -0.53144 0.81060 -0.24596

10000000 0.97900 0.99200 1.00000 -0.57632 -0.57879 -0.57694 -0.75111 0.09699 0.65301
12000000 0.96260 0.99613 1.00000 0.57438 0.58608 0.57149 -0.66622 -0.07096 0.74237
15000000 0.88820 0.97950 1.00000 0.56101 0.57026 0.60006 -0.74919 0.65809 0.07503
18000000 0.98020 0.99775 1.00000 0.57600 0.58176 0.57427 0.65767 0.08742 -0.74822

20000000 0.95310 0.99385 1.00000 0.58302 0.58257 0.56631 -0.39146 -0.40936 0.82412

Table 1. PCA analysis of average counts for BaAQ, BEZO, RM7W and PHEQ
datasets. In this table PC1, PC2, PC3 are the cumulative proportion of the first
three principle components. The rotations or loadings of the first and second
principle components are shown for the Original Gene List (OGL), Replicate
Unique Gene List (RUGL) and Intersection Gene List.

 BEZO 7,12-B[a]AQ

Gene RNA-seq Subset (20M) QPCR RNA-seq Subset (20M) QPCR
cyp1a 1.83 † 1.84 1.61 ± 0.15* 7.85 † 7.85 7.24 ± 0.09*

ctsl.1 1.59 † 1.54 1.63 ± 0.16* 2.49 † 2.54 2.32 ± 0.23*
sult6b1 0.88 † 1.05 at 5M 0.87 ± 0.33* 2.02 † 2.08 2.42 ± 0.26*

cxcr4a 1.22 † 1.28 0.83 ± 0.22* 0.90 † 1.06 at 8M 0.74 ± 0.09*
ctgfb -0.13 Nothing -0.02 ± 0.06 0.80 † 1.20 at 8M 1.25 ± 0.07*

s100z 0.34 Nothing 0.91 ± 0.08* 1.95 † 2.02 2 ± 0.12*

Table 2. Counts of specific genes used in the original publication with values
from this analysis added for the 20 million read count dataset. There are three
values that were found at lower read count values and two entries that had no
expression within any of the randomly pulled datasets.

	

	

57	

Hand Counting

Dish 1
(Actual=575)

Dish 2
(Actual=780)

Dish 3
(Actual=1000)

Total
(Actual=2355)

Time (s) 568.32 680.17 887.53 2136.02

Count 577.00 782.00 1009.00 2368.00

% actual 100.35 100.26 100.90 100.55
Distance from actual (%) 0.35 0.26 0.90 1.50

Spotter Counting

Dish 1
(Actual=575)

Dish 2
(Actual=780)

Dish 3
(Actual=1000)

Total
(Actual=2355)

Configuration time (s) 415.51

Run time (s) 16.22 (avg) 16.22 (avg) 16.22 (avg) 48.65

Total time (s) 154.72 (avg) 154.72 (avg) 154.72 (avg) 464.16

Count 600.00 784.00 987.00 2371.00

% actual 104.35 100.51 98.70 100.68
Distance from actual (%) 4.35 0.51 1.30 6.16

Table 3. Times and counts for each method of counting embryos. Results for the
timed counts of each method, as well as each method’s accuracy, compared to the actual
count for each dish.

	

	

58	

 Hand Count ImageJ Count Spotter Count
File name Total Time (s) Total Time (s) Configuration Time (s) Run Time (s) Total Time (s)

Image 1 24.27 46.73 -- -- --

Image 2 20.41 35.35 -- -- --

Image 3 15.98 32.05 -- -- --

Image 4 13.91 35.54 -- -- --

Image 5 14.28 29.17 -- -- --

Image 6 5.18 27.66 -- -- --

Image 7 5.18 25.43 -- -- --

Image 8 29.68 29.39 -- -- --

Image 9 7.88 59.02 -- -- --

Image 10 5.28 22.85 -- -- --

Image 11 6.8 24.98 -- -- --

Image 12 19.7 25.20 -- -- --

Total 168.55 393.37 166.23 12.98 179.21
Average 14.05 32.78 13.85 1.08 14.93

Table 4. Count times for each of the three methods. Total time to count each of the
twelve fluorescence images using the hand, ImageJ, and Spotter methods. Since the
Spotter method involves configuring and running all images simultaneously, only the
total configuration and run times were recorded.

