498,460 research outputs found

    Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    Full text link
    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging, because it requires large and well-characterized samples including both hot and cool stars. Here we seek evidence for the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure ecosωe\cos\omega based on the relative timing of the primary and secondary eclipses. We examine the distribution of ecosωe\cos\omega as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than 4 days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.Comment: Accepted for publication in Ap

    Hot Jupiters and Cool Stars

    Full text link
    Close-in planets are in jeopardy as their host stars evolve off the main sequence to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5--2\Mso ), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity, on the orbital evolution of planets as their parent stars evolve to become subgiants and Red Giants. We find that planet engulfment during the Red Giant Branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar mass and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created, that otherwise would have been expected to be absent from main sequence stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.Comment: 38 pages, 15 figures, accepted for publication in Ap

    Chemical fingerprints of hot Jupiter planet formation

    Get PDF
    The current paradigm to explain the presence of Jupiters with small orbital periods (P << 10 days; hot Jupiters) that involves their formation beyond the snow line following inward migration, has been challenged by recent works that explored the possibility of in situ formation. We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α\alpha elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding pp-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, << 0.01, 0.81, and 0.16 for metallicity, α\alpha, iron-peak, and volatile elements, respectively. We confirm previous works suggesting that more distant planets show higher planetary masses as well as larger eccentricities. We note differences in age and spectral type between the hot and cool planet hosts samples that might affect the abundance comparison. The differences in the distribution of planetary mass, period, eccentricity, and stellar host metallicity suggest a different formation mechanism for hot and cool Jupiters. The slightly larger α\alpha abundances found in stars harbouring cool Jupiters might compensate their lower metallicities allowing the formation of gas-giant planets.Comment: Accepted by Astronomy & Astrophysic

    Hot Moons and Cool Stars

    Full text link
    The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.Comment: submitted as Proceedings to the ROPACS meeting "Hot Planets and Cool Stars" (Nov. 2012, Garching), 4 pages, 2 colored figure

    Continuous upflows and sporadic downflows observed in active regions

    Full text link
    We present a study of the temporal evolution of coronal loops in active regions and its implications for the dynamics in coronal loops. We analyzed images of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) at multiple temperatures to detect apparent motions in the coronal loops. Quasi-periodic brightness fluctuations propagate upwards from the loop footpoint in hot emission at 1MK, while sporadic downflows are seen in cool emission below 1MK. The upward motion in hot emission increases just after the cool downflows. The apparent propagating pattern suggests a hot upflow from the loop footpoints, and is considered to supply hot plasma into the coronal loop, but a wavelike phenomenon cannot be ruled out. Coronal condensation occasionally happens in the coronal loop, and the cool material flows down to the footpoint. Emission from cool plasma could have a significant contribution to hot AIA channels in the event of coronal condensation.Comment: 5 pages, 6 figures, A&A in pres
    corecore