256 research outputs found

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Exploring annotations for deductive verification

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    An empirical study of negation in datalog programs

    Get PDF
    Datalog is the fusion of prolong and database technologies aimed at producing an difficultly logic-based, declarative language for databases. Since negation was added to Datalog, Datalog has become more expressive. In this thesis, I focus my attention on adding negation to DatalogIC which is a language which has been implemented by Mark P. Wassell, a past MSc student in the Department of Computer Science at UCT. I analyse and compare stratified, well-founded and inflationary semantics for negation, each of which has been implemented on top of INFORMIX; we call the resulting system NDatalog. According to the test results, we find that some results are unexpected. For example, when we evaluate a recursive stratified program, the results show that NDatalogstra is slower than NDatalogwellf although NDatalogwellf is more complex. After further investigation, I find the problem is that the NDatalog system has to spend a lot of time imitating the MINUS function, which does not exist in INFORMIX-SQL. So the running time depends on what kind of database system is used as backend. When we consider the time spent on pure evaluation, excluding auxiliary functions, we find that the results support our expectations, namely, that NDatalogstra is faster than NDatalogwellf which is faster than NDataloginf

    A tetrachotomy of ontology-mediated queries with a covering axiom

    Get PDF
    Our concern is the problem of efficiently determining the data complexity of answering queries mediated by descrip- tion logic ontologies and constructing their optimal rewritings to standard database queries. Originated in ontology- based data access and datalog optimisation, this problem is known to be computationally very complex in general, with no explicit syntactic characterisations available. In this article, aiming to understand the fundamental roots of this difficulty, we strip the problem to the bare bones and focus on Boolean conjunctive queries mediated by a simple cov- ering axiom stating that one class is covered by the union of two other classes. We show that, on the one hand, these rudimentary ontology-mediated queries, called disjunctive sirups (or d-sirups), capture many features and difficulties of the general case. For example, answering d-sirups is Π2p-complete for combined complexity and can be in AC0 or L-, NL-, P-, or coNP-complete for data complexity (with the problem of recognising FO-rewritability of d-sirups be- ing 2ExpTime-hard); some d-sirups only have exponential-size resolution proofs, some only double-exponential-size positive existential FO-rewritings and single-exponential-size nonrecursive datalog rewritings. On the other hand, we prove a few partial sufficient and necessary conditions of FO- and (symmetric/linear-) datalog rewritability of d- sirups. Our main technical result is a complete and transparent syntactic AC0 / NL / P / coNP tetrachotomy of d-sirups with disjoint covering classes and a path-shaped Boolean conjunctive query. To obtain this tetrachotomy, we develop new techniques for establishing P- and coNP-hardness of answering non-Horn ontology-mediated queries as well as showing that they can be answered in NL

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Simulated penetration testing and mitigation analysis

