
Web Ontology Reasoning
with Logic Databases

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)
von der Fakultät für

Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe

genehmigte
DISSERTATION

von
Dipl.-Inform. Raphael Volz

Tag der mündlichen Prüfung: 17. Februar 2004
Referent: Prof. Dr. Rudi Studer

1. Korreferent: Prof. Dr. Waldmann
2. Korreferentin: Prof. Carole Goble, University of Manchester

2004 Karlsruhe





To my family.





Abstract

This dissertation addresses the problem of reasoning with Web ontologies in logic
databases. The main contribution is the enabling of Web ontology reasoning with
logic databases for the Web ontology language (OWL), an international standard
that has been recently proposed by the World Wide Web Consortium (W3C).

On the theoretical side, we show which fragment of OWL can be correctly sup-
ported by logic databases. On the practical side, we show that logic databases allow
to overcome the predominant limitation of current approaches to ABox reasoning
with Description Logics (DL) such as OWL.

Our work specifically addresses the following questions:

• Which fragment of OWL can be implemented in logic databases ? We invent a
strategy to identify the fragment, which is based on the translation of DL
axioms into first-order logic, followed by a transformation into a conjunction
of Horn formulae. These formulae can be translated into the different Logic
Programming languages which are supported by logic databases.

• What are the theoretical properties of the fragment ? We define Description Logic
Programs (DLP) as a family of new ontology languages Li, which precisely
contains the fragment. We utilize DLP to study the theoretical properties of
the fragment. In particular, we show that we can solve ABox related reason-
ing problems, independent of the TBox, with a low polynomial complexity
O(|ADLP

i≤2 |)4 in the size of the DLP ABox ADLP .

• How can DL reasoning be reduced to operations on logic databases ? We show
which and how DL reasoning problems can be reduced to operations on logic
databases and identify the limitations of the reduction.

• How useful is the related fragment as a practical Web ontology language ? We an-
swer this question by showing two separate hypotheses.

Hypothesis 1: The fragment is sufficient to express most available Web ontologies.
We analyze the largest currently available collection of Web ontologies and
check which fragment of those ontologies can be expressed in DLP. We quan-
tify most in two respects. Firstly, we show that the different DLP languages
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suffice to express 77 % (L0) – 87 % (L3) of the analyzed ontologies. Secondly,
we could express 93% (L0) – 99 % ((L3)) of the individual axioms in the ana-
lyzed ontologies.

Hypothesis 2: We can efficiently and scalably reason with DLP. We will show that
logic databases not only exhibit satisfactory performance for ABox-related
reasoning problems in DLP knowledge bases but also compare favorably
with the only state of the art DL reasoner which supports ABox-reasoning.

• How can we improve the performance of ABox-related reasoning problems ? Certain
language features of OWL (such as equality) deteriorate the performance of
ABox-reasoning severely. We propose the materialization of knowledge bases
to store computed entailments and speed up reasoning. We show how we can
maintain a materialization incrementally in the case of changes.

Put together, the results developed in this thesis allow scalable and practical solu-
tions to ABox-related reasoning problems for OWL-based applications. Our results
are based on delegating ABox reasoning problems to logic databases. The thesis
covers all necessary stages to obtain this delegation, starting from the identification
of the (sub)languages for which this delegation can be achieved, via the theoretical
analysis of the properties of these languages, to the assessment of the performance
obtained by the delegation.

Even though logic databases have been used for Semantic Web applications from
the early days of the Semantic Web, no comprehensive solution, which guarantees
the correctness of the obtained answers, has been presented before for OWL or its
predecessors1.

1DAML+OIL, DAML-ONT and OIL.
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1. Introduction

Fromme Musen, meine Glieder,
Singt nicht längst bekannte Lieder,

Dieser Tag sei eure Lust,
Füllt mit Freuden eure Brust,

Werft so Kiel als Schriften nieder,
Und erfreut euch dreimal wieder.

5th Aria (Alto) of Cantata
"Tönet, ihr Pauken, erschallet, Trompeten" (BWV 214)

Johann-Sebastian Bach
http://www.cs.ualberta.ca/~wfb/cantatas/214.html

1.1. Context

The distributed information systems of today, such as the World Wide Web
(WWW), peer to peer (P2P) file sharing systems and company intranets, resem-
ble a poorly mapped geography. Our insights into available information in those
systems are based on keyword searches, sometimes abetted by clever use of doc-
ument connectivity (Page et al., 1998) and usage patterns. Consider the following
question:

Example 1.1.1 Find the lyrics of those Birthday Cantatas that were reused in Johann-
Sebastian Bachs’ Christmas Oratorio.

Today, answering this question would require a (non-deterministic) sequence of
consecutive keyword searches.1 The non-determinism of the sequence is due to the
fact, that each answer must be interpreted by humans to formulate the next search,
which may (or may not) eventually lead to the intended results.

It would be difficult to construct a software system that would be capable of an-
swering the above and similar questions, in a general manner, on any network

1Quiz question: Which web pages provide the lyrics of those cantatas ?
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1. Introduction

topology (be it Web or Peer-To-Peer) and leading to results that answer the ques-
tion. The main difficulty lies in the fact that the computation itself must necessarily
go beyond keywords and requires an interpretation of additional data, i.e. meta-
data, that describe the content of network-accessible resources. For example, the
relevant aspects of the natural language content of a document must be described
through metadata (cf. Figure 1.1, where BWV 213, 214 and 248 are identifiers for
the metadata elements that describe some compositions of Johann-Sebastian Bach).

Figure 1.1.: Christmas Oratorio Knowledge Base

In the last five years, the Semantic Web standardization activity of the World Wide
Web Consortium (W3C) was focused to design the basic technical standards that al-
low the representation of metadata on the Web, providing technologies that even-
tually enable applications to derive answers on questions like Example 1.1.1. In
parallel, these standards can be seen as cornerstones for the development of future
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1.1. Context

large-scale Semantic Web applications. The standards have primarily focused on
two main aspects:

1. machine readability

2. machine interpretability

1.1.1. Machine Readability

In a nutshell, this aspect is covered by the definition of a framework for the descrip-
tion of resources in distributed systems, i.e. the Resource Description Framework
(RDF) (Lassila & Swick, 1999). RDF can be understood as a semi-structured data
model for distributed, relational metadata.

The collection of metadata that describes the information sources using the RDF
data model is the central part of a Semantic Web application. We will call this
collection knowledge base2. As mentioned above, the knowledge base is expected to
be used by information consumers to locate information sources through queries
to the metadata.

Clearly, information in Semantic Web applications is characterized by the very fact
that information is distributed. Therefore, a knowledge base typically contains
metadata from a collection of information sources, e.g. several Web pages. For the
context of this thesis we assume the currently dominant approach of aggregating
distributed metadata into a single knowledge base.

1.1.2. Machine Interpretability

To answer the question of Example 1.1.1 on a knowledge base like Figure 1.1, in-
formation consumers and providers need to agree on the denotation of a common
vocabulary, i.e. proper nouns3 such as "Christmas Oratorio", and "Johann-Sebastian
Bach", concepts4 such as "birthday" and "cantata" as well as the relation5 "reuses",
to make queries possible.

2The knowledge base must not necessarily be expressed in the RDF data model. This is, however,
the currently dominant approach in the Semantic Web.

3The red nodes in Figure 1.1. Such nodes are called Individuals in the terminology of Web ontology
languages.

4The yellow nodes in Figure 1.1. Such nodes are called Classes in the terminology of Web ontology
languages.

5The green nodes in Figure 1.1. Such nodes are called Properties in the terminology of Web ontology
languages.
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1. Introduction

Web ontology languages allow to describe this vocabulary by means of logical ax-
ioms. We will differentiate between two basic categories of axioms, where the first
category (TBox) contains the description of the terminology in a domain, and the sec-
ond part (ABox) contains the actual assertions that make use of the terminology, i.e.
provide the data that users are usually interested in. Two Web ontology languages,
the RDF vocabulary description language (RDFS) (Brickley & Guha, 2003) and the
Web Ontology Language (OWL) (McGuinness & van Harmelen, 2003), have been
standardized recently and play a central role in this thesis. The languages mainly
differ in expressivity. However, both languages are grounded on the assignment of
formal semantics to their language constructs, which allow machines to interpret
information such that new implicit facts can be derived from asserted facts using a
form of symbolic processing, i.e. logical entailment.

This logical entailment of implicit information is mainly based on the interpreta-
tion of axioms in the TBox, which relate terminological descriptions with each other.
For example, in the knowledge base of Figure 1.1 a machine can derive that every
BIRTHDAYCANTATA such as BWV214 is also a COMPOSITION through the inter-
pretation of subsumption axioms stated on the classes of the TBox.

In the brief history of the Semantic Web, most applications, e.g. (Decker et al., 1998),
have implemented this logical entailment either directly using Logic Programming
techniques, e.g. (Berners-Lee, 2000a; Roo, 2002), or by relying on (available) logic
databases (Motik et al., 2002a; Sintek & Decker, 2001). This strategy, however, is no
longer directly possible with the advent of the recently standardized Web Ontol-
ogy Language (OWL), which relies on a logical paradigm called Description Log-
ics (Baader et al., 2003).

We will study how we can continue to use logic databases6 in the context of OWL.
Logic databases, in our sense, are declarative, rule-based systems that apply Logic
Programming techniques for expressing deductions and logical queries concerning
the content of a database. We therefore investigate the relationship between De-
scription Logics and the different variants of those Logic Programming languages,
which are frequently used in logic databases. This analysis and the study of its
practical consequences for Semantic Web applications is the fundamental contribu-
tion of this thesis.

In the following we will use the terms Logic Programming and logic databases
interchangeably, using whatever form is most convenient in the context.

6We use the term logic database over the older term deductive databases since the later is very
closely associated with Datalog, a particular Logic Programming language that is frequently used
in logic databases. Modern logic databases such as XSB (Sagonas et al., 1994) and CORAL (Ra-
makrishnan et al., 1994) support more expressive Logic Programming languages that include
function symbols and nested expressions. Furthermore, several lectures, e.g. http://user.
it.uu.se/~voronkorov/ddb.htm nowadays use this term.
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1.2. Motivation

1.2. Motivation

This section motivates why the Logic Programming techniques that are applied in
logic databases are useful in the context of the Semantic Web. We can differentiate
two main motivations. Firstly, Logic Programming can provide suitable functional-
ity for the general Semantic Web architecture. Secondly, Logic Programming allows
to bypass current limitations of OWL.

1.2.1. Semantic Web Architecture

The usage of Logic Programming techniques for the purpose of the Semantic
Web is considered to be central (Berners-Lee, 1998) for the future development of
the Semantic Web, since - from the very beginning - the vision of the Semantic
Web (Berners-Lee, 1999) includes, specifically, rules as well as ontologies.

Rule Language A key requirement for the Semantic Web’s architecture over-
all, then, is to be able to express rules on ontology-based knowledge bases, viz.
to create and reason with rule-bases that mention vocabulary specified by on-
tologies, and to do so in a semantically coherent manner. For OWL, this lay-
ering must reduce the expressiveness of the language, since a direct and naïve
extension would immediately yield an undecidable language (Levy & Rousset,
1996; Schmidt-Schauß, 1989) for which only highly intractable first-order theorem
provers can be used as a basis for logical entailment.

Query Language At the time of writing this thesis, the W3C gathers a new group
for the standardization of a Semantic Web query language 7. The Description Logic
which underlies OWL can be used as a query language, but its capabilities with
respect to querying are rather low, since only conjunctive queries — the least ex-
pressive query language usually considered in database research — can be sup-
ported (Horrocks & Tessaris, 2002).

Expressive query languages are the main form of interaction with logic databases,
which offer extensive facilities for this purpose. Moreover, the theoretical and prac-
tical properties of the logic database approach are well understood and have been
studied extensively in the last three decades. Hence, we can expect useful synergies
by combining Web Ontology languages with the logic database paradigm. These
synergies allow to state expressive queries with respect to ontology-based data.

7Cf. http://www.w3.org/2002/11/swv2/Activity#proposal .
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1. Introduction

1.2.2. Current Limitations of OWL

Since OWL is basically a notational variant of a Description Logic (Horrocks &
Patel-Schneider, 2003), it shares its benefits and limitations with those logics.

Tractability One of the main limitations of Description Logics (such as OWL)
are their intractability (Nebel, 1990) and lack of algorithms which allow to rea-
son with non-trivial ABoxes in practise. Restricted variants of Logic Programming
languages such as Datalog, i.e. the language which is supported by most Logic
Databases, however, are tractable and optimized reasoning algorithms for reason-
ing with large ABoxes, such as the Magic Sets technique (Ramakrishnan, 1991) or
Tabling (Swift & Warren, 1994), are well known.

Bootstrapping the Semantic Web Until now, Description Logics have been de-
veloped by a small research community. Therefore, they have not yet received
the same public attention as other approaches to information modeling , such as
the Entity-Relationship (Chen, 1976) or object-oriented models (Cattell et al., 2000;
Object Management Group, 2003). In particular, they have not - yet - found its way
into main computer science curricula. While this effect might be temporary, it is
nevertheless useful to facilitate the transition by relating the elements of the lan-
guage with the elements of other well-known modeling languages. This relation
can also be used to bootstrap (Stojanovic et al., 2002) the Semantic Web by reusing
available information models.

System base Similarly - and partly dependent on the previous limitation - only
three systems, i.e. FaCT (Horrocks et al., 1999), Racer (Haarslev & Moller, 2001)
and Cerebra (Network Inference Inc., 2003), are able to provide limited support for
reasoning with OWL today. All three systems are incomplete and do not support
all language features. For example, FaCT (Horrocks et al., 1999) offers no support
at all for ABoxes, while Racer (Haarslev & Moller, 2001) departs from the OWL
semantics by taking the Unique Names Assumption (UNA). The logic database
world, however, can provide an abundance of both commercial and open-source
systems, which can be applied for the purpose of Semantic Web applications, if
the ontology language fits to the Logic Programming language supported by these
systems.

Legacy data integration Today, the majority of data on the Web is no longer
static but resides in databases, e.g. to dynamically generate web pages. Exposing
this data to the Semantic Web will require the access to the content of underlying
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databases (Volz et al., 2004). Description Logic reasoners such as FaCT (Horrocks
et al., 1999) or Racer (Haarslev & Moller, 2001) currently require the replication of
that data to enable ontology-based processing. Logic databases such as XSB (Sago-
nas et al., 1994), Ontobroker (Decker et al., 1999) or CORAL (Ramakrishnan et al.,
1994), however, can access relational databases directly through built-in predi-
cates. Hence, Logic Programming allows closer interaction with externally stored
data, i.e. data can remain where it can be handled most efficiently - in relational
databases. Furthermore, more restricted variants of Logic Programming languages
can be directly implemented on top of SQL99-compliant relational databases (Ull-
man, 1988), which would increase the possible system basis further.

Ontology Transformation We can expect that the de-centralized nature of the
Semantic Web makes it inevitable that communities will evolve that use dis-
parate ontologies. The assumption that both information providers and infor-
mation consumers share one ontology will then no longer be valid, i.e. leading
to the situation that information can not be shared, viz. results, which would
match the query (if the correct vocabulary were used) can not be found. We
then need to mediate between distributed data using mappings between ontolo-
gies (Rousset, 2002). Different proposals (Maedche et al., 2002a; Omelayenko, 2002;
Noy & Musen, 2000) have already been made to specify mappings between ontolo-
gies. Logic databases can provide the functionality needed to execute the necessary
transformations specified by such mappings.

1.3. Contribution

We address the general goal of Web ontology reasoning with logic databases in
context of the recently proposed Web Ontology Language (OWL), which can be
understood as a notational variant of a Description Logic. In this context our goal
implies the following research questions:

• Which fragment of OWL can be implemented in logic databases ? We outline a strat-
egy to identify the respective fragment of OWL. Our strategy is based on the
translation of knowledge bases into first-order logic, followed by a transfor-
mation into a conjunction of Horn formulae. The Horn formulae can then be
syntactically translated into the different Logic Programming syntaxes that
are supported by logic databases. We instantiate this strategy on OWL to
identify the fragment of OWL that can be supported.

• What are the theoretical properties of the fragment ? We define Description Logic
Programs (DLP) (Grosof et al., 2003) in as a family of new ontology languages,

9



1. Introduction

which are constituted by those OWL language primitives that can be sup-
ported by logic databases. We utilize the DLP family to study the theoretical
properties, i.e. complexity and expressivity, of the fragment.