 File name Count Actual % actual Distance from actual (%)

Spotter

Image 1 10 14 71.43 28.57

Image 2 15 19 78.95 21.05

Image 3 7 23 30.43 69.57

Image 4 15 14 107.14 7.14

	

	

59	

Image 5 15 24 62.50 37.50

Image 6 6 4 150.00 50.00

Image 7 3 8 37.50 62.50

Image 8 258 19 1357.89 1257.89

Image 9 1 11 9.09 90.91

Image 10 1 6 16.67 83.33

Image 11 2 9 22.22 77.78

Image 12 164 14 1171.43 1071.43

ImageJ

Image 1 7 14 50.00 50.00

Image 2 8 19 42.11 57.89

Image 3 14 23 60.87 39.13

Image 4 14 14 100.00 0.00

Image 5 18 24 75.00 25.00

Image 6 3 4 75.00 25.00

Image 7 6 8 75.00 25.00

Image 8 51 19 268.42 168.42

Image 9 6 11 54.55 45.45

Image 10 2 6 33.33 66.67

Image 11 5 9 55.56 44.44

Image 12 30 14 214.29 114.29

Table 5. Spotter and ImageJ counts and accuracy. Count data for each of the twelve
images, using Spotter and ImageJ methods, and accuracy of each count compared to the
known counts found by hand.

	

	

60	

Table 6. Precision, recall, and F1 score for six owl species at select
threshold levels. Performance metrics for the convolutional neural network are
given for a naïve classification (no threshold), in which each clip was assigned
the label corresponding to the highest predicted class score (pMax), and for
increasingly selective classification, in which we consider only clips for which pMax
equals or exceeds some threshold. Precision is the proportion of apparent ‘hits’
that represent real detections for a given species and is calculated as [True
Positives]/[True Positives + False Positives]. Recall is the proportion of real calls
present in the dataset that are detected and correctly identified by a recognizer
and is calculated as [True Positives]/[True Positives + False Negatives]. F1 score
is a measure of overall model performance, calculated as 2 * [Precision *
Recall]/[Precision + Recall].

	

	

61	

Table 7. Weekly encounter histories for six owl species with varying
selectivity. We generated weekly encounter histories for six owl species at three
study hexagons (each containing five survey stations), first based on naive
classification (considering all real detections that were correctly tagged for a
given species), then considering only real detections that were correctly tagged
with pMax greater than or equal to some threshold, where pMax is the maximum
class score predicted by the CNN. Each encounter history indicates whether the
species was detected (1) or not detected (0) at the site in each of eight
consecutive weeks of recording. Bolded entries represent a change from the
hexagon-level encounter history for a given species at the previous threshold
level. Great horned owls were never detected at Hexagon B.

	

	

62	

Bibliography

1. Creighton, C.J., J.G. Reid, and P.H. Gunaratne, Expression profiling of microRNAs by deep
sequencing. Brief Bioinform, 2009. 10(5): p. 490-7.

2. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat
Methods, 2008. 5(7): p. 621-8.

3. Alon, S., et al., Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Res.
21(9): p. 1506-11.

4. Soneson, C. and M. Delorenzi, A comparison of methods for differential expression analysis of
RNA-seq data. BMC Bioinformatics. 14: p. 91.

5. Goodale, B.C., et al., Ligand-Specific Transcriptional Mechanisms Underlie Aryl Hydrocarbon
Receptor-Mediated Developmental Toxicity of Oxygenated PAHs. Toxicol Sci. 147(2): p. 397-411.

6. Vitter, J.S., Random sampling with a reservoir. ACM Transactions on Mathematical Software
1985. 11(1): p. 37-57.

7. Trapnell, C., L. Pachter, and S.L. Salzberg, TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics, 2009. 25(9): p. 1105-11.

8. Anders, S., P.T. Pyl, and W. Huber, HTSeq--a Python framework to work with high-throughput
sequencing data. Bioinformatics. 31(2): p. 166-9.

9. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics. 26(1): p. 139-40.

10. Jolliffe, I.T., Principal component analysis. 2nd ed. Springer series in statistics. 2002, New York:
Springer. xxix, 487 p.

11. Donlin, M.J., Using the Generic Genome Browser (GBrowse). Curr Protoc Bioinformatics, 2007.
Chapter 9: p. Unit 9 9.

12. Xu, H., Caramanis, C., and Mannor, S. (2010a). Principal component analysis withcontaminated
data: The high dimensional case. In the 23rd Conference on LearningTheory(pp. 490–502).

13. Schneider CA, Rasband WS, Eliceiri KW. 2012. Nih image to imagej: 25 years of image analysis.
Nat Meth 9:671-675.

14. Harmony High Content Imaging and Analysis Software [Internet]. PerkinElmer; c1998-2017
[cited 2017, Aug 14]. Available from: http://www.perkinelmer.com/product/harmony-4-6-office-
hh17000001

15. OpenCV Feature Detection [Internet]. OpenCV Dev Team; c2011-2014 [cited 2017, Aug 14].
Available from: http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html

16. J. Illingworth and J. Kittler, “The Adaptive Hough Transform,” PAMI-9 , Issue: 5, 1987, pp 690-
698.

17. Bradski G, Kaehler, A. 1st ed. Learning OpenCV. Loukides M, editor. Sebastopol (CA): O’Reilly
Media Inc.; 2008. 556 p.

18. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al. 2015. Tensorflow: large-
scale machine learning on heterogeneous systems. [Online] URL: https://www.tensorflow.org/

19. Alonso, J. B., J. Cabrera, R. Shyamnani, C. M. Travieso, F. Bolanos, A. Garcıa, et al. 2017.
Automatic anuran identification using noise removal and audio activity detection. Expert Syst.
Appl. 72,83–92.

	

	

63	

20. Artuso, C., C. S. Houston, D. G. Smith, and C. Rohner. 2013. Great Horned Owl (Bubo
virginianus), version 2.0. in A. F. Poole, ed. The Birds of North America. Cornell Lab of
Ornithology, Ithaca, NY, USA. [Online] https://doi.org/10. 2173/bna.372

21. Brown, J. C., and P. J. O. Miller. 2007. Automatic classification of killer whale vocalizations
using dynamic time warping. J. Acoust. Soc. Am. 122, 1201–1207.

22. Campos-Cerqueira, M., and T. M. Aide. 2016. Improving distribution data of threatened species
by combining acoustic monitoring and occupancy modeling. Methods Ecol. Evol. 7, 1340–1348.

23. Cannings, R. J., T. Angell, P. Pyle, and M. A. Patten. 2017. Western Screech-Owl (Megascops
kennicottii), version 3.0. in P. G. Rodewald, ed. The Birds of North America. Cornell Lab of
Ornithology, Ithaca, NY, USA. [Online] https://doi.org/10.2173/bna.wesowl1.03

24. Chambert, T., J. H. Waddle, D. A. W. Miller, S. C. Walls, and J. D. Nichols. 2018. A new
framework for analysing automated acoustic species detection data: occupancy estimation and
optimization of recordings post-processing. Methods Ecol. Evol. 9, 560–570.

25. Chollet, F. 2015. Keras. [Online] https://keras.io

26. Dugger, K. M., E. D. Forsman, A. B. Franklin, R. J. Davis, G. C. White, C. J. Schwarz, et al.
2016. The effects of habitat, climate, and Barred Owls on long-term demography of Northern
Spotted Owls. Condor 118,57–117.

27. Figueira, L., J. L. Tella, U. M. Camargo, and G. Ferraz. 2015. Autonomous sound monitoring
shows higher use of Amazon old growth than secondary forest by parrots. Biol. Cons. 184,27–35.

28. Forsman, E. D., E. C. Meslow, and H. M. Wight. 1984. Distribution and Biology of the Spotted
Owl in Oregon. Wildlife Monographs 87,3–64.

29. Ganchev, T., and I. Potamitis. 2007. Automatic acoustic identification of singing insects.
Bioacoustics 16, 281–328.

30. Gutierrez, R. J., M. Cody, and S. Courtney. 2007. The invasion of barred owls and its potential
effect on the spotted owl: a conservation conundrum. Biol. Invasions 9, 181–196.

31. Heinicke, S., A. K. Kalan, O. J. J. Wagner, R. Mundry, H. Lukashevich, and H. S. Kuhl. 2015.
Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods
Ecol. Evol. 6, 753–763.

32. Holt, D. W., and J. L. Petersen. 2000. Northern Pygmy-Owl (Glaucidium gnoma), version 2.0. in
A. F. Poole, F. B. Gill, eds. The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY,
USA. [Online] https://doi.org/10.2173/bna.494

33. Kahl, S., T. Wilhelm-Stein, H. Hussein, H. Klinck, D. Kowerko, M. Ritter, et al. 2017. Large-
scale bird sound classification using convolutional neural networks. BirdCLEF 2017.

34. Kingma, D. P., and J. L. Ba. 2015. Adam: A method for stochastic optimization. International
Conference on Learning Representation 2015, San Diego, California.

35. Knight, E. C., K. C. Hannah, G. J. Foley, C. D. Scott, R. M. Brigham, and E. Bayne. 2017.
Recommendations for acoustic recognizer performance assessment with application to five
common automated signal recognition programs. Avian Conservation and Ecology 12, 14.

36. Krizhevsky, A., I. Sutskever, and G. Hinton. 2012. ImageNet Classification with Deep
Convolutional Neural Networks. NIPS 2010: Neural Information Processing Systems. Lake
Tahoe, Nevada.

37. LeCun, Y. 2015. Deep Learning. Nature 521, 436–444.

38. Lesmeister, D. B., R. J. Davis, P. H. Singleton, and J. D. Wiens. 2018. Northern spotted owl
habitat and populations: status and threats. Pp. 245–298 in T. A. Spies, P. A. Stine, R.

	

	

64	

Gravenmier, J. W. Long, and M. J. Reilly, eds. Synthesis of Science to Inform Land Management
within the Northwest Forest Plan Area. PNW-GTR-966. USDA Forest Service, Pacific Northwest
Research Station, Portland, OR.

39. Luo, W., W. Yang, and Y. Zhang. 2019. Convolutional neural network for detecting odontocete
echolocation clicks. J. Acoust. Soc. Am. 145,7–12.

40. MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2018.
Occupancy Estimation and Modeling: inferring Patterns and Dynamics of Species Occurrence,
2nd ed. Academic Press, Cambridge, MA

41. Mazur, K. M., andP. C. James. 2000. Barred Owl (Strix varia), version 2.0. in A. F. Poole, F. B.
Gill, eds. The Birds of North America. Cornell Lab of Ornithology, Ithaca, NY, USA. [Online]
https://doi.org/10.2173/bna.508

42. Nvidia. 2019. NVIDIA DRIVE – Autonomous Vehicle Development Platforms. [Online]
https://developer.nvidia.com/drive

43. Odom, K. J., and D. J. Mennill. 2010. A quantitative description of the vocalizations and vocal
activity of the barred owl. Condor 112, 549–560.

44. Priyadarshani, N., S. Marsland, and I. Castro. 2018. Automated birdsong recognition in complex
acoustic environments: a review. J. Avian Biol. https://doi.org/10.1111/jav.01447

45. Rasmussen, J. L., S. G. Sealy, and R. J. Cannings. 2008. Northern Saw-whet Owl (Aegolius
acadicus), version 2.0. in A. F. Poole, F. B. Gill, eds. The Birds of North America. Cornell Lab of
Ornithology, Ithaca, NY, USA. [Online] https://doi.org/10.2173/bna.42

46. Russo, D., and G. Jones. 2003. Use of foraging habitats by bats in a Mediterranean area
determined by acoustic surveys: conservation implications. Ecography 26, 197–209.

47. Shonfield, J., S. Heemskerk, and E. M. Bayne. 2018. Utility of automated species recognition for
acoustic monitoring of owls. Journal of Raptor Research 52,42–55.

48. Somervuo, P. 2018. Time-frequency warping of spectrograms applied to bird sound analysis.
Bioacoustics. https://doi.org/ 10.1080/09524622.2018.1431958.

49. Taigman, Y., M. Yang, M. A. Ranzato, and L. Wolf. 2014. DeepFace: closing the gap to human-
level performance in face verification. [Online] https://research.fb.com/wp-
content/uploads/2016/11/deepface-closing-the-gap-to-human-level-performance-in-face-
verification.pdf?

50. Trifa, V. M., A. N. G. Kirschel, C. E. Taylor, and E. E. Vallejo. 2008. Automated species
recognition of antbirds in a Mexican rainforest using hidden Markov models. J. Acoust. Soc. Am.
123, 2424–2431.

51. US Department of Agriculture and US Department of Interior. 1994. Final Supplemental
Environmental Impact Statement on Management of Habitat for Late-Successional and Old-
Growth Forest Related Species Within the Range of the Northern Spotted Owl. US Forest Service.

52. US Fish and Wildlife Service. 1990. Endangered and threatened wildlife and plants: determination
of threatened status for the northern spotted owl. Fed. Reg. 55,26114–26194.

53. Wiens, J. D., R. G. Anthony, and E. D. Forsman. 2014. Competitive Interactions and Resource
Partitioning Between Northern Spotted Owls and Barred Owls in Western Oregon. Wildlife
Monographs 185,1–50.

54. Wood, C. M., V. D. Popescu, H. Klinck, J. J. Keane, R. J. Gutierrez, S. C. Sawyer, et al. 2019.
Detecting small changes in populations at landscape scales: a bioacoustic site- occupancy
framework. Ecol. Ind. 98, 492–507.

	

	

65	

55. Wrege, P. H., E. D. Rowland, S. Keen, and Y. Shiu. 2017. Acoustic monitoring for conservation
in tropical forests: examples from forest elephants. Methods Ecol. Evol. 8,1292–1301

56. Howe K et al., "The zebrafish reference genome sequence and its relationship to the human
genome.", Nature, 2013 Apr 25;496(7446):498-503

57. Broughton RE et al., "The complete sequence of the zebrafish (Danio rerio) mitochondrial genome
and evolutionary patterns in vertebrate mitochondrial DNA.", Genome Res, 2001
Nov;11(11):1958-67