    Get PDF
    Da Unternehmensnetzwerke und Internetdienste stetig komplexer werden, wird es immer schwieriger, installierte Programme, Schwachstellen und Sicherheitsprotokolle zu überblicken. Die Idee hinter simuliertem Penetrationstesten ist es, Informationen über ein Netzwerk in ein formales Modell zu transferiern und darin einen Angreifer zu simulieren. Diesem Modell fügen wir einen Verteidiger hinzu, der mittels eigener Aktionen versucht, die Fähigkeiten des Angreifers zu minimieren. Dieses zwei-Spieler Handlungsplanungsproblem nennen wir Stackelberg planning. Ziel ist es, Administratoren, Penetrationstestern und der Führungsebene dabei zu helfen, die Schwachstellen großer Netzwerke zu identifizieren und kosteneffiziente Gegenmaßnahmen vorzuschlagen. Wir schaffen in dieser Dissertation erstens die formalen und algorithmischen Grundlagen von Stackelberg planning. Indem wir dabei auf klassischen Planungsproblemen aufbauen, können wir von gut erforschten Heuristiken und anderen Techniken zur Analysebeschleunigung, z.B. symbolischer Suche, profitieren. Zweitens entwerfen wir einen Formalismus für Privilegien-Eskalation und demonstrieren die Anwendbarkeit unserer Simulation auf lokale Computernetzwerke. Drittens wenden wir unsere Simulation auf internetweite Szenarien an und untersuchen die Robustheit sowohl der E-Mail-Infrastruktur als auch von Webseiten. Viertens ermöglichen wir mittels webbasierter Benutzeroberflächen den leichten Zugang zu unseren Tools und Analyseergebnissen.As corporate networks and Internet services are becoming increasingly more complex, it is hard to keep an overview over all deployed software, their potential vulnerabilities, and all existing security protocols. Simulated penetration testing was proposed to extend regular penetration testing by transferring gathered information about a network into a formal model and simulate an attacker in this model. Having a formal model of a network enables us to add a defender trying to mitigate the capabilities of the attacker with their own actions. We name this two-player planning task Stackelberg planning. The goal behind this is to help administrators, penetration testing consultants, and the management level at finding weak spots of large computer infrastructure and suggesting cost-effective mitigations to lower the security risk. In this thesis, we first lay the formal and algorithmic foundations for Stackelberg planning tasks. By building it in a classical planning framework, we can benefit from well-studied heuristics, pruning techniques, and other approaches to speed up the search, for example symbolic search. Second, we design a theory for privilege escalation and demonstrate the applicability of our framework to local computer networks. Third, we apply our framework to Internet-wide scenarios by investigating the robustness of both the email infrastructure and the web. Fourth, we make our findings and our toolchain easily accessible via web-based user interfaces

    Foundations for programming and implementing effect handlers

    Get PDF
    First-class control operators provide programmers with an expressive and efficient means for manipulating control through reification of the current control state as a first-class object, enabling programmers to implement their own computational effects and control idioms as shareable libraries. Effect handlers provide a particularly structured approach to programming with first-class control by naming control reifying operations and separating from their handling. This thesis is composed of three strands of work in which I develop operational foundations for programming and implementing effect handlers as well as exploring the expressive power of effect handlers. The first strand develops a fine-grain call-by-value core calculus of a statically typed programming language with a structural notion of effect types, as opposed to the nominal notion of effect types that dominates the literature. With the structural approach, effects need not be declared before use. The usual safety properties of statically typed programming are retained by making crucial use of row polymorphism to build and track effect signatures. The calculus features three forms of handlers: deep, shallow, and parameterised. They each offer a different approach to manipulate the control state of programs. Traditional deep handlers are defined by folds over computation trees, and are the original con-struct proposed by Plotkin and Pretnar. Shallow handlers are defined by case splits (rather than folds) over computation trees. Parameterised handlers are deep handlers extended with a state value that is threaded through the folds over computation trees. To demonstrate the usefulness of effects and handlers as a practical programming abstraction I implement the essence of a small UNIX-style operating system complete with multi-user environment, time-sharing, and file I/O. The second strand studies continuation passing style (CPS) and abstract machine semantics, which are foundational techniques that admit a unified basis for implementing deep, shallow, and parameterised effect handlers in the same environment. The CPS translation is obtained through a series of refinements of a basic first-order CPS translation for a fine-grain call-by-value language into an untyped language. Each refinement moves toward a more intensional representation of continuations eventually arriving at the notion of generalised continuation, which admit simultaneous support for deep, shallow, and parameterised handlers. The initial refinement adds support for deep handlers by representing stacks of continuations and handlers as a curried sequence of arguments. The image of the resulting translation is not properly tail-recursive, meaning some function application terms do not appear in tail position. To rectify this the CPS translation is refined once more to obtain an uncurried representation of stacks of continuations and handlers. Finally, the translation is made higher-order in order to contract administrative redexes at translation time. The generalised continuation representation is used to construct an abstract machine that provide simultaneous support for deep, shallow, and parameterised effect handlers. kinds of effect handlers. The third strand explores the expressiveness of effect handlers. First, I show that deep, shallow, and parameterised notions of handlers are interdefinable by way of typed macro-expressiveness, which provides a syntactic notion of expressiveness that affirms the existence of encodings between handlers, but it provides no information about the computational content of the encodings. Second, using the semantic notion of expressiveness I show that for a class of programs a programming language with first-class control (e.g. effect handlers) admits asymptotically faster implementations than possible in a language without first-class control

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    corecore