• How can DL reasoning be reduced to queries on logic databases ? We show how the
various DL reasoning problems can be reduced to queries on logic databases.
We present the procedure that is necessary to obtain the reduction and iden-
tify the practical limitations of the reduction.

• Is the fragment sufficient to express most available Web ontologies ? We analyze
the largest currently available collection of Web ontologies and check which
fragment of those ontologies can be expressed in the DLP languages. We
quantify most in two respects. Firstly, we study which ontologies can be ex-
pressed completely. Secondly, we study which percentage of all axioms in the
ontology can be represented in DLP.

• Can logic databases efficiently and scalably reason with the fragment ? We study
whether logic databases exhibit satisfactory performance in solving DL rea-
soning problems. To this extend, we compare the performance of logic
databases with that of native Description Logic reasoners. We also evaluate
how the usage of more expressive language constructors impact performance.

• How can we improve the performance of ABox-related reasoning problems ? As we
will see in the performance analyses, the introduction of equality deteriorates
the performance of logic databases severely. We therefore propose the mate-
rialization (Volz et al., 2003g; Volz et al., 2003f) of knowledge bases as a tech-
nique to store computed entailments, such as derived through an equality
theory. We show how we can maintain the materialization of the knowledge
base incrementally when the knowledge base is changed.

A novel family of ontology languages, which we call Description Logic Programs
(DLP) (Grosof et al., 2003), is the basic tool used to answer the above reasoning
questions. Our answers, however, show that the various DLP languages can be
understood as sensible Web ontology languages on their own. In particular, DLP
extends the existing Web ontology language RDF Schema (RDFS) (Brickley & Guha,
2003) with more expressive constructs, while maintaining

1. maximum backwards compatibility with available Logic Programming technol-
ogy and

2. maximum forward compatibility with even more expressive languages like
OWL.

10



1.4. Reader’s Guide

Practical Implementations All techniques developed in this thesis have been
implemented in prototype tools which are part of the KArlsruhe ONtology
(KAON) tool suite (Bozsak et al., 2002), the genesis of which was largely influenced
by the work of the author. The tool suite is practically applied in many industrial
and research prototypes.

The following tools are a direct outcome of this thesis and can be downloaded at
http://kaon.semanticweb.org/ :

• KAON DLP8 provides a reasoner for the DLP language,

• the incremental materialization algorithm is implemented9 within the KAON
Datalog Engine.

In parallel to the development of KAON, the OWL API10 (Bechhofer et al., 2003b),
a reusable component for arbitrary OWL applications has been developed11 in con-
text of the DAAD scholarship received by the author and the EU-funded research
project WonderWeb.

1.4. Reader’s Guide

The thesis is organized as follows. Chapter 2 on page 13 recapitulates well-known
fundamentals of logics relevant to the thesis, in particular fundamentals of Logic
Programming and logic databases as well as fundamentals of Description Logics.
Chapter 3 on page 43 introduces standards currently relevant to the Semantic Web.
It contains a discussion of the role of ontologies in this setting and shows how the
diverse standards map to the logics presented in the previous chapter.

The second part of the thesis presents Description Logic Programs (DLP) - the on-
tology language upon which our work is based.

Chapter 4 analyzes how Description Logic and Logic Programming are related and
identifies the fragment which can be translated from one language into the other.
Chapter 5 on page 113 utilizes the identified fragment for the definition of the DLP
family of ontology languages Li and presents the semantics for these languages,
which is based on a formal translation into Logic Programs. The chapter shows
how Description Logic reasoning problems can be reduced to answering queries on

8Jointly implemented with Boris Motik.
9Jointly implemented with Boris Motik.

10http://www.sourceforge.net/projects/owlapi
11Jointly with Sean Bechhofer of the University of Manchester
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Logic Programs and studies the expressiveness and the complexity of the new lan-
guages. In particular, we show the practical usefulness of the languages by demon-
strating that most parts of currently available Web ontologies can be expressed in
the new languages and that the family of languages is tractable. Chapter 6 on page
145 proposes the materialization of DLP ontologies and presents an approach for
the incremental maintenance of materialized logic databases when changes to facts
and rules occur.

The third part of the thesis presents the implementation and evaluation of DLP.
Chapter 7 on page 173 presents the DLP prototype reasoner and KAON, the sur-
rounding infrastructure, in which the DLP prototype is embedded. Chapter 8 on
page 193 evaluates reasoning with the DLP languages in logic databases and shows
that the performance of querying knowledge bases compares favorably with De-
scription Logic engines. We also show that our approach to materialization im-
proves the efficiency of query answering and that the materialization can be incre-
mentally maintained with tolerable costs. Chapter 9 on page 225 summarizes the
contributions of this thesis and outlines further applications.

12



2. Logical Foundations

Unanfechtbare Wahrheiten gibt es überhaupt nicht,
und wenn es welche gibt, so sind sie langweilig.

Theodor Fontane,
Der Stechlin

http://www.gutenberg2000.de/fontane/stechlin/stech01.htm

2.1. Introduction

This chapter provides well-known fundamentals of those logics which are relevant
to this dissertation, viz. used in the subsequent chapters. In particular we briefly
recapitulate the fundamentals of First-order Logic (Section 2.2), Logic Program-
ming and Deductive Databases (Section 2.3 on page 20) and Description Logics
(Section 2.4 on page 31). Readers that are familiar with either one of the logics
might skip the respective sections.

We do not attempt to give a thorough introduction to those logics, but concisely
capture the aspects that are relevant to this thesis. To this extent each section gives
a precise syntactic and semantic definition of the logics. The sections on Logic Pro-
gramming and Description Logics additionally state the different main reasoning
problems given for the logics and discuss the computational complexity of those
reasoning problems. We conclude our exposition of the latter two logics with a
presentation of the main approaches to compute answers for the posed reasoning
problems.

Readers interested in a more thorough treatment of the logics might refer to text-
books on First-order logic, e.g. (Schöning, 1995), Description Logics (Baader et al.,
2003), and on Logic Programming, e.g. (Ceri et al., 1990) or (Lloyd, 1987). (Dantsin
et al., 2001) surveys the various complexity and expressiveness results on differ-
ent forms of Logic Programming, a good overview over the complexity results of
various Description Logics is given in Chapter 3 of (Baader et al., 2003).

13
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2.2. First-Order Logic (FOL)

First-order logic (FOL) is an often used logic and is more general than the other
two families of logics presented in this chapter. Nearly all textbooks on logic, e.g.
(Schöning, 1995), give an introduction to FOL, consequently we only briefly reca-
pitulate the basic definitions of the syntax and semantics of FOL as far as needed
in this dissertation.

2.2.1. Syntax

For defining the language of FOL, we need a vocabulary. This vocabulary is given
by a signature.

Definition 2.2.1 (Signature) A signature Σ is a 5-tuple (C,F, P, V, a) and consists of

• a set C of constant symbols

• a set F of function symbols

• a set P of predicate symbols

• a set V of variable symbols

• and a function a : F ∪ P → N

The function a states the arity of functions and predicates.

Constant symbols are special function symbols with arity 0, we consider them sep-
arately since one of the important characteristics of many subsets of FOL, e.g. Dat-
alog or L2, is the absence of function symbols other than constants.

Definition 2.2.2 (Term) The set of terms of a signature Σ = (C,F, P, V, a) is defined by
the smallest set TΣ such that:

1. c ∈ TΣ for each constant symbol c ∈ C;

2. v ∈ TΣ for each variable v ∈ V ;

3. if f ∈ F with arity a(f) = m and t1, . . . , tm ∈ TΣ then f(t1, . . . , tm) ∈ TΣ.

Definition 2.2.3 (Ground term) A term t ∈ TΣ is called a ground term if t does not
contain any variables.
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The definition of the set of terms might vary. For example, the definition for Data-
log would not include function symbols.

Definition 2.2.4 (Atomic Formula) The set of atomic formulas AtΣ over a signature Σ
is defined as follows: p(t1, . . . , tn) ∈ AtΣ, if p ∈ P , a(p) = n and all ti ∈ TΣ for 1 ≤ i ≤ n.

Definition 2.2.5 (Ground Atom) A predicate p(t1, . . . , tn) ∈ AtΣ with a(p) = n is
called ground atom if all terms ti for 1 ≤ i ≤ n are ground terms.

Definition 2.2.6 (Formula) The set ForΣ of formulas over a signature Σ is defined by
the smallest set for which:

• AtΣ ⊆ ForΣ;

• if ϕ ∈ ForΣ then ¬ϕ ∈ ForΣ ;

• if v ∈ V and ϕ ∈ ForΣ then (∀v.ϕ) ∈ ForΣ;

• if ϕ ∈ ForΣ and ψ ∈ ForΣ then (ϕ ∨ ψ) ∈ ForΣ.

Existential quantification and all other logical connectives such as conjunction (∧),
implication (→), etc. can be used in formulas using the well known equivalences.
For example, the existential quantifier (∃v.ϕ) can be understood as shortcut for the
formula ¬(∀v.¬ϕ).

Definition 2.2.7 (Bound Variable) A variable v is bound in the formula ϕ if ϕ contains
an expression (∀v.ϕ).

Definition 2.2.8 (Free Variable) A variable v is free in a formula ϕ if ϕ contains the
variable and the variable is not bound.

Definition 2.2.9 (Sentence) A sentence (or closed formula) is a formula that contains no
free variables.

Definition 2.2.10 (Literal) An atomic formula ϕ ∈ AtΣ is called a positive literal.
(¬ϕ) ∈ ForΣ with ϕ ∈ AtΣ is called a negative literal. A literal l is also called ground
literal if ϕ is a ground atom. LΣ refers to the set of all literals.

Definition 2.2.11 (Closure of formula) Let V = {v1, . . . , vn} be the set of free variables
in a formula ϕ, we call the formula

• ∀v1 . . .∀vn.ϕ universal closure of the formula ϕ, alternatively we write ∀.ϕ;

• ∃v1 . . .∃vn.ϕ existential closure of the formula ϕ, alternatively we write ∃.ϕ.
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2.2.2. Semantics

One of the standard ways for giving semantics to FOL is by means of a model
theory (Tarski, 1956).

Definition 2.2.12 (Interpretation) An interpretation I = (∆I, ·I) consists of a non-
empty set ∆I (domain or universe) and an interpretation function ·I, which assigns ele-
ments of a signature Σ = (C,F, P, V, a) to ∆I such that :

• ·I maps each constant c ∈ C to an element cI ∈ ∆I which is the interpretation of c
(cI = cI);

• ·I maps each function symbol f ∈ F with a(f) = n to a function

fI : (∆I)
n → ∆I

which is the interpretation of f (fI = fI);

• ·I maps each predicate symbol p ∈ P with a(p) = n to a function

pI : (∆I)n → {false, true}

which maps to a truth value (pI = pI).

Additionally we define a variable valuation function V : V → ∆I which assigns an element
d ∈ ∆I to every variable v ∈ V .

The interpretation function I gives meaning to constants, functions and predicates.
The variable assignment function V gives meaning to variables. We now continue
with defining the meaning of terms and formulas. To do so, a valuation (or denota-
tion) connects a syntactic expression (terms and predicates) over a given signature
with an interpretation of that signature.

Definition 2.2.13 (Term Denotation) The denotation [t]IV of a term t in the interpreta-
tion I under the variable assignment function V is defined as follows:

• [v]IV = V(v), for all v ∈ V ;

• [c]IV = cI, for all c ∈ C;

• [f(t1, . . . , tn)]IV = fI([t1]IV , . . . , [tn]IV), for all f ∈ F, ti ∈ TΣ.
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Definition 2.2.14 (Formula Denotation) The denotation [ϕ]IV ∈ {false, true} of a for-
mula ϕ ∈ ForΣ is defined as follows:

• If ϕ = p(t1, . . . , tn) is an atomic formula with a(p) = n and t1, . . . , tn ∈ TΣ then

[ϕ]IV = pI([t1]IV , . . . , [tn]IV);

• If ϕ = ¬φ then [ϕ]IV =
{

true iff. [φ]IV = false,
false iff. [φ]IV = true.

• If ϕ = (φ1 ∨ φ2), then

[ϕ]IV =


true iff. [φ1]IV = true,
true iff. [φ2]IV = true,
false otherwise.

• If ϕ = (∀v.φ), then

[ϕ]IV =


false iff there is a variable assignment function V∗

with respect toD such that V∗ may only differ from
V in the value assigned to the variable v and [φ]IV∗ = false;

true otherwise.

Remark 2.2.1 The denotation of other logical connectives such as ∧,→,∃ are given sim-
ilarly, or can be reduced to the denotation of the connectives given above using the well-
known tautologies. For example φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2).

The reader may note that the value of a formula depends on the valuation function
only if there are free variables in that formula. For sentences we may simply write
[ψ]I.

Definition 2.2.15 (Model) Given an interpretation I, we say that I satisfies a sentence
ϕ (or that I is a model), if [ϕ]I = true. If Φ is a set of sentences, we also say that I satisfies
Φ, if I satisfies all sentences ϕ ∈ Φ.

Definition 2.2.16 (Entailment) We call a sentence ϕ a logical consequence of a set of
sentences Φ ( Φ |= ϕ ) iff every model of Φ is also a model of ϕ. In such a case, we also say
that Φ entails ϕ (or ϕ follows from Φ).

Definition 2.2.17 (Satisfiability) A set of sentences Φ is called satisfiable (consistent) if
it has at least one model.

Definition 2.2.18 (Tautology) A sentence ϕ is called a tautology (or valid sentence) if it
is satisfied in all interpretations, i.e. it is a logical consequence of the empty set of sentences:
|= ϕ.
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2.2.3. Normal Forms

Certain subsets of FOL, e.g. Logic Programming or Description Logics, only allow
FOL sentences that fulfill certain syntactic conditions. This subsection lists struc-
tural forms of FOL formulae that are important in our context.

Definition 2.2.19 (Substitution) Let ϕ be a formula, x be a variable and t be a term.
ϕ[x/t] is a formula, which is produced from ϕ by substituting the term t for every free
variable x in ϕ.

Definition 2.2.20 (Prenex normal form (PNF)) A formula ϕ ∈ ForΣ is in prenex nor-
mal form if it is of the form

ϕ ≡ Q1v1 . . . Qnvn.M

where each Qi ∈ {∀,∃} and M (matrix) is a quantifier free formula. Q = {Q1, . . . , Qn} is
usually called prefix.

Definition 2.2.21 (Conjunctive normal form (CNF)) A formula ϕ ∈ ForΣ in prenex
normal form is in conjunctive normal form, if it is a conjunction consisting of one or more
conjuncts, each of which is a disjunction of one or more literals li,j ∈ LΣ:

ϕ ≡ Q1v1 . . . Qnvn.(l1,1 ∨ . . . ∨ l1,n1) ∧ . . . ∧ (lk,1 ∨ . . . ∨ lk,nk
)

Definition 2.2.22 (Skolem standard form (SSF)) A formula ϕ ∈ ForΣ in prenex nor-
mal form is in Skolem standard form (or universal form) if the prefix does not contain any
existential quantifiers:

ϕ ≡ ∀1v1 . . .∀nvn.M

The proof of the following lemma is given in (Cremers et al., 1994)[pp. 35-36].

Lemma 2.2.1 Every formula ϕ ∈ ForΣ can be translated into an equivalent formula,
which is in CNF.

Every sentence ϕ in prenex normal form can be translated into a formula ψ in Skolem
standard form, where ϕ is satisfiable iff ψ is satisfiable.

The translation of a formula ϕ into Skolem standard form is also called skolemization
and can be carried out mechanically by Algorithm 2.1.
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Require:
A formula ϕ in PNF.
while ϕ contains ∃ do
ϕ = ∀y1∀y2 . . .∀yn∃z.ψ for a formula ψ in PNF and n ≥ 0;
Let f(y1, . . . , yn) be a new n-ary function symbol, which is not in ψ;
Let ϕ = ∀y1y2 . . . yn.ψ[z/f(y1, . . . , yn)];

end while
Ensure: ϕ

Algorithm 2.1: Skolemization algorithm

Definition 2.2.23 (Clause) A clause is the universal closure of a disjunction of literals
Li ∈ LΣ with i ∈ [1, n]:

∀1v1 . . .∀nvn.(L1 ∨ . . . ∨ Ln)

Definition 2.2.24 (Clause Normal Form) A sentence ϕ ∈ ForΣ is in clause normal
form, if it is a conjunction of clauses.

Lemma 2.2.2 A sentence ϕ ∈ ForΣ is satisfiable iff. its clause normal form is satisfiable.

The lemma follows directly from lemma 2.2.1 on page 18.

Since all variables in clauses are universally qualified, we will omit the quantifiers
if appropriate. We usually sort the literals Li ∈ LΣ and write positive literals on the
left hand side, and all negative literals on the right hand side of a clause:

L1 ∨ . . . ∨ Lk ∨ ¬Lk+1 ∨ . . . ∨ ¬Ln

A simple transformation leads to:

L1 ∨ . . . ∨ Lk ← Lk+1 ∧ . . . ∧ Ln

Definition 2.2.25 (Gentzen formula) A clause of the form

P1 ∨ . . . ∨ Pk ← N1 ∧ . . . ∧Nn

where Pi, Ni ∈ LΣ is called Gentzen formula.

Definition 2.2.26 (Horn formula) A Gentzen formula with k ≤ 1 is called Horn for-
mula.
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(P1, Ni ∈ LΣ) Formula Name
k = 1, n ≥ 1 P1 ← N1 ∧ . . . ∧Nn definite program clause (rule)

P1:- N1, . . . , Nn. (Prolog notation)
k = 1, n = 0 P1 ← (positive) unit clause (fact)

P1. (Prolog notation)
k = 0, n ≥ 1 ← N1 ∧ . . . ∧Nn definite goal clause (query)

:- N1, . . . , Nn (Prolog notation)

Table 2.1.: Terminology for Different Types of Clauses

2.3. Logic Programming

Logic Programming environments typically offer several proprietary constructs
with built-in semantics, which can be ignored for our purpose. This leads to the
presentation offered here, which is a purely declarative one that basically under-
stands logic programs as a finite set of horn formulae.

2.3.1. Syntax

Logic Programs consist of the three different types of Horn clauses that are pre-
sented in Table 2.1 on page 20. In the following we will use Prolog-style notation.
Implications ← will be written as :- , conjunctions ∧ are written as ”,“ and vari-
ables will be distinguished from constants by their capitalization. Each clause ends
with a ”.“.

Definition 2.3.1 (Program Clause) A program clause wrt. to Σ is a Horn formula of the
form

P1:- N1, . . . , Nn.

where the literals P1, Ni ∈ LΣ with i ∈ [0, n].

We distinguish three different types of clauses, which are presented in Table 2.1.

Definition 2.3.2 (Logic Program) Given a signature Σ, a logic program LP is defined
as a finite set of program clauses wrt. Σ.

The literal P1 in a definite program clause is called rule head (or left-hand side).
The conjunction of literals Ni in a definite program clause is called rule body (or
right-hand side).
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2.3.2. Semantics

Several possibilities to define the semantics of Logic Programs exist. We will
present a model theoretic approach and fixpoint semantics. The reader may note
that additional possibilites exist, e.g. SLD-resolution which is also a basis for eval-
uating logic programs.

2.3.2.1. Herbrand Models

If we choose model theory as an utility for defining the semantics of Logic Pro-
grams, we have to choose among an infinite number of possible structures. In
order to limit search for possible models to certain structures, we use the Herbrand
theory which imposes a syntactic restriction on the admissible structures. We will
define how the domain of Herbrand structures looks like and how terms are inter-
preted.

Definition 2.3.3 (Herbrand universe) The domain ∆H of a Herbrand structure for a
signature Σ = (C,F, P, V, a) is called Herbrand universe and is inductively defined as
follows:

• c ∈ ∆H for all c ∈ C;

• f(t1, . . . , tn) ∈ ∆H if f ∈ F and each ti ∈ ∆H

Consequently, the Herbrand universe is just the set of all ground terms that can be
built from the constant symbols and function symbols in the given signature Σ.

Definition 2.3.4 (Herbrand interpretation) A Herbrand interpretationH = (∆H , ·H)
consists of the Herbrand universe ∆H and an interpretation function ·H : C∪F → ∆H as-
signs the constants and functions of a signature Σ = (C,F, P, V, a), to ∆H , such that they
are assigned to ”themselves“, i.e. [c]HV = c and [f(t1, . . . , tn)]HV = f([t1]HV , . . . , [tn]HV ).

Definition 2.3.5 (Herbrand base) Given the Herbrand universe ∆H for a logic program
LP , the Herbrand baseBH is the set of all ground atoms (ground literals without negation)
that can be formed from predicate symbols in the logic program LP and terms in ∆H .

Definition 2.3.6 (Herbrand model) A Herbrand interpretation H which satisfies LP is
called Herbrand model for a logic program LP . It can be identified with the subset of the
Herbrand base BH for which each ground atom is valuated to true, i.e. [p(t1, . . . , tn)]HV =
true.
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The following proposition is shown in (Schöning, 1995)[pp. 82-83]:

Proposition 2.3.1 A sentence ϕ in skolem standard form is only satisfiable if it has a
Herbrand model.

Lemma 2.3.1 A logic program has a model if and only if it has a Herbrand model.

The lemma follows directly from proposition 2.3.1.

2.3.2.2. Fixpoint Semantics

Fixpoint semantics is an alternative way to define the semantics of logic programs.
Fixpoint semantics utilizes a function TLP which takes the set ground facts in LP
and computes a new set of facts by applying the definite program clauses of LP .

(Ceri et al., 1990)[p. 105] shows the following proposition:

Proposition 2.3.2 (Fixpoints are Herbrand models) If M ⊆ BH is a fixpoint of TLP
(i.e. TLP(M) = M ), then M is a model of LP .

We can understand a logic program LP as definition of an operator TLP : 2BH →
2BH , where 2BH denotes the set of all (possible) Herbrand interpretations of
LP . Different definitions for this operator, which is also called the immedi-
ate consequence operator, exist in the literature, e.g. in (Abiteboul et al., 1995;
Ceri et al., 1990); intuitively, it yields all atoms that can be derived by a single
application of some rule in LP given the ground facts of LP . All definitions of
TLP presented in the literature are monotone and continuous. This has interesting
consequences:

The Knaster-Tarski theorem (Tarski, 1955) states that every monotone fixpoint func-
tion has a least fixpoint. Consequently, TLP has a least fixpoint T∞LP , since TLP is a
monotone function. Moreover, since TLP is also continuous, by Kleene’s Theorem
T∞LP is the limit of the sequence T 0

LP = ∅, T i+1
LP = TLP(T i

LP), i ≥ 0.

It can also be shown that the minimal Herbrand model of a logic program LP is the
least fixpoint of TLP . Consequently, we can compute the minimal Herbrand model
by a fixpoint iteration. Moreover, the fixpoint is always reached within a finite
number of iteration steps for positive logic programs without function symbols,
i.e. Datalog programs.
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2.3.3. Variants and Extensions

2.3.3.1. Datalog

Datalog1 is a Logic Programming language, which two restrictions on rules and
syntax. Firstly, its signature is impoverished by only permitting predicate symbols
and constants. Secondly, all Datalog rules must be safe.

Definition 2.3.7 (Datalog Signature) A Datalog signature ΣD is a 4-tuple (C,P, V, a)
and consists of

• a set C of constant symbols,

• a set P of predicate symbols,

• a set V of variable symbols

• and a function a : P → N.

Definition 2.3.8 (Safe rule) A rule is safe, if all variables in the rule head also appear in
the rule body; in particular, all unit clauses are ground.

The restrictions are motivated by the fact that all models of Datalog programs are
finite if the number of constants is finite. The finiteness is due to the absence of
function symbols and the safety of rules.

Definition 2.3.9 (Datalog Program) Given a signature ΣD, a Datalog program LPD is
defined as a finite set of safe program clauses wrt. ΣD.

Definition 2.3.10 (Intensional, extensional predicates) The set P in the signature
ΣD is partitioned into two sets Pedb and Pidb such that P = Pedb∪Pidb and Pedb∩Pidb =
∅.

The elements of Pedb denote extensionally defined predicates, i.e. predicates that
are effectively used to assert the facts of the logic program. The elements of Pidb

denote intensionally defined predicates, i.e. predicates which are defined by ap-
pearing in the head of rules. The extension of Pidb predicates is defined implicitly
and is derived from the extensional predicates by interpretation of the LP .

1It is difficult to attribute Datalog to particular researchers because it is a restriction or extension of
many previously proposed languages; some of the early history is discussed in (Maier & Warren,
1988).
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Definition 2.3.11 (Extensional Database) The extensional database EDB is the set of
all predicates that occur only in the body of rules of LP .

Definition 2.3.12 (Intensional Database) The intensional database IDB is the set of
all predicates that occur in the head of rules of LP .

2.3.3.2. Equivalence

Many Logic Programming systems provide a built-in equivalence predicate to cap-
ture the equivalence of terms. The semantics of this predicate can be provided by
an equivalence theory, that is usually built into the system. For convenience, we
write the predicate infix instead of the usual prefix notation for predicates.

Definition 2.3.13 (Equivalence theory) Let Σ = (C,F, P, V, a) be a signature and LP
be a logic program. An equivalence theory =Σ consists of a dedicated set of formulas that
capture the five axioms of equivalence.

• Reflexivity: X = X:- .

• Symmetry: X = Y :- Y = X.

• Transitivity:X = Z:- X = Y, Y = Z.

Substitutivity ensures the correct semantics of equivalence with respect to function and
predicate symbols:

• Functions: For all f ∈ F :

f(x1, . . . , xn) = f(y1, . . . , yn):- x1 = y1, . . . , xn = yn.

• Predicates: For all p ∈ P :

p(x1, . . . , xn):- p(y1, . . . , yn), x1 = y1, . . . , xn = yn.

(Hoelldobler, 1987) shows that such an axiomatization renders the algebraic se-
mantics of an equivalence relation. The reader may note that the axioms of sub-
stitutivity have to be instantiated for all predicates p and functions f used in the
logic program. Other extensions of Logic Programming, which provide built-in
predicates for inequality or arithmetic predicates are defined similarly.
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2.3.3.3. Negation

The idea of adding negation to Logic Programming led to a flurry of research in the
mid-eighties and mid-nineties. This is due to the fact, that adding negation to Logic
Programs is not straightforward, i.e. it leads to non-monotonic reasoning. (Apt
& Bol, 1994) present a detailed survey and comparison of the different proposals
presented in the literature.

We will only consider the standard approach to extend Logic Programs with nega-
tion. We add a new operator ¬∗ whose semantics differs from the semantics for
first-order negation. The assigned semantics is based on the principle of negation
as failure. This principle states that ¬φ is a consequence ofLP if φ cannot be proven
from LP by any derivation. Thereby we implicitly apply the closed world assump-
tion (CWA) which states that for any ground atom φ, ¬φ is a consequence of LP if
φ cannot be proved from LP .

Definition 2.3.14 (Normal program clause) A normal program clause with respect to
a signature Σ is a formula of the form H:- B1 ∧ . . .∧Bn, where H ∈ LΣ and Bi are either
positive literals (Bi = Lj) or negated literals (Bi = ¬∗Lj) and all Lj ∈ LΣ.

Definition 2.3.15 (Normal Logic Program) Given a signature Σ, a normal program
LP∗ is defined as a finite set of normal program clauses with respect to Σ.

The terminology for normal logic programs, e.g. fact, rule, etc., is defined analo-
gously to (standard) logic programs.

The semantics of normal logic programs departs from the semantic of positive logic
programs due to the introduction of ¬∗. For example, it is no longer provided that
any (single) minimal Herbrand model exists for normal logic programs.

Example 2.3.1 Consider the following programs:

• LP1 = {p:- ¬∗p.} has no fixpoint.

• LP2 =
{
p:- ¬∗q.
q:- ¬∗p.

}
has two minimal fixpoints: {p} and {q}.

However, there are classes of logic programs for which single minimal Herbrand
models exist. These classes of logic programs have a syntactic characterization
based on predicate dependencies.
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2.3.3.4. Stratifiable Programs

We start our presentation with so-called semi-positive programs.

Definition 2.3.16 (Semipositive Programs) A normal program LP∗ is semipositive if,
whenever a negative literal ¬∗r(x1, . . . , xn) occurs in the body of a rule in LP∗, r ∈ Pedb.

As the name suggests semipositive programs are almost positive. One could elim-
inate negation from semipositive programs by adding a new predicate r to each
r ∈ Pedb holding the complement of r and replacing each ¬∗r by r. Thus it is not
surprising that semipositive programs have a unique minimal Herbrand model.

Stratifiable programs are a natural extension to semipositive programs. Here, the
use of negation is no longer restricted to EDB predicates, but limited to some de-
fined predicates (views) whose definition is independent from rules using the pred-
icate. Consequently such views can be treated as if they were EDB predicates. Un-
fortunately stratification does not provide semantics for all normal logic programs,
e.g. those presented in Example 2.3.1 on page 25, but many normal logic programs
can be transformed into an equivalent stratified logic program by a process called
stratification.

Definition 2.3.17 (Stratification) A stratification of a normal program LP∗ over a sig-
nature Σ is a sequence of normal logic programsLP∗1, . . . ,LP∗n such that for some mapping
ρ from Pidb to [1 . . . n]:

1. {LP∗1, . . . ,LP∗n} is a partition of LP∗;

2. For each predicate P ∈ Pidb, all rules in LP∗ whose head is P are in LP∗ρ(P ), i.e. in
the same program of the partition;

3. If P (u):- . . . P ′(v) . . . . is a rule in LP∗ and P ′ ∈ Pidb, then ρ(P ′) ≤ ρ(P );

4. If P (u):- . . .¬∗P ′(v) . . . . is a rule in LP∗ and P ′ ∈ Pidb, then ρ(P ′) < ρ(P ).

Each LP∗i is called a stratum of the stratification, and ρ is called the stratification
mapping.

There is a simple test for checking if a program is stratifiable, which involves testing
for an acyclicity condition in the definitions of predicates using negation. This is
achieved via a rule precedence graph.

Definition 2.3.18 (Rule Precedence Graph) The rule precedence graph GLP =
(V,E, {+,−}) of a logic program LP over a signature Σ is the labelled graph where
V = Pidb and
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• if P (u):- . . . Q(v) . . . then (P,Q) ∈ E and labelled with + (positive edge),

• if P (u):- . . .¬∗Q(v) . . . then (P,Q) ∈ E and labelled with − (negative edge).

(Abiteboul et al., 1995)[p. 380] show the following proposition:

Proposition 2.3.3 (Stratifiability of logic programs) A logic program LP is stratifi-
able iff its precedence graph GLP has no cycle containing a negative edge.

The semantics of stratified programs is obtained by applying, in order, the seman-
tics of programs of LP∗i . This provides the semantics of a logic program under
stratification ρ.

Several other semantics have been proposed for normal logic programs, but are not
used in this dissertation.

2.3.4. Reasoning Problems

Logic Programming supports one basic type of reasoning with respect to a logic
program LP , namely answering Atom Queries. Atom queries come in two variants.
Firstly, Open Atom Queries determine all substitutions (variable bindings) for all
variables in a goal clause (query) A. Secondly, Ground Atom Queries 2 determine
whether a ground atomic formula A is entailed.

2.3.5. Complexity

We briefly discuss the different complexity results known for Logic Programming.
Our discussion is based on the survey of (Dantsin et al., 2001). Naturally, different
complexity results can be obtained for the variants and extensions of Logic Pro-
gramming presented in Section 2.3.3 on page 23. Three main kinds of complexity
connected to Logic Programming can be distinguished (Vardi, 1982).

Data complexity is the complexity of checking whether EDB ∪ LP |= A when
logic programs LP are fixed, whereas input databases EDB and ground atoms A
are an input.

Program complexity is the complexity of checking whether EDB ∪ LP |= A
when input databases EDB are fixed whereas Logic Programs LP and ground
atoms A are an input.

2Ground atom queries are actually a special case of open atom queries.
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Combined complexity is the complexity of checking whether EDB ∪ LP |= A
where input databasesEDB, Logic programsLP and ground atomsA are an input.

2.3.5.1. Datalog

For plain Datalog, as well as for all other versions of Datalog considered in the the-
sis, the combined complexity is equivalent to the program complexity with respect
to polynomial-time reductions. This is due to the fact that each LP can be easily
rewritten into a program where all facts are encoded into rules (Dantsin et al., 2001).

Datalog is data complete for the complexity class P and program complete for EX-
PTIME (Vardi, 1982; Immerman, 1986). Moreover, Datalog precisely expresses the
complexity class P on ordered databases 3. If databases are not ordered, this result
does not hold. For example, one can write no Datalog program that determines
whether an even number of facts exists for a predicate p, which can easily be deter-
mined by a polynomial algorithm.

2.3.5.2. Datalog with negation

Since the stratification algorithm is a polynomial algorithm, stratified Datalog with
negation has the same complexity as plain Datalog, i.e. it is data complete for P and
program complete for EXPTIME (Implicit in (van Gelder, 1989; van Gelder et al.,
1991)).

2.3.5.3. Logic Programming

A classical result that can be taken from fixpoint theory is that Logic Programming
can express all recursively enumerable predicates, i.e. it is undecidable. Similarly a
reduction of Logic Programming to deterministic Turing machines is possible and
can be used to show that Logic Programming is computationally complete (Andeka
& Nemeti, 1978).

2.3.6. Evaluation Strategies

Unfortunately the model theoretic semantics gives us no hint on how to compute
answers to queries or how to entail implicit information. Moreover, the above
definitions do not even provide a reasonable method for testing whether a given

3An ordered database contains a special binary relation succ that provides a successor relation on all
constants in ∆H .
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ground fact φ is entailed by a logic program LP . This is due to three types of infin-
ity:

1. We have to check a infinite number of possible Herbrand models,

2. Many of the Herbrand models are infinite,

3. If a rule contains variables we must consider an infinite number of possible
variable substitutions.

Therefore evaluation algorithms typically compute the minimal Herbrand model.
Approaches to evaluation of logic programs fall into the two main categories of
Bottom-Up and Top-Down strategies.

2.3.6.1. Bottom-Up Strategies

Bottom-Up strategies typically compute the minimal Herbrand model starting with
ground facts and work their way upwards through a proof tree deriving new facts
until no new facts can be derived. Thereby, rules are seen as productions and are
processed forward in direction of implications. Therefore, these strategies are also
called Forward-Chaining strategies.

In this sense, we can consider fixpoint semantics as an prototypical bottom-up ap-
proach in the sense that a (naïve) forward-chaining implementation can directly
be derived from the definition TLP . Several other bottom-up strategies are well
known, e.g. naive, semi-naive, and Henschen-Naqvi methods. Detailed accounts
on these methods are given in (Ceri et al., 1990)[Chapter 9].

In practice, generating the minimal Herbrand model is often cumbersome, since,
even in the case of Datalog it is in general exponential in the size of the LP . More-
over, it is not always necessary to compute the whole model in order to determine
whether LP |= A for some particular fact A. Therefore a series of optimizations
for bottom-up strategies were proposed. In our context only one is relevant, the
so-called Magic Sets method.

The purpose of the Magic Sets (Ramakrishnan, 1991) method is the optimization of
Datalog programs with particular adornments of the goal predicates. It is a logical
rewriting method, viz. it transforms a given program into another equivalent pro-
gram. The transformation is based on the idea of Sideways Information Passing (SIP).
Intuitively, given a certain rule and a subgoal in the rule body with some bound
arguments, one can solve the subgoal and obtain bindings for uninstantiated vari-
ables in other argument positions. These bindings can then be transferred to other
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subgoals in the rule body and they, in their turn, transmit bindings to other vari-
ables. This is the normal behavior of top-down evaluation strategies, which are pre-
sented next. Therefore, the Magic Sets method can also be described as an attempt
to incorporate the binding passing strategy of top-down methods into bottom-up
methods.

2.3.6.2. Top-Down Strategies

Top-Down Strategies are completely different strategies of deriving new facts from
a logic program. They start from the query (goal clause) and work their way down
to facts in a top-down fashion. In a sense, the rules of the logic program are seen
as problem generators and each goal (query) is seen as a problem that must be
solved. These strategies, also known as Backward-Chaining strategies, are based on
variants of the famous Resolution Principle of Robinson (Robinson, 1965) and build
linear refutation trees. The major variant is SLD-Resolution 4 (Kowalski & Kuehner,
1971). It is important to note that SLD-resolution does not stand for a particular
algorithm, but for an entire class of algorithms, which particularly differ in their
proof tree traversal methods, e.g. breath-first or depth-first, and halting conditions.

Roughly, SLD-resolution can be described as follows. A goal is a conjunction of
atoms, and a substitution is a function σ that that maps variables x1, . . . , xn to
terms t1, . . . , tn. The result of simultaneous replacement of variables xi by terms
ti in an expression E is denoted by Eσ. For a given goal G and a program LP ,
SLD-resolution tries to find a substitution σ such that Gσ logically follows from
LP . The initial goal is repeatedly transformed until the empty goal is obtained.
Thus, this transformation performs a relevant optimization, because the computa-
tion automatically disregards many of the facts which are not useful for producing
the result. Each transformation step is based on the application of the resolution
rule to a selected atom Bi from the goal B1, . . . , Bm and a clause A0:- A1, . . . , An

from LP . SLD-resolution tries to unify Bi with the head A0, that is, to find a substi-
tution σ such that A0σ = Biσ. Such a substitution σ is called a unifier of A0 and Bi

. If a unifier σ exists, a most general such σ (which is essentially unique) is chosen
and the goal is transformed into

(B1, . . . , Bi−1, A1, . . . , An, Bi+1, . . . , Bm)σ.

A more detailed account of SLD-resolution and its extension for dealing with nega-
tion as failure (SLDNF) is given in (Lloyd, 1987).

4SLD is a shorthand for Linear Resolution with Selection Function for Definite Clauses.
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2.4. Description Logics

Description Logics have initially been designed to fit object-centric knowledge rep-
resentation formalisms like semantic networks and frame systems with a formal
and declarative semantics. During the 20 years of research in this field of knowl-
edge representation a family of logics has evolved, which can be distinguished from
each other by the constructors and axioms available in each language. Generally,
the particular selection of constructors and axioms is made such that inferencing
with the logic is decidable.

Consequently, most description logics turnout to be subsets or variants of C2, the
subset of first-order logic extended with counting quantifiers, where formulae with
no function symbols and maximum two variables, which is known to be decid-
able (Graedel et al., 1997). Description Logics can therefore also be understood as
an attempt to address the major drawbacks of using first-order logic for knowl-
edge representation, since all relevant inference problems in FOL are undecidable
and the epistemic neutrality of FOL leads to a rather cumbersome syntax, which is
addressed by DL by a variable-free notation.

2.4.1. Syntax

Description Logics are formalisms that support the logical description of classes
and properties. Consequently, the basic elements of description logics are so-called
classes,5 which group objects into categories and properties,6 which relate pairs of
objects with each other. An arbitrary class and property Description can be con-
structed from two disjoint sets of symbols, Class Names and Property Names (also
called Atomic Classes and Atomic Properties) using a variety of class- and property-
forming constructors, the range of which is specific for the particular description
logic (cf. Table 2.2 on page 32). AL (Schmidt-Schauß & Smolka, 1991) is usually
considered to be the basic description logic.

Example 2.4.1 (Childless Man) Given the atomic classes PERSON and FEMALE and
the atomic property HASCHILD we can describe a childless man in AL as

PERSON u ¬FEMALE u ∀HASCHILD.⊥.
5In the DL literature, the term Concept is used more often. We use the term Class as it is commonly

used in the Web ontology context.
6Again, the DL literature would use the term Role instead of the term Property as it is done in the

Web context.
7In some DLs Qualified number restrictions on properties are available, e.g. in DAML+OIL, hence

the number restriction is augmented with a universal quantification on the range of the property.
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Name Syntax Semantics Symbol
Atomic named class A AI AL (S)
Universal class (Top) > ∆I AL (S)
Empty class (Bottom) ⊥ ∅ AL (S)
Atomic complement ¬A ∆I\AI AL (S)
Conjunction (And) C uD CI ∩DI AL (S)
Value restriction ∀R.C {a ∈ ∆I|∀b((a, b) ∈ RI → b ∈ CI)} AL (S)
Limited existential restriction ∃R.> {a ∈ ∆I|∃b((a, b) ∈ RI)} AL (S)
Disjunction C tD CI ∪DI U(S)
Full complement ¬C ∆I\CI C(S)
Full existential restr. ∃R.C {a ∈ ∆I|∃b((a, b) ∈ RI ∧ b ∈ CI)} E(S)
Unqualified7number restr. ≥nR {a ∈ ∆I||{b ∈ ∆I|(a, b) ∈ RI}| ≥ n} N

≤nR {a ∈ ∆I||{b ∈ ∆I|(a, b) ∈ RI}| ≤ n}
Enumeration {i1, . . . , in} {iI1 , . . . iIn} O
Inverse property R− {(b, a) ∈ ∆I ×∆I|(a, b) ∈ RI} I
Transitive property R+

⋃
n≥1 (RI)n R+(S)

Table 2.2.: DL Class and Property Constructors

Many applications, e.g. reasoning about database schemas (Calvanese et al., 1998)
or ontological engineering (Doyle & Patil, 1991) are supposed to require more ex-
pressive logics than AL. Hence, several approaches to extending AL have been
taken in the literature. The two most prominent possibilities are providing ad-
ditional constructors for forming classes and properties, prominent examples for
such additions are listed in Table 2.2,8 and formulating restrictions on the interpre-
tation of properties. (Schmidt-Schauß & Smolka, 1991) suggest a naming scheme
in which a letter or symbol is assigned to each extension of AL and written after
the starting AL. For example, the extension of AL with transitive roles (R+) and
full class complement (C) is called ALCR+ . The ALCR+ logic is often abbreviated
as S.9 Some of the logics are equivalent to each other, for exampleALC andALUE ,
since both disjunction and full existential quantification can be expressed with the
full complement in combination with other constructors available in AL and vice
versa.

8This table is by no means exhaustive and captures only the proposed extensions that are relevant
for this dissertation.

9This is due to its vague correspondence with the propositional (multi) modal logic S4(m) (Schild,
1991).
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2.4.1.1. Axioms

A description logic knowledge base usually consists of a set of axioms (cf. Table2.3),
which can be distinguished into terminological axioms (building the so-called TBox
T ) and assertional axioms or assertions (constituting the ABox A).

Name Syntax Semantics Symbol
TBox:
Class Equivalence C ≡ D CI = DI

Class Subsumption C v D CI ⊆ DI

Property Equivalence P ≡ R P I = RI

Property Subsumption P v R P I ⊆ RI H
ABox:
Individual assertion C(i) iI ∈ CI

Property filler R(a, b) (aI, bI) ∈ RI

Individual equivalence i = j iI = jI

Individual inequivalence i 6= j iI 6= jI

Table 2.3.: DL Axioms

TBox A TBox is constituted by a finite set of terminological axioms which define
subsumption and equivalence relations on classes and properties (cf. Table 2.3).
An equivalence axiom whose left-hand side is an atomic class (property) is called
a class (property) definition. The respective class on the left-hand side of the equiv-
alence axiom is called defined Class. Axioms of the form C v D for complex class
descriptions C,D are called (general) inclusion axioms. C is called a primitive class, if
it is atomic and occurs on the left-hand side of an inclusion axiom. Moreover, the
set of axioms of the form R ⊆ S where both R and S are atomic classes (properties)
is called a class (property) hierarchy. We say that a class A directly uses a class B in
T if B appears on the right-hand side of the definition of A. Uses is the transitive
closure of the relation directly uses. We say, that a TBox T is cyclic, if any atomic
class A uses itself. An example TBox is presented in Table 2.5 on page 35.

ABox Assertional axioms or Assertions introduce Individuals, i.e. instances of a
class, into the knowledge base and relate individuals with each other and the intro-
duced terminology. We can distinguish four kinds of assertions (cf. Table 2.3): Class
Assertions express that an individual is member of a class. Property fillers express,
that two individuals are related with each other via a given property. Individual
equivalence assertions allows to express that two individuals are actually equiva-
lent. Similarly, Individual inequivalence axioms allow to express that two individuals
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are not the same. A finite set of such assertions is called ABox . An example ABox
is presented in Table 2.5 on page 35.

Name Syntax Semantics
Datatype Property T T I ⊆ ∆I ×∆I

D

Datatype d dD ⊆ ∆D

Datatype Negation ¬d ∆D \ dD

Datatype Exists ∃Td {x|∃y.(x, y) ∈ T I ∧ y ∈ dD}
Datatype Value ∀T.d {x|∀y.(x, y) ∈ T I → y ∈ dD}

Table 2.4.: Extension of a DL with a Concrete Domain

2.4.1.2. Concrete Domains

Since knowledge in Description Logics has to be represented on an abstract logical
level, the possibility of reasoning on specific Concrete Domains such as numbers
and strings is missing for many applications. In order to fill this gap (Baader &
Hanschke, 1991; Pan & Horrocks, 2002) parameterize the logic with a given concrete
domain and define new class constructors that allow to refer to predicates defined
for the domain. More precisely, a new syntactic type called datatype properties10

allows to attach elements of the concrete domain, e.g. natural numbers, to elements
of the logical domain. Further class constructors (cf. Table 2.4) can then be used to
describe constraints on the concrete data.

Example 2.4.2 (Adult) For example, if we take a concrete domain ∆D that provides nat-
ural numbers and an unary predicate ≥18, we can express the condition that adults are
persons of age by usage of the class PERSON and the datatype property HASAGE

ADULT ≡ PERSON u ∃HASAGE. ≥18,

2.4.2. Semantics

The semantics of Description Logics is usually given in a Tarski-style model-
theoretic manner. Hence, we consider interpretations I = (∆I, ·I). The non-
empty set ∆I serves as the domain of the interpretation, whereas the interpretation
function ·I assigns a set AI ⊆ ∆I to every atomic class A and a binary relation
RI ⊆ ∆I ×∆I to every atomic property R. The interpretation function is extended

10(Areces & Lutz, 2002) speak of concrete features, (Pan & Horrocks, 2002) speak of concrete roles.
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TBox
(T1) WOMAN v PERSON
(T2) MAN v PERSON u ¬WOMAN
(T3) WIFE v WOMAN u ∃MARRIEDTO.HUSBAND
(T4) HUSBAND v MAN u ∃MARRIEDTO.WIFE
(T5) FATHER ≡ MAN u ∃HASCHILD.PERSON
(T6) MOTHER ≡ WOMAN u ∃HASCHILD.PERSON
(T7) HASCHILD v ANCESTOROF

(T8) ANCESTOROF+ v ANCESTOROF

(T9) MARRIEDTO− v MARRIEDTO
(T10) ∃LIVESIN.{LEIPZIG} v LEIPZIGINHABITANT
(T11) GENIUS u COMPOSER v ∀HASCOMPOSED.MASTERPIECE
(T12) BIRTHDAYCANTATA v ∃FOREVENT.BIRTHDAY u CANTATA uHOMAGE
(T13) CANTATA v VOCALCOMPOSITION u INSTRUMENTALCOMPOSITION
(T14) VOCALCOMPOSITION v COMPOSITION u ∃FORINSTRUMENT.VOICE
(T15) INSTRUMENTALCOMPOSITION v COMPOSITION u ∃FORINSTRUMENT.¬VOICE

(T16) INDYNASTY− v INDYNASTY
(T17) ANCESTOROF v INDYNASTY

ABox
(A1) ∃HASCHILD.MAN(JOHANN-AMBROSIUS)
(A2) COMPOSER uMAN(JOHANN-SEBASTIAN)
(A3) PERSON(WILHELM-FRIEDEMANN)
(A4) HASCHILD(JOHANN-SEBASTIAN,WILHELM-FRIEDEMANN)
(A5) WOMAN(ANNA-MAGDALENA)
(A6) MARRIEDTO(JOHANN-SEBASTIAN, ANNA-MAGDALENA)
(A7) MAN(JOHANN-AMBROSIUS)
(A8) LIVESIN(JOHANN-SEBASTIAN, LEIPZIG)
(A9) GENIUS(JOHANN-SEBASTIAN)
(A10) HASCOMPOSED(JOHANN-SEBASTIAN, BWV248)
(A11) WOMAN(MARIA-BARBARA)
(A12) MARRIEDTO(JOHANN-SEBASTIAN,MARIA-BARBARA)
(A13) CANTATA(BWV248)
(A14) BIRTHDAYCANTATA(BWV213)
(A15) BIRTHDAYCANTATA(BWV214)
(A16) . . .

Table 2.5.: The Bach Family Knowledge Base
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to class and property constructors by inductive definition (cf. the column Semantics
in Table 2.2 on page 32). We give semantics to assertions by extending the inter-
pretation function to individual names mapping each individual a to an element
aI ∈ ∆I.

2.4.2.1. Terminological axioms

The semantics of axioms is defined via set relationships (cf. the column Semantics
in Table 2.3 on page 33). For example, an interpretation I satisfies an inclusion
C v D if CI ⊆ DI. An interpretation satisfies (or is a model of) a TBox T if it
satisfies each element of T (analogously for ABoxes A). For this interpretation of a
TBox T , the atomic classes in T are divided into two sets, Name SymbolsNT , which
occur on the left-hand side of some axiom and Base Symbols BT , that occur only on
the right-hand side of axioms. A Base Interpretation J interprets only base symbols.
Any interpretation I that interprets also name symbols is an extension of J if it has
the same domain, viz ∆I = ∆J and if it agrees with J on the base symbols. The
TBox T is definitorial, i.e. has unequivocal meaning, if every base interpretation
J has only one extension. In other words, the meaning of the name symbols is
completely determined.

Acyclic Tboxes Acyclic TBoxes have the nice property of being definitorial, since
the definitions of name symbols NT can be understood as macros, which can be
expanded out recursively such that the right-hand side of axioms in T only contains
base symbols.

Cyclic TBoxes Generally, cyclic Tboxes T are not definitorial, i.e. no unique ex-
tension of the base interpretation exists. In this case, one can either assign descriptive
semantics (cf. (Nebel, 1991)) and accept the set of possible extensions of the base in-
terpretations as interpretations, or sort out a particular interpretation among the
possible extensions. This is done in least and greatest fixpoint semantics, which
view T as a function that associates to a name symbol A the class description C,
viz. T (A) = C. The interpretation of A is then considered as a fixpoint equation,
AI = T (A)I, and T is definitorial iff every base interpretation J has a unique ex-
tension that is a fixpoint of T . Least fixpoint semantics would then only consider least
fixpoints as admissible interpretations of T , where I of T is the least fixpoint (lfp)
if I ≤ I′ for every other fixpoint I′. Analogously greatest fixpoint semantics would
consider only the greatest fixpoint as admissible interpretation of I. Unfortunately,
least and greatest fixpoints must not exist for every terminology T , therefore mod-
ern description logic systems usually assign descriptive semantics to cyclic Tboxes.
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General inclusion axioms If a TBox contains general inclusion axioms, it is not
definitorial, but can be made so by turning inclusion axioms into class equivalence
axioms using the following rewriting:

C v D ⇔ C ≡ C uD

where C stands for the qualities of C that distinguish C from D. This rewriting is
called normalization and it can be shown that the rewriting preserves the semantics
of the TBox.

Property Hierarchy The property hierarchy obviously imposes restrictions on
the interpretation of properties similar to inclusion axioms. The fact that the knowl-
edge base may contain a property hierarchy is sometimes indicated by appending
H to the name of the Description Logic.

2.4.2.2. Assertional axioms

I maps each individual name a to an element aI ∈ ∆I in the domain of discourse.
The semantics of the different ABox axioms are stated in the column semantics in
Table 2.3 on page 33. For example, I satisfies a class assertion C(a) if aI ∈ CI.
Similarly, when related to a TBox T , the interpretation I satisfies an assertion α (or
a whole ABox A) if it is both a model of α (or A) and a model of T .

2.4.2.3. Concrete domains

The semantics we assign to datatypes follows the approach of (Horrocks & Sattler,
2001):11 To present concrete domains a Description Logic is extended with a set D
of concrete datatypes, and with each d ∈ D, a set dD ⊆ ∆D is associated, where ∆D

is the domain of all datatypes. We will assume that:

1. the concrete domain ∆D and the domain of interpretation ∆I are disjoint,

2. a sound and complete decision procedure12 for the emptiness of expressions
of the form dD

1 ∩ . . . ∩ dD
n , where di is a (possibly negated) concrete datatype

from D.
11This approach is simpler than the approach of (Baader & Hanschke, 1991), which allows the DL to

form new datatypes. For the setting of Semantic Web applications we expect that the type system
is already sufficiently structured and may include a derivation mechanism and built-in ordering
relations, i.e. such as provided by the XML Schema type system.

12which must be provided by a separate inference component that can deal with a given concrete
domain, e.g. with the arithmetics of natural numbers.
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The Description Logic is additionally fitted with a new type of properties, so-called
datatype properties T , and two new class constructors, datatype existential and
datatype universals. The required extensions to our interpretation function are
stated in Table 2.4 on page 34, for example the interpretation function ·I assigns
a binary relation T I ⊆ ∆I ×∆D to every datatype property T . Typically, property
inclusion axioms of the form T v R (or R v T ) for a property R and a datatype
property T are disallowed, since the disjointness of ∆D and ∆I leads that each
model of such axioms necessarily interprets T (or R) as the empty relation.

2.4.3. Reasoning Problems

For Description Logics various reasoning tasks are usually considered. These tasks
allow to draw new conclusions about the knowledge base or check its consistency.
As we will see below checking the consistency is the primary reasoning problem.
We will call QDL the language defined by the kinds of DL reasoning problems
stated below.

2.4.3.1. TBox

Some reasoning tasks only consider a TBox T :

• Satisfiability A class C is satisfiable with respect to T , if a model I of T exists,
where CI 6= ∅. I is then also a model of C. We can check whether the whole
TBox is satisfiable by asking whether > is satisfiable.

• Subsumption A class D subsumes a class C with respect to T , if CI ⊆ DI for
all models I of T . We write T |= C v D. Property subsumption is defined
analogously. We can distinguish two derived kinds of subsumption queries.
Firstly, we can ask for the embedding of a given class C in the class hierarchy
induced by T . This problem can come in several variants. We can query for
all or only the most-specific (named) superclasses of C and for all or only the
most-general (named) subclasses of C in T . Moreover, we can classify the
complete TBox, i.e. compute subsumption for all pairs of classes. Property
subsumption is defined analogously.

• Equivalence Two classes C and D are equivalent with respect to T , if CI = DI

for all models I of T . We write T |= C ≡ D. Property equivalence is defined
analogously.

• Disjointness Two classes C andD are disjoint with respect to T , if CI∩DI = ∅
for all models I of T .
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Example 2.4.3 The class PERSON subsumes FATHER in the TBox presented in Table 2.5
on page 35. All classes in this TBox are satisfiable.

2.4.3.2. Reduction to other inferences

For Description Logics without full negation, e.g. AL, all inferences can be reduced
to subsumption. For example, a class C is unsatisfiable iff C is subsumed by ⊥. If,
a Description Logic offers both intersection and full complement, satisfiability be-
comes the key inference of terminologies, since all other inferences can be reduced
to satisfiability (cf. (Smolka, 1988)). Consequently, algorithms for checking satisfia-
bility are sufficient to obtain decision procedures for any of the four inferences we
have discussed. Moreover, this observation gave rise to the research on specialized
tableau calculi which are used in the current generation of DL systems.

Elimination of the TBox If a TBox is acyclic, we can eliminate the TBox by ex-
panding13 all class descriptions using the equivalences and inclusions stated in the
TBox. Therefore, it suffices to consider (expanded) class descriptions with respect
to the inference problems presented above.

During the design phase of the TBox, the above mentioned inferences are typically
used to determine whether all classes are satisfiable and that expected subsumption
relationships hold.

2.4.3.3. ABox

Reasoning tasks usually come into play after the design of the TBox, e.g. all classes
are typically satisfiable. As the ABox contains two kinds of assertions, viz. class as-
sertions C(i) and property assertions R(a, b), reasoning tasks typically considered
for ABoxes are the following:

• Consistency An ABox A is consistent with respect to a TBox T ,14 if there is an
interpretation I that is a model of both A and T . We say A is consistent, if it
is consistent with respect to the empty TBox.

• Instance checking An assertion α is entailed by A ( A |= α), if every interpre-
tation I that satisfies A also satisfies α. A common reduction for α = C(a) is
to check whether A∪ {¬C(a)} is inconsistent. (Schaerf, 1994) has shown that

13(Nebel, 1990) shows that the expansion can be exponential in the size of the original class descrip-
tion.

14If T is eliminated via expansion, the expansion must also be applied to A.
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ABox consistency can be reduced to class consistency, if a language possesses
the O constructor. Otherwise instance checking is usually harder than class
satisfiability (Donini et al., 1994).

• Retrieval problem Given an ABox A and a class C, find all individuals a such
that A |= C(a). Dually we can find all named classes C for an individual a
for which A |= C(a).

• Property fillers Given a property R and an individual i with respect to a TBox
T and a ABox A, retrieve all individuals x which are related with i via R, viz.
{x|(T ,A) |= R(i, x)}. Similarly we can retrieve the set of all named properties
R between two individuals i and j, ask whether the pair (i, j) is a filler of P
or ask for all pairs (i, j) that are a filler of P .

Typically, DL systems give support for the stated TBox problems, however only
one system, namely RACER (Haarslev & Moller, 2001), currently supports ABoxes
and the above-mentioned inference problems.

2.4.4. Complexity

Naturally, the question arises how difficult it is to deal with the above reasoning
problems. Traditionally, the complexity of reasoning has been one of the major is-
sues in the development of Description Logics. While studies about the complexity
of reasoning problems initially were focused to polynomial-time versus intractable
(Brachman & Levesque, 1984), the focus nowadays has shifted to very expressive
logics such as SHIQwhose reasoning problems are EXPTIME-hard or worse.

no OR source OR source
no AND AL, ALN ALU , ALUN
source PTIME NP-complete
AND ALE ALC, ALCN , ALEN (Hemaspaandra, 1999)
source coNP-complete PSPACE complete

Table 2.6.: Complexity of Satisfiability for AL languages w/o TBox

One can see that exponential-time behavior of some Description Logics is due to
two independent origins: an AND source which corresponds to the size of a single
model candidate and an OR source which is constituted by the number of model
candidates that have to be checked. An example OR source is disjunction, where
we can alternatively assign an element of a model to several classes and we have
to check every alternative. No OR source therefore means that we can check the
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validity of a single model. However, if an AND source such as the existential re-
striction is present, we may have to expand the model with new elements. Table 2.6
on page 40 classifies the several Description Logics of the AL family with respect
to both sources. The complexity of the S family of languages that are relevant for
the Semantic Web is listed in Table 2.7 on page 41.15

Description Logic Complexity
S PSPACE-complete16

SI PSPACE-complete17

SH EXPTIME-complete
SHIF EXPTIME-complete
SHIQ EXPTIME-complete
SHIOQ NEXPTIME-hard

Table 2.7.: Complexity of Satisfiability for S languages

The presence of a cyclic TBox can increase the complexity of reasoning problems.
Even for AL, presence of a general TBox leads to EXPTIME-hardness (Nebel, 1990),
which also effects Description Logics like SH, which allow the internalization of
general inclusion axioms. An extension with datatypes also effects the complexity.
Given that we distinguish datatype properties, satisfiability is decidable if the in-
ference problems for the concrete domain are decidable (Horrocks & Sattler, 2001).

Complexity results also give motivation why no other property constructors have
been presented here. For example, adding role composition to AL already leads to
undecidability of the Description Logic (Baader et al., 2003)[Section 5.9].

2.4.5. Evaluation Strategies

Early DL Systems who dealt with simple logics without full complement, e.g. AL,
used structural subsumption algorithms to deal with the subsumption problem
(and consequently all other TBox problems). These subsumption algorithms oper-
ate on normalized class definitions and compare their syntactic structure. While
these algorithms are sound and complete for simple languages and also show very
efficient performance in practise, they cannot be used for expressive languages,
which provide either disjunction or full existential restrictions (and consequently
the full complement).

15Please note that these logics disallow the combination of transitive properties and cardinality re-
strictions, otherwise the logics are undecidable.

16Without TBox.
16Without TBox.

41



2. Logical Foundations

Modern systems such as RACER (Haarslev & Moller, 2001) use algorithms, which
can be understood as specializations of FOL tableaux calculi. Again, these algo-
rithms operate on the negation normal form (NNF)17 of a class definition and then
try to systematically construct a model for a class, viz. CI 6= ∅.18 The algorithm
generates individuals and imposes constraints on it. If an individual can be found
that satisfies all constraints, we have found an interpretation for the class. The
constraint checking is done expanding the tableaux with tableau-expansion rules.
Since these rules can be non-deterministic several expansions can exist, which are
the explanation for many of the above mentioned complexity results. The modular-
ity of tableau-expansion rules is beneficial for incorporating new constructors into a
Description Logic, since we only need one further rule for each constructor. Hence,
sound and complete tableau-based algorithms are known for all Description Logics
presented here.

In order to make tableau algorithms usable (in spite of the discouraging tractability
results) several optimizations are usually implemented, which lead to ”empirical“
tractability of realistic TBox problems even for expressive languages like SHIQ.
However no known ”practical“ algorithms for SHIOQ (D) exists. Nor do any
”practical“ algorithms exist for ABox problems in expressive Description Logics.

Notably, a third approach for the evaluation of Description Logics mainly stems
from complexity analysis and is based on a reduction to automata, which operate
on infinite trees. A class is satisfiable iff. the language accepted by an automaton is
not empty (Calvanese et al., 2002)[ Section 5.3].

17A NNF has the characteristic that negations only occur in front of atomic class names.
18This means that there must exist an individual in ∆I that is an element of CI.
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Der Mensch besitzt die Fähigkeit Sprachen zu bauen,
womit sich jeder Sinn ausdrücken lässt,

ohne eine Ahnung davon zu haben,
wie und was jedes Wort bedeutet.

Ludwig Wittgenstein,
Tractatus Logico-philosophicus,

4.002
This chapter presents the architecture and components of the Semantic
Web (Berners-Lee, 1999) whose aim is to increase machine support for the in-
terpretation and integration of information on the World Wide Web (WWW). Since
the Semantic Web is still in genesis, this chapter can only describe the state in
February 20041.

The layered architecture (cf. Figure 3.1 on page 45), which was envisioned for the
Semantic Web by its inventor Tim-Berners Lee (Berners-Lee, 2000b), will guide us
through the chapter. Section 3.1 sketches the fundamental ideas behind the Se-
mantic Web and introduces the layered architecture. Section 3.2 on page 46 reca-
pitulates the syntax layer and briefly introduces the Extensible Markup Language
(XML), the accompanying languages for defining schemas and discusses the in-
adequacy of XML as a semantic foundation of the Semantic Web. Section 3.3 on
page 49 presents the data layer and describes the Resource Description Framework
(RDF), which is intended to be the unifying data model for all Semantic Web data
purposes. We discuss the proposed semantics for RDF data and the associated
vocabulary definition language RDF Schema (RDFS) and present an (incomplete)
axiomatic formalization of RDF in Datalog. Section 3.4 on page 60 presents the on-
tology vocabulary layer and introduces the Web Ontology Language (OWL) and its
subsets OWL Lite and OWL DL. We relate the language to the Description Logics
SHIF(D) and SHINO(D) presented in Section 2.4 on page 31 and discuss limi-
tations of the language. Section 3.5 on page 70 presents current proposals for rules
on the Semantic Web and discusses their relation with the other layers presented
before.

1In which both RDF and OWL reached W3C recommendation status
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3.1. Introduction

The term Semantic Web, which was coined by the inventor of the web, Sir Tim
Berners-Lee, in (Berners-Lee, 1999), stands for the idea of a future Web which aims
to increase machine support for the interpretation and integration of information
on the World Wide Web (WWW).

The World Wide Web Consortium (W3C), which is the standardization body re-
sponsible for the Web, defines the term Semantic Web in its ”Semantic Web Activity
Statement“ (W3C, 2001) as follows:

Definition 3.1.1 (Semantic Web) ”The Semantic Web is an extension of the current web
in which information is given well-defined meaning, better enabling computers and people
to work in cooperation.“ (W3C, 2001)

The need for a Semantic Web has been motivated by the fact that ”the mix of content
on the web has been shifting from exclusively human-oriented content to more and
more data content.“ (W3C, 2001). Hence, techniques for ”more effective discovery,
automation, integration, and reuse across various applications [are needed] for the
web to reach its full potential [...]“ (W3C, 2001).

The Semantic Web provides a solution by having data defined and linked in a
way such that these techniques can be provided on top. Eventually, the Seman-
tic Web should provide an ”[...] universally accessible platform that allows data to
be shared and processed by automated tools as well as by people“ (W3C, 2001).

According to Sir Tim Berners-Lee (Berners-Lee, 2000b) the following requirements
must be fulfilled by a Semantic Web:

1. providing a common syntax for machine understandable statements,

2. establishing common vocabularies,

3. agreeing on a logical language,

4. using the language for exchanging proofs.

At the same time Berners-Lee suggested that these requirements depend on each
other and invented a layered, functional architecture (cf. Figure 3.1 on page 45
from (Berners-Lee, 2000b)), aka. ”Layer Cake“, that addresses the requirements
and other design issues formulated for the Semantic Web in (Berners-Lee, 1998).
According to this architecture, the Semantic Web is expected to be built in an incre-
mental fashion and each layer alone is able to provide added value by providing
unique functionality.
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Figure 3.1.: Semantic Web Layer Cake (Berners-Lee, 2000b)

The Semantic Web architecture grounds itself on available standards for refering
to entities, viz. Uniform resource identifiers (URIs) (Berners-Lee et al., 1998)2, and
encoding of character symbols, i.e. Unicode (The Unicode Consortium, 2003), and
reuses existing Web technologies like the Extensible Markup Language (XML) (Bray
et al., 2000) for syntactic purposes. The core layers of the architecture, viz. XML,
RDF, Ontology and Logic will be the subject of the subsequent sections on Syntax
(Section 3.2 on page 46), Data (Section 3.3 on page 49), Semantics (Section 3.4 on
page 60) and Rules (Section 3.5 on page 70). The top layers providing Proof and
Trust are starting to be addressed by research today.3 Consequently, we cannot
give an explicit account of these layers but only describe their intention. According
to (Berners-Lee, 1998), the ability to check the validity of statements made in the
(Semantic) Web is important. Therefore the creators of statements should be able
to provide a proof of correctness of the statement which is verifiable by a machine.

2URL (uniform resource locator) refers to a locatable URI, e.g. an http://... address. It
is often used as a synonym, although strictly speaking URLs are a subclass of URIs, see
http://www.w3.org/Addressing .

3See (Richardson et al., 2003) for a first approach to Trust and (McGuiness & da Silva, 2003) for an
approach to Proof.
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At this level, it is not required that the machine that reads the statements finds
the proof itself, it ‘just’ has to check whether the proof provided by the creator is
feasible enough to trust the provided statements.

3.2. Syntax Layer

This section introduces the syntactic layer of the Semantic Web, where each col-
lection of syntactic entities is constituted by documents that are encoded in the
Extensible Markup Language (XML) (Bray et al., 2000). XML provides a standard
way to encode documents and is surrounded by a family of specifications. For the
Semantic Web context, two of these specifications are important. Firstly, the XML
Schema standard (Thompson et al., 2001), which is primarily a mechanism to define
grammars for legal XML documents. XML Schema additionally provides a number
of predefined datatype definitions and rules to define and derive new datatypes.
Secondly, the XML Namespaces (XMLNS) specification (Bray et al., 1999), which
allows to use multiple heterogeneous vocabularies within a single document. The
following subsections describe these specifications further.

3.2.1. Extensible Markup Language (XML)

XML (Bray et al., 2000) is a meta language for creating markup languages. Markup
languages are usually intended to specify a syntactic encoding of documents al-
lowing their exchange between applications. To this extent, XML defines a set of
syntactic rules that allow to regard documents as labelled trees. Documents that
obey the syntactic rules of XML are called well-formed.

Example 3.2.1 (XML Namespaces) Namespace usage in an RDF/XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF xmlns="http://www.jsbach.org/bach#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<rdf:Description rdf:about="#BWV214">

<rdf:type rdf:resource="#BirthdayCantata"/>
<hasTitle>

Tönet, ihr Pauken, erschallet, Trompeten !
</hasTitle>
<hasLyrics rdf:resource="#Lyrics-BWV214"/>
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<inDeferenceTo rdf:resource="#Friedrich-von-Sachsen"/>
</rdf:Description>

</rdf:RDF>

The well-formed XML document in Example 3.2.1 creates a balanced tree of nested
sets of named elements. Each element (e.g. rdf:Description ) is started and
ended by so-called tags, and might itself contain other elements (e.g. hasTitle ).
The name of the starting and closing tag of each element must be the same4 (e.g.
<hasTitle> and </hasTitle> ) and is used to label the element. Each element
can include several attribute-value pairs (e.g. name="rdf:about" ) which are
stated together with the starting tag.

3.2.2. XML Namespaces

Different XML applications can easily declare the same vocabulary for attribute
or element names. The XML Namespace specification (Bray et al., 1999) has been
devised to distinguish the names of different applications. This is achieved by pre-
fixing each name with a namespace, which must be declared as an attribute in one of
the superelements (preferably the root element). As we can see in Example 3.2.1 on
page 46, each namespace declaration assigns an URI fragment to a shortcut. When
the XML document is parsed, all names are expanded with the namespace URI and
can be uniquely identified by the respective XML application.

3.2.3. XML Schema Languages

XML itself is based on the simple idea of representing documents as trees. How-
ever, many applications can only make use of special trees, viz. documents that
are valid by conforming to a predefined structure and vocabulary. Tree grammars
are used to restrict the structure of a document. Such tree grammars can be de-
fined using two W3C specifications, Document Type Definition (DTD) (Bray et al.,
2000) and XML Schema (Thompson et al., 2001). XML Schema is more powerful
than DTDs5, since it supports the derivation of element types (similar to subclass-
ing in object-oriented languages), permits ’all’ groups and nested definitions and

4If an element contains no subelements the starting and closing tag must fall together, e.g.
inDeferenceTo in Example 3.2.1 on page 46.

5XML Schema is also more complex than DTDs, requiring ten times more pages for its description
compared to XML 1.0 (which included DTDs). Unfortunately this complexity also leads to the
situation that no complete formal specification of the XML Schema language exists (cf. (Brown
et al., 2001; Simeon & Wadler, 2003) for first approaches).
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provides atomic data types (such as integers, floating point, dates, etc.) in addi-
tion to character data. Currently, the primary role of XML Schemas in the Semantic
Web is the provision of data types (cf. Figure 3.2 on page 49), which can be used to
type element content and attributes. Example 3.2.2 on page 48 illustrates how the
datatype ”BWVEntry“ can be defined using XML Schema.

Example 3.2.2 (Complex type definitions) An entry in the Bach Werke Verzeichnis
(BWV) is composed of a single number, written for at least one instrument and might
have a creation year:

<xsd:complexType name="BWVEntry">
<xsd:sequence>

<xsd:element name="number" type="xsd:int"
minOccurs="1" maxOccurs="1" />

<xsd:element name="forInstrument" type="xsd:string"
minOccurs="1" maxOccurs="unbounded" />

<xsd:element name="creationYear" type="xsd:gYear"
minOccurs="0" maxOccurs="1" />

</xsd:sequence>
</xsd:complexType>

3.2.4. Discussion

It is important to note that DTD and XML Schema only specify syntactic and struc-
tural conventions for exchange of documents between (a set of) applications. There-
fore, they were not designed to provide a semantic description of the domain in
which the applications operate (Erdmann, 2001). This semantic description is out-
side the realm of the XML specification and is achieved by the upper layers of the
Semantic Web layer cake.

Nowadays, many people use XML not only for document exchange purposes but
also for data exchange where one can consider XML as a data model that allows to
express non-first normal-form (NF2) relations (Abiteboul & Bidoit, 1986), yielding
a very expressive data model. However, due to this expressivity and the polymor-
phism of possible syntactic encodings, the exchange of data where applications do
not have an a-priori understanding of the data scheme, is limited (Tolle, 2000)[Sec-
tion 2.4.3.3]. For example, data can be similarly encoded in attribute values or
element contents. Additionally, it is not clear what the nesting of elements means.
In many cases, it encodes the individual (possibly multi-valued) attributes of some
information object, in other cases it encodes information about set membership.
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Figure 3.2.: Hierarchy of RDF-compatible XML Schema datatypes

3.3. Data Layer

3.3.1. Resource Description Framework (RDF)

The Resource Description Framework (RDF) (Klyne & Carroll, 2003) tries to im-
prove data interoperability on the Web by specializing the XML data model. Our
exposition of RDF excludes many aspects of the specification. For a full account,
the interested reader may refer to the RDF suite of specifications (Beckett, 2003;
Grant & Beckett, 2003; Manola & Miller, 2003; Klyne & Carroll, 2003; Hayes, 2003;
Brickley & Guha, 2003).
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3.3.2. Data Model

In essence, RDF allows to syntactically encode labeled directed graphs using a ded-
icated XML syntax. In RDF, the term graph is used synonymously with the term
model.6

Vertex types In an RDF graph several types of vertices are distinguished:

• Resource: Resources are vertices which represent object identifiers. Resources
are usually represented by an URI.

• Literal: Literals are vertices which denote data values. Each literal can be
associated with an XML Schema datatype.

• Property: Properties are those resources, which are used as labels of graph
edges.

Definition 3.3.1 (RDF graph) Let L,R be the disjoint sets of literals and resources and
P ⊂ R be the set of properties. An RDF graph is a directed graph G = (V,E) of disjoint
sets of vertices V = L ∪R and edges E together with three surjective functions

• subject : E → R, which maps an edge to its initial vertex;

• object : E → V , which maps an edge to its end vertex;

• property : E → P , which associates an edge with its label;

Remark 3.3.1 In the following we will use the function name to denote the value of the
function when applied to an edge e ∈ E.

Statement The term Statement 7 is used in RDF to denote a graph edge e ∈ E
together with its property property(e), subject subject(e) and object object(e).

Remark 3.3.2 In the following, we will use the syntactic form p(s, o) to express an edge e
whose label property(e) is p and subject(e) is s and object(e) is o, given that we are not
interested in e itself but only in the values of the functions.

Due to the atomicity of statements, individual information objects have to be rep-
resented in RDF using sets of statements having the same subject resource. Hence,
object identity that is given via the uniform resource identifier (URI) is central in
RDF data modeling.

6The reader may note that this has nothing to do with the concept of a model in model theory.
7Often the term ”Triple “ is used synonymously to statement.
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3.3.3. RDF Syntax

People use several syntaxes for RDF. The main syntax, however, is the XML based
syntax of RDF (RDF/XML). Example 3.3.1 on page 51 demonstrates how edges
of an RDF graph can be asserted in RDF/XML using the fundamental syntactical
element rdf:Description .

Example 3.3.1 (RDF Descriptions) The labeled edges title(BWV248,"Christmas
Oratorio") and reuses(BWV248,BWV213) can be syntactically represented as fol-
lows:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:ID="BWV248">

<reuses rdf:resource="#BWV213"/>
</rdf:Description>
<rdf:Description rdf:ID="BWV248">

<hasTitle rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Christmas Oratorio
</hasTitle>

</rdf:Description>
</rdf:RDF>

The attribute rdf:ID 8 of a rdf:Description tag denotes the subject of a state-
ment, the tag name of the nested subelement denotes the property of a statement,
and the value of the rdf:resource attribute denotes the object of a statement. Al-
ternatively, the object can also be the subelement content or the value of the rdf:ID
attribute of the subsubelement (see Example 3.3.2 on page 52).

RDF provides numerous other ways to encode graphs, which are further de-
scribed in (Beckett, 2003). For our context, two more syntactic variations are
important. Firstly, the syntactic possibility to use the resource identifier of
an object instead of rdf:Description to create statements of the fixed form
rdf:type(subject,object) . For example, we can encode the statement
rdf:type(BWV248,Oratorio) in RDF/XML as

<Oratorio rdf:ID="BWV248" />

Secondly, we can nest statements, which gives rise to resources without identifiers.

8Or rdf:about , with rdf:about="#x" ⇔ rdf:ID="x" .
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3.3.3.1. Anonymous Resources

Anonymous resources9 are created if resource identifiers are omitted in the asser-
tion of an RDF/XML description10. Anonymous resources are used routinely in
practise, when no identifier for a resource is known and can be logically under-
stood as a existential quantification (Hayes, 2003)[Section 1.5], i.e. we only know
that a resource must exist:

Example 3.3.2 (Nesting / Anonymous resources) This example demonstrates the
(anonymous) instantiation of an OWL restriction and shows nesting.

<owl:Class rdf:ID="BirthdayCantata">
<rdfs:subClassOf>

<owl:Class rdf:ID="Homage"/>
<owl:Class rdf:ID="Cantata"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty rdf:ID="forEvent"/>
</owl:onProperty>
<owl:someValuesFrom>

<owl:Class rdf:ID="Birthday"/>
</owl:someValuesFrom>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Anonymous resources are used extensively when RDF is used as a syntax carrier
for another language. For example, the existential restriction constructor in a De-
scription Logic can be represented by means of three statements (cf. Example 3.3.2),
which are stating that some object is of type restriction and restricts a certain prop-
erty (e.g. forEvent ) to a certain class (e.g. Birthday ). Obviously, the subject of
these statements is only used to hold the statements together, therefore it is usually
omitted.

Anonymous resources are also used to encode non-binary relations (Klyne & Car-
roll, 2003)[Section 3.5]. This shows, that the ternary statements offered by the RDF

9Often the term ”blank node“ is used synonymously to anonymous resource.
10Practically, the rdf:about attribute is omitted in the syntax and the nesting of XML is used to

assign the object of a statement to the anonymous resource instantiated subelement.
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data model are theoretically sufficient to represent n-ary relations. However, sev-
eral limitations arise in practise.

Firstly, the intention of a collection of statements with an anonymous subject is not
clear. One possible interpretation is that each statement encodes attribute value
pairs of the anonymous object. Alternatively, we can understand statements as in-
dividual parameters of a n-ary relation. In this case we are typically only interested
in the set of objects of a statement and not in the property URIs and the subject
identifier, which are reduced to syntactical elements.

Secondly, RDF does not provide any syntactic means to enforce that all statements
defining a n-ary predicate are there. For example, how would we interpret the
restriction in Example 3.3.2 on page 52 if the onProperty statement is missing? In
fact, this is one major source of problems when parsing a language like OWL, since
all statements have to be present to understand the encoded constructs.

Figure 3.3.: RDFS Property Hierarchy

3.3.4. RDF Schema (RDFS)

The RDF vocabulary description language (RDF Schema [RDFS]) (Brickley & Guha,
2003) defines a simple modeling language on top of RDF. RDFS is intended to pro-
vide the primitives that are required to describe the vocabulary used in particular
RDF models. This description is achieved by expressing set membership of ob-
jects in property and class extensions. Therefore RDFS uses classes, subsumption
relationships on both classes and properties (cf. Figure 3.3 above ), and global do-
main and range restrictions for properties as modeling primitives. When compared
to typical object-oriented modeling languages, RDFS exposes a peculiar notion of
object orientation:

1. RDFS treats properties as first class citizens, viz. they can exist independently
of classes.
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2. Global domain and range restrictions on properties are entailment rules, i.e.
they assert that the subject (object) of a statement where the property occurs
is a member of the classes stated in the domain (range) restriction. This de-
parts from the usual constraint interpretation, which most object-oriented for-
malisms take for class attributes and associations.

3. Multiple domains and range restrictions can be defined on properties. If
the domain or range of a property is not defined, the instantiation of its
domain or range may occur to any resource-value pair, e.g. this applies to
Jsb:inDynasty in Figure 3.3 on page 53.

4. RDFS allows cycles in its subsumption hierarchies. Cycles can be used to
express the equivalence of classes or properties.

5. RDFS allows objects to instantiate multiple classes simultaneously, which is
typically disallowed in object-oriented languages.

6. The RDFS language has a cyclical metamodel. The language elements itself
are part of the vocabulary. For example, the resource rdfs:Class is an in-
stance of itself (cf. Figure 3.4 below) and thereby always included in the ex-
tension of a class. Similarly rdf:Resource is an instance of rdfs:Class ,
while it subsumes rdfs:Class .

Figure 3.4.: Class Hierarchy for RDF Schema (Brickley & Guha, 1999)
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Figure 3.5.: RDF Model Theory: Interpretation

3.3.5. RDF Semantics

Unfortunately, the initial RDF specification (Lassila & Swick, 1999) did not provide
any formal semantics for RDF. This lead to a series of alternative interpretations
of RDF (c.f. (Broekstra et al., 2001; Nejdl et al., 2001; Conen & Klapsing, 2000;
Tolle, 2000; Pan & Horrocks, 2001; Hayes, 2003; Guha & Hayes, 2003)). For ex-
ample, (Nejdl et al., 2001; Conen & Klapsing, 2000; Tolle, 2000) interpreted domain
and range restrictions in the initial RDFS specification (Brickley & Guha, 1999) in
a constraint way, while (Pan & Horrocks, 2001; Hayes, 2003) interpret domain and
ranges as entailment rules.

3.3.5.1. RDF Model Theory

The work on an official formal semantics of RDF (Hayes, 2003) has started three
years after the first official specifications of RDF have appeared. It has now evolved
into the semantics that is officially recommended by the W3C11.

The RDF model theory uses a standard Tarski-style model theory to assign seman-
tics to RDF graphs. This assignment of semantics is incomplete, since there are
several aspects of meaning in RDF which are ignored by the model theory; for ex-
ample it ignores all aspects of meaning encoded in particular URI forms (Berners-

11This is also suggested by the name change from RDF Model Theory (Hayes, 2001) to RDF Seman-
tics (Hayes, 2003).
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Lee et al., 1998) by treating all URI references as simple names. Moreover, some
parts of the RDF and RDFS vocabularies are assigned less formal meaning than
one might expect12, e.g. RDF reification and containers (cf. (Hayes, 2003)[Section
3.2]).

Definition 3.3.2 (RDF Interpretation) A simple interpretation I of a set of vertices V
in an RDF graph is defined by:

• A non-empty set R called the domain or universe of I;

• A set P, called the set of properties of I;

• A mapping EXT from P into the powerset of R × R, i.e. the set of sets of pairs of
domain elements (x, y);

• A mapping S from URIs in R into R ∪ P.

• A mapping L from typed literals in L into R.

The interpretation I connects the set of nodes V (URIs) of the graph with the do-
main of the interpretation R using the functions S and L. For example, S maps a to
the domain element 1 in Figure 3.5 on page 55, viz. S(a) = 1. Central to the RDF
model theory is the extension function EXT, whose role is to map a domain prop-
erty into its extension, which is a set of pairs. In Figure 3.5 EXT maps 1 to EXT(1),
which is a set of pairs {(1, 2), (2, 1)}.
Although classes have a distinguished role in RDFS, class primitives are not fun-
damental primitives in the RDF model theory. A system can detect all classes that
have been declared in a particular RDF schema by filtering the extension of the
central property rdf:type . Hence the extension of a class c could be defined as
follows:

ext(c) = {i|(i, c) ∈ EXT(S(rdf:type ))}

The denotation of an RDF graph G in the interpretation I is given recursively by
several rules, which extend the interpretation mapping I from resources to graphs.
For example, the interpretation of a statement p(s, o)I is only true, if s, p, o ⊆ V and
pI ∈ P and 〈sI, oI〉 ∈ EXT(pI), otherwise p(s, o)I will be false.

12”The omission of these conditions from the formal semantics is a design decision to accomodate
variations in existing RDF usage and to make it easier to implement processes to check formal
RDF entailment. For example, implementations may decide to use special procedural techniques
to implement the RDF collection vocabulary.“ (Hayes, 2003)[Sec. 3.2 Para. 2].
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3.3.5.2. Semantic Conditions

In order to get an RDF interpretation of an arbitrary graph, the resources V of that
graph are interpreted together with the resources that are used to define the central
RDF vocabulary itself. We will concentrate on the central RDF vocabulary RRDF

13

for the purpose of our presentation. RRDF is defined as follows:

RRDF = {rdf:type, rdf:Property, rdf:XMLLiteral}

of RDF itself. Such an interpretation I of (V ∪RRDF ) must satisfy semantic conditions
that are stated for RRDF .

Example 3.3.3 (RDF Semantic Condition) The following condition defines P as the set
of those elements in R, which are in the extension of rdf : typeI and associated with
rdf : PropertyI.

x ∈ P if and only if 〈x, rdf:Property I〉 ∈ EXT(rdf:type I)

Such subsets of the universe are central, i.e. are used frequently, in interpretations of RDFS.

In addition, the interpretation of an RDF graph must satisfy the axiomatic triples that
define RDF itself. These statements can be considered to form a special graph

GRDF = {rdf:type(rdf:type,rdf:Property), rdf:type(rdf:nil,rdf:List) . . .}

Hence, an interpretation I of a graph G must satisfy (G ∪GRDF ).

(Hayes, 2003) states further semantic conditions and axiomatic triples which an RDF
interpretation has to fulfill. Together semantic conditions and axiomatic triples
describe the semantics of RDF (Hayes, 2003)[Section 1 + 3] and RDFS (Hayes,
2003)[Section 4].

Interpretations are used for entailment, which is the main semantic relationship in
RDF.

Definition 3.3.3 (RDF entailment) An RDF graph G1 entails an RDF graph G2, writ-
ten G1 |= G2, exactly when all interpretations I satisfying G1 also satisfy G2.

13(Hayes, 2003) use the abbreviation crdfV to denote this set.
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3.3.5.3. Limitations

As we can see, the RDF model theory does not distinguish between RDFS lan-
guage elements and other objects in the domain of discourse, since classes and
properties are just objects in the domain of discourse. Moreover, properties like
rdfs:subClassOf, that are typically used to define particular graphs, have a dual
role (Broekstra et al., 2001; Nejdl et al., 2001) as properties that are used at the same
time to define the language itself.

This dual role introduces self referentiality into the RDF Schema definition, which
makes RDF Schema difficult to understand,14 both for humans and applications.
Both have to resolve the ambiguity which is presented by assembling multi-
ple, conceptually different modeling primitives into one primitive. Consider
for example an ontology editor, which has to distinguish whether the statement
rdf:type(subject,rdfs:Class) defines a new language primitive ”subject“
or a new class ”subject“ in the ontology to come up with an appropriate visual
representation of the statement.

Several other problems appear if an extension of the modeling language with more
expressive constructs is envisioned (such as done for OWL):

• Too few entailments: (Patel-Schneider & Fensel, 2002) Too few entailments are
derived by the RDF semantics for extensions like OWL, since all classes are
also objects. For example, the assertion of Daniel being an instance of the
class (Student tEmployee tEuropean) does not give rise to the entail-
ment that Daniel is also an instance of (Student tEmployee) .

• Contradiction Classes: (Patel-Schneider & Fensel, 2002) Contradiction classes
are easily created if an extended language would allow to state cardinality
constraints. For example, stating the cardinality constraint ≤ 0 rdf:type
would make it impossible to determine class membership.

• Size of the universe: (Horrocks & Patel-Schneider, 2003) The model theory
makes all syntactic elements of the language part of the domain. Hence, an
extended language can easily constrain the size of the universe.

3.3.6. Axiomatic Semantics

An alternative way to specify the semantics of RDF is to give a translation from
RDF into another formal logic with well defined semantics. This approach has been
14Consider for example the fact, that rdfs:Class is an instance of rdf:Resource and rdfs:Class is a

sub-class of rdf:Resource. We can thereby deduce that rdf:Resource is an instance of its sub-class.
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rdf1 t(P,type,Property) :- t(S,P,O).
rdfs2 t(S,type,C) :- t(P,domain,C), t(S,P,O).
rdfs3 t(O,type,C) :- t(P,range,C), t(S,P,O).
rdfs4a t(S,type,Resource) :- t(S,P,O).
rdfs4b t(O,type,Resource) :- t(S,P,O).
rdfs5a t(P,subPropertyOf,R) :- t(Q,subPropertyOf,R), t(P,subPropertyOf,Q).
rdfs6 t(S,R,O) :- t(P,subPropertyOf,R), t(S,P,O).
rdfs7 t(C,type,Class) :- t(C,subClassOf,Resource).
rdfs8 t(A,subClassOf,C) :- t(B,subClassOf,C), t(A,subClassOf,B).
rdfs9 t(S,type,B) :- t(S,type,A), t(A,subClassOf,B).
rdfs11 t(X,subClassOf,Literal) :- t(X,type,Datatype).
rdfs12 t(Resource,subClassOf,Y) :- t(X,domain,Y), t(rdf:type,subPropertyOf,X).

Table 3.1.: Datalog Axiomatization of RDF(S) Constructors(Hayes, 2003)[Section 7]

suggested repeatedly with various alternative versions of the target logical lan-
guage (e.g. (Conen & Klapsing, 2000; Fikes & McGuiness, 2001; Decker et al., 1998;
Guha & Hayes, 2003; Roo, 2002)). For example, Table 3.1 on page 59 presents the
core of the axiomatization used in the Euler system (in Datalog syntax). However,
no proof of actual conformance of an axiomatization to the official model theoretic
semantics has been given yet.

Nevertheless, axiomatic semantics have advantages for processing, since they ren-
der a direct implementation in systems and are more readable.15 Notably, a pure
axiomatization of the language does not suffice for RDF, since the model theory in-
cludes so-called ”axiomatic triples“, i.e. statements which are necessarily part of all
possible RDF interpretations. An axiomatization must therefore be complemented
by an initial set of facts that capture these axiomatic triples.

A translation also has to consider how syntactic elements are connected with the
target logics. For the logics presented in Chapter 2 on page 13 this could be done
by translating each RDF resource (with a URI) to a logical constant in the domain
of discourse and translating each anonymous RDF resource into a distinct variable.
As suggested in an earlier version of the RDF model theory (Hayes, 2001)[Section
3.1], each RDF statement can be translated into a clause using a single ternary pred-
icate, say t . An RDF graph can then be translated into a single FOL formula that
is the existential closure of the conjunction of all statements in the graph.

Alternatively, we can deal with anonymous resources using skolemization.
Skolemization itself is entailment preserving for an RDF graph as the skolemization

15The interested reader is invited to compare the entailment rules with semantic conditions in
(Hayes, 2003).
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lemma of (Hayes, 2003) shows. A skolemized expression has the same entailments
as the original expression provided that the original RDF graph did not contain
the new skolem constants. If anonymous resources are removed in this way, RDF
graphs can be translated into Datalog programs by considering each statement as a
fact and augmenting the Datalog program with the rules that axiomatize the RDF
semantics and additional facts capturing the axiomatic triples.

Any Datalog reasoner will then compute the minimal Herbrand model for the
given Datalog program. As the Herbrand lemma of (Hayes, 2003) shows, this in-
terpretation is a correct interpretation of the graph. Of course it is only one, namely
the smallest possible, interpretation that satisfies the graph.

3.4. Ontology Layer

”Ontologies figure prominently in the emerging Semantic Web as a way of repre-
senting the semantics of documents and enabling the semantics to be used by web
applications and intelligent agents.“(Heflin et al., 2002)[Section 1.1]

Definition 3.4.1 (Ontology) Ontologies are models that represent an abstraction of a do-
main in a formal way, such that several parties are able to agree on the abstraction and reuse
the model in their own (Web) applications.

The reader may note that the definition of ontology is not bound to a particular
formalism but to the aspect of sharing a model. However, the latter aspect requires
that ontologies are represented in some formal language, such that ”detailed, ac-
curate, consistent, sound and meaningful distinctions can be made“ (Heflin et al.,
2002)[Section 1.1]. As (Studer et al., 1998) pointed out, many formal knowledge
representation mechanisms may play the role of such a modeling language in the
Semantic Web context.

3.4.1. Web Ontology Language (OWL)

For example, the RDF vocabulary description language (RDF Schema) already pro-
vides a simple language for describing the vocabulary of RDF data. However,
”more complex relationships between entities including: means to limit the prop-
erties of classes with respect to number and type, means to infer that items with
various properties are members of a particular class, a well-defined model of prop-
erty inheritance, and similar semantic extensions“ (W3C, 2003) were identified to
be required for a modeling language for the Semantic Web. To come forward with
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such a language, several research projects and subsequently W3C standardiza-
tion, chose Description Logics (cf. Section 2.4 on page 31) as a logical basis for
an expressive ontology language. The recently proposed Web Ontology Language
(OWL)16 can be considered as a particular Description Logic.17 The rest of this
section will provide a summary of the OWL language. Interested readers may
refer to the specifications (Smith et al., 2003; McGuinness & van Harmelen, 2003;
Dean & Schreiber, 2003; Heflin et al., 2002; Patel-Schneider et al., 2003; Carroll & De
Roo, 2003) for a full account.

3.4.2. Syntax

OWL is syntactically layered on RDF. Therefore, the official18 syntax of OWL is the
syntax of RDF. However, OWL extends RDF with additional vocabulary that can
be interpreted as OWL ontologies when used to form particular RDF graphs.

Definition 3.4.2 (OWL Vocabulary) Let the set ROWL be the URIs of the OWL language
primitives

ROWL = {owl:Class, owl:Property, owl:Restriction, . . .}

Consequently, OWL ontologies can be encoded in normal RDF/XML documents
and parsed into ordinary RDF graphs (cf. examples 3.2.1 on page 46 and 3.3.2
on page 52). The additional vocabulary defined by OWL suggests that OWL is a
Description Logic. However, due to its syntactic encoding in RDF, it differs from
the Description Logics presented in Section 2.4 on page 31 in several ways:

1. N-Ary language constructs such as conjunction (u) have to be encoded into
several RDF statements (cf. Section 3.3.3.1 on page 52).

2. OWL graphs can contain circular syntactic structures which are not possible
in Description Logics.

3. Due to the circular meta-model of RDF, classes and properties can be made
instances of themselves. For example, it would be possible to assert the state-
ment rdf:type(owl:Class,owl:Class) .

16The false acronym OWL was created by a consensus decision of the WebOnt working group.
17In fact, the standardization of OWL was based on previous DL-based ontology languages, i.e.

DAML+OIL (Horrocks et al., 2001), and Ontology Inference Layer (OIL) (Fensel et al., 1999) that
have been proposed by different research projects.

18There are several other proposals for a syntax of OWL, e.g. in plain text http://owl.man.ac.
uk/2003/concrete/latest/grammar.bnf .
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4. The identifiers used for classes, properties and individuals do not have to be
disjoint.

These syntactic differences require that the OWL semantics departs from classical
Description Logic semantics.

3.4.2.1. Language species

Several subsets of OWL were defined in the standard to accommodate various in-
terest groups and allow to safely ignore language features that are not needed for
certain applications.

Definition 3.4.3 (OWL Full) OWL Full contains all constructors of the OWL language
and allows the arbitrary combination of those constructors.

The semantics of OWL Full are an (direct) extension of the RDF semantics. Un-
fortunately, this extension leads to various semantically surprising effects (cf. Sec-
tion 3.3.5.3 on page 58) and yields an undecidable language. The latter fact follows
directly from (Horrocks & Sattler, 2001), where the authors show that the combi-
nation of transitive properties and cardinality restrictions leads to undecidability.
Hence, it is only possible to embed the language in conventional FOL in such a way
that standard FOL provers can be used as sound reasoners, which might be incom-
plete due to the undecidability of FOL. Such a mapping to FOL is straightforward
and has been implemented as part of the OWL API (Bechhofer et al., 2003b). For
these reasons, we do not make use of the full OWL language in this dissertation.

Definition 3.4.4 (OWL DL) OWL DL is a subset of OWL Full that makes several re-
strictions:

1. The OWL vocabulary can not be used as identifiers for classes, properties or individ-
uals;

2. Class constructors with syntactic cycles are disallowed. For exam-
ple, a restriction may not use itself such as in the OWL graph
{rdf:type(x,owl:Restriction), owl:allValuesFrom(x,x)};

3. The sets of identifiers used for classes, properties, and individuals must be disjoint;

4. Cardinality restrictions may not be stated on properties which are transitive.
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From a processing perspective, several constraints are imposed on RDF graphs,
such that certain edges are disallowed. For example, the third condition on the
graph could be expressed as follows:

∀e1, e2 ∈ E.((o(e1) 6= o(e2))← (p(e1) = p(e2) = rdf:type)∧

(s(e1) = s(e2)) ∧ ({o(e1), o(e2)} ∩ VCoreOWL 6= ∅))

where VCoreOWL = {owl:Class, owl:ObjectProperty, owl:DatatypeProperty} and
(s, p, o) are abbreviations for the functions subject, property, object.

Definition 3.4.5 (OWL Lite) OWL Lite is the subset of OWL DL, which is created by
imposing the following restrictions:

1. Disallows the usage of the following elements of the OWL DL vocabulary:

{owl:intersectionOf, owl:unionOf, owl:complementOf,owl:oneOf, owl:hasValue}

2. Limits the values of stated cardinalities to 0 and 1;

3. Requires the usage of class identifiers in OWL restrictions;

Unfortunately, it does not always suffice to simply disallow certain syntax con-
structs in order to simplify a language. If this is the case, a reasoner still has to deal
with the syntactically impoverished but semantically expressive language. OWL
Lite still allows to express IntersectionOf , UnionOf and ComplementOf by
clever combination of other primitives. As an example, the following corollary
shows how negation can be constructed.

Corollary 3.4.1 (Negation is in OWL Lite) Negation is semantically available in OWL
Lite.

Proof: Let R be an object property. We define the classes A and NotA using prim-
itives that are syntactically allowed in OWL Lite, as follows: A ≡ ∃R.> and
NotA ≡ ∀R.⊥. NotAI = ∆I\AI follows for all interpretations I.

2

Additionally, several of the primitives offered by OWL can be considered as syn-
tactic shortcut for other primitives (cf. Table 3.2 on page 64).

63



3. The Semantic Web

OWL Syntactic Shortcuts
DisjointClasses(d1d2) InverseFunctionalProperty(P ):

d1 v ¬d2 > v ≤ 1P−

SymmetricProperty(P ): domain(P,C):
P ≡ P− > v ∀P−.C

FunctionalProperty(P ): range(P,C):
> v ≤ 1P > v ∀P.C

Table 3.2.: Syntactic Shortcuts

3.4.2.2. Abstract Syntax

An abstract syntax (Patel-Schneider et al., 2003)19 has been developed for OWL DL,
which acknowledges the OWL DL restrictions and is similar to the syntax used in
many Description Logic reasoners. This compact representation will be used in the
later parts of the thesis. The main class constructors20 of OWL DL are captured
in Table 3.3 on page 65, whereas Table 3.4 on page 67 describes the axioms and
Table 3.5 on page 68 the possible assertions available in OWL DL.

3.4.3. Semantics

The semantics of OWL (Patel-Schneider et al., 2003) assigns meaning to all variants
of OWL and is given using a standard model theory. However, the model theory
is very complex to be understood even by skilled readers.21 This is due to the
integration with the RDF Semantics.

On the other hand, the semantics for OWL DL is fairly standard wrt. Description
Logics. The domain of an OWL interpretation is a set whose elements can be di-
vided into abstract objects (∆I), and datatype values (∆D). Datatypes in OWL are
derived from a subset of the built-in XML Schema datatypes (cf. Figure 3.2 on page
49). However, we will not consider the details of datatypes, here.

An interpretation in the OWL DL semantics is officially a four-tuple consisting of
the domain ∆I + ∆D and separate mappings for class identifiers C, property iden-
tifiers P , and individual identifiers I .22

19The abstract syntax follows the syntactic approach that has been taken for OIL (Fensel et al., 2001).
20We ignore annotations and deprecation, which allow to state information about classes and prop-

erties that is semantically uninterpreted and expand the grammar for the abstract syntax in our
presentation such that the corresponding Description Logic primitives are directly visible.

21This is in part due to a myriad of unintuitive names which are used instead of the symbols used in
papers and textbooks.

22The reader may note that these mappings are usually combined into a binary tuple in classical

64



3.4. Ontology Layer

An OWL DL ontology O is satisfied by an interpretation I in the classical Descrip-
tion Logic sense. However, the main semantic relationship in OWL DL is not sat-
isfiability but entailment - a relationship between pairs of OWL ontologies. This is
similar to RDF. Hence, OWL inference is defined in terms of ontology entailment
rather than ontology satisfiability such as defined for classical Description Logics
(cf. Section 2.4.3 on page 38).

Definition 3.4.6 (OWL Entailment) An ontology O1 entails an ontology O2, written
O1 |= O2, exactly when all interpretations that satisfy O1 also satisfy O2.

Entailment is not among the standard description logic reasoning problems, such
as knowledge base and concept satisfiability (cf. Section 2.4.3 on page 38). For-
tunately for our purpose, however, (Horrocks & Patel-Schneider, 2003) show that
OWL DL and OWL Lite entailment can be reduced to checking Description Logic
(un)satisfiability in the SHINO(D) (for OWL DL) and SHIF(D) (OWL Lite) De-
scription Logics (cf. Table 2.2 on page 32 for a description of their constructors). For
this purpose, they develop syntactic encodings of OWL into DLs that are similar to
(Decker et al., 2000), who show how an OIL ontology can be encoded into a SHIQ
TBox.

Constructor Translation ρ
Classes
A A
Thing >
Nothing ⊥
IntersectionOf (C1 . . . Cn) ρ[C1] u . . . u ρ[Cn]
UnionOf (C1 . . . Cn) ρ[C1] t . . . t ρ[Cn]
ComplementOf (C) ¬ρ[C]
OneOf (o1 . . . on) {o1, . . . , on}
Object Property Restrictions
Restriction (R

allValuesFrom (C) ∀R.ρ[C]
someValuesFrom (C) ∃R.ρ[C]
minCardinality (l) ≥ l R
maxCardinality (m) ≤mR
cardinality (n) =nR
hasValue (o) ∀R.{o}

)

Table 3.3.: OWL DL Class Constructors (Abbr.)

Description Logics. This introduces no further problems since the two forms are equivalent.
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3.4.3.1. Encoding OWL DL classes and axioms in SHINO(D)

Basically, each axiom and assertion in an OWL DL ontology is translated into one
or more axioms in an SHINO(D) knowledge base. This is done by encoding each
description into SHINO(D) class descriptions and encoding each OWL DL axiom
into SHINO(D) axioms. The encoding is performed by a function ρ that is trans-
lates each OWL DL class constructor and each OWL DL axiom into SHINO(D)
class definitions and axioms.

OWL class constructors (cf. Table 3.3 on page 65) can be arbitrarily nested.
Each Restriction is stated with respect to a property R and may contain
either one of the following components allValuesFrom , someValuesFrom ,
minCardinality , maxCardinality or hasValue .

OWL DL axioms are introduced using the constructors presented in Table 3.4 on
page 67. The abstract syntax uses Class to introduce primitive classes. Classes can
be either partially described, leading to a translation into a DL inclusion axioms, or
completely described, leading to a translation into DL class equivalence axioms.

Example 3.4.1 (OWL DL Class Encoding) For example, the OWL DL class definition

Class( A complete C1 . . . Cn )

is translated into the SHINO(D) axiom

A ≡ C1 u . . . u Cn

by applying ρ as defined in Table 3.4 on page 67.

OWL DL Assertions (cf. Table 3.5 on page 68) are also encoded using the trans-
lation function ρ, but require a second function % that encodes the different parts
of individual assertions which are allowed in the abstract syntax. We also have to
deal with the fact that anonymous individuals can be asserted.

3.4.3.2. Encoding OWL DL (anonymous) individuals in SHINO(D)

As mentioned before, OWL relies on RDF for the assertion of individuals. This
can give rise to anonymous individuals in OWL if anonymous RDF resources are
used for the assertion of OWL individuals. Likewise to RDF, such anonymous in-
dividuals can be understood as existentially quantified variables. We can apply the
skolemization algorithm (cf. Figure 2.1 on page 19) to eliminate existential quan-
tification. Since DLs can be understood as notational variants of function-free first
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Axioms and Assertions DL translation ρ
Class Axioms
Class (A partial D1 . . . Dn)

⋃
i∈[1,n]A v ρ[Di]

Class (A complete D1 . . . Dn)
⋃

i∈[1,n]A ≡ ρ[Di]
EnumeratedClass (A o1 . . . on) A ≡ {o1 . . . on}
DisjointClass (D1 . . . Dn)

⋃
1≤i<j≤n ρ[Di] v ¬ρ[Dj ]

EquivalentClasses (D1 . . . Dn)
⋃

i∈[1,n] ρ[D1] ≡ ρ[Di]
SubClassOf (D1D2) ρ[D1] v ρ[D2]
Object Property Axioms
ObjectProperty (P

super(Q1) . . . super(Qn)
⋃

i∈[1,n] P v ρ[Qi]
domain(D1) . . . domain(Dm)

⋃
i∈[1,n]> v ∀P−.ρ[Di]

range(D1) . . . range(Dl)
⋃

i∈[1,n]> v ∀P.ρ[Di]
inverseOf(Q) P ≡ Q−
Functional > v ≤ 1P
InverseFunctional > v ≤ 1P−

Symmetric P ≡ P−
Transitive P+ v P

)
EquivalentProperties (P1 . . . Pn)

⋃
i∈[1,n] P1 ≡ Pi

SubPropertyOf (P Q) P v Q
Individual Axioms
SameIndividuals (o1 . . . on)

⋃
i∈[1,n] o1 = oi

DifferentIndividuals (o1 . . . on)
⋃

1≤i<j≤n ¬(oi = oj)
A is an atomic class name Pi, Qi are object property names
Di are (complex) class descriptions oi are individual names

Table 3.4.: OWL DL Axioms
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OWL DL Assertions DL translation ρ[constructor]
Named Individual

Individual ( o x1 . . . xn )
⋃

i∈[1,n] %[o, xi]
Anonymous Individual

Individual ( x1 . . . xn )
⋃

i∈[1,n] %[a, xi]
for a new unused skolem constant a

Assertion Part DL Translation %
%[x,type(D)] ρ[D](x)
%[x,value(R o)] R(x, o)
%[x,value(U t)] U(x, t)

%[x,value(R Individual (x1 . . . xn))] R(x, a), ρ[Individual(a x1 . . . xn)]
for a new unused skolem constant a

Table 3.5.: OWL DL Assertions

order formula (cf. Section 4.4.1 on page 88) it is sufficient to generate skolem con-
stants. Following Lemma 2.2.1 on page 18, skolemization only preserves satisfia-
bility. However, since all DL reasoning problems can be reduced to satisfiability
checking (cf. Section 2.4.3 on page 38), this imposes no problem.

Example 3.4.2 (OWL DL Individual Encoding) The OWL DL Individual assertion

Individual (type(C) value(R Individual (type(D))))

is translated into the axioms C(a), R(a, b) and D(b), where a, b are new skolem constants,
by applying the translation function ρ as defined in Table 3.5 on page 68.

Corollary 3.4.2 Skolemization is OWL entailment preserving.

The corollary follows directly from (Horrocks & Patel-Schneider, 2003)[Theorem 2]
and Lemma 2.2.1 on page 18.

Remark 3.4.1 In our exposition we adapted the encodings of (Decker et al., 2000;
Horrocks & Patel-Schneider, 2003) such that the (computationally expensive) OneOf class
constructor is used as seldom as possible. We also encode property fillers differently23 to
(Horrocks & Patel-Schneider, 2003), i.e. we encode a single assertion R(a, b) instead of in-
troducing a new class B and encoding the two assertions B(b) and (∃R.B)(a). (Horrocks
et al., 2000) shows the equivalence of these encodings.

23Since we avoid the usage of complex DL constructs as far as possible.
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3.4.4. Complexity of OWL

As mentioned before, the OWL Full language is undecidable. Therefore complexity
results are only of interest for OWL DL and OWL Lite. Complexity follows directly
from the correspondence to Description Logics presented above. As the translation
from OWL DL ontologies to SHINO(D) knowledge bases can be performed in
polynomial time (Horrocks & Patel-Schneider, 2003), the results for the complex-
ity of knowledge base satisfiability (cf. Section 2.4.4 on page 40) in SHINO(D)
still hold, viz. OWL DL is NEXPTIME complete. Similarly, since the translation of
OWL Lite axioms to SHIF(D) knowledge bases can be computed in polynomial
time and results in a linear increase in size of the knowledge base, OWL Lite entail-
ment has the same complexity as SHIF(D) knowledge base satisfiability, which is
EXPTIME complete (cf. Section 2.4.4 on page 40).

3.4.5. Discussion

”Clearly, OWL is not the final word on ontology languages for the Semantic
Web.“ (Horrocks et al., 2003b)[Section 8]. Since a number of useful features for a
web ontology language were already identified in the OWL Requirements (Heflin
et al., 2002) and never incorporated into the final language,24 we briefly list some
additional limitations that we could observe:

Ill-defined Layering The main limitations of OWL are due to the problems of
layering the language on RDF (cf. Section 3.3.5.3 on page 58) and the politically
defined layering within OWL. For the latter case, OWL Lite does not meet its initial
anticipation, viz. is not the ”easy“ language that was initially motivated: ”The goal
of OWL Lite is to provide a language that is viewed by tool builders to be easy
enough and useful enough to support. One expectation is that tools will facilitate
the widespread adoption of OWL and thus OWL language designers should at-
tempt to create a language that tool developers will flock to.“ (McGuinness & van
Harmelen, 2002).

Monolithic Ontologies OWL Ontologies are monolithic in the sense that they
can be separated into a set of ontologies, but have to be interpreted as one unified
ontology. This is due to the fact that the only means for modularization is to include
entire ontologies. This inclusion is fragile, since the included part is specified by
location (which is usually different from the ontology identifier). Hence, one cannot
import particular subsets of other ontologies.

24Requirements were rather weakened into objectives that could be safely ignored.
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Datatyping Datatyping in OWL is still not worked out. This is due to the fact that
the concrete domain ∆D in SHINO(D) is not sorted. However, when reducing
entailment to satisfiability, a datatype derived from the negation of a data value is
needed. This negation would refer to the complete data domain, which is clearly
unsatisfactory. For example, the negation of user-defined XML Schema datatype
(> 5) that can be derived from the integer simple type would not be (≤ 5) as one
would expect, but also include strings, floats etc. and all other elements of the data
domain.

Tractability As we have seen in the previous section, the language exposes dis-
couraging complexity results for its reasoning tasks. While several optimiza-
tions for the standard TBox problems are well known, which result in ”empiri-
cal“ tractability of realistic TBox problems, ”empirical“ tractability could not be
achieved for ABox problems up till now. Moreover, no ”practical“ algorithm is
currently known for any SHINO(D) reasoning problem.

3.5. The Logic Layer - Rules

Nowadays research usually considers the ontology and the logic levels together, as
any semantic specification like ontologies has to be grounded in logic. Hence, the
name ”Logic“ was not well chosen for this layer (cf. Figure 3.1 on page 45) and
should rather be seen as a vertical layer that is orthogonal to the functional layers
of the architecture.

As we have seen in the previous section, languages like OWL do not only spec-
ify a vocabulary and constrain the use of that vocabulary by restrictions, but also
provide axioms, which allow to deduce new information from explicit informa-
tion. However, OWL does currently not allow the definition of general rules over
properties. For example, one cannot express property chaining in OWL.

Since there is, currently, no consensus on how a rule layer could look like, we only
briefly describe the alternative proposals that have been made until now. We com-
pare the individual proposals by means of a simple example rule (cf. Table 3.6 on
page 71).

3.5.1. XML-based Approach - RuleML

This approach basically relies on specialized XML vocabularies to create various
types of logic programs and their underlying knowledge bases. The most promi-
nent representative today is RuleML (Boley et al., 2001), which stands in a line
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Rule Language Property Chaining example
Natural language An uncle is the brother of the parent of a person.

Datalog isUncleOf(X,Y) :- isBrotherOf(X,Z), isParentOf(Z,Y).

RuleML

<imp>
<_head>

<atom>
<_opr>

<rel>isUncleOf</rel>
</_opr>
<var>X</var>
<var>Y</var>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr>
<rel>isBrotherOf</rel>

</_opr>
<var>X</var>
<var>Z</var>

</atom>
<atom>

<_opr>
<rel>isParentOf</rel>

</_opr>
<var>Z</var>
<var>Y</var>

</atom>
</and>

</_body>
</imp>

Notation3 (N3)

{ ?x :isBrotherOf ?z. ?z :isParentOf ?y. }
log:implies

{ ?x :isUncleOf ?y. }.

Triple

FORALL model @rules(model) {
FORALL X,Y X[isUncleOf->Y]<-X[isBrotherOf->Z]@model
AND Z[isParent->Y]@model

}

Table 3.6.: Property Chaining in Rule Languages
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of previous efforts like the Business Rules Markup Language (BRML), Agent-
Object-Relationship Markup Language (AORML), Universal Rule Markup Lan-
guage (URML) and Relational-Functional Markup Language (RFML).

Goal ”The goal of the Rule Markup Initiative is to develop RuleML as the canon-
ical Web language for rules using XML markup, formal semantics, and efficient
implementations. RuleML covers the entire rule spectrum, from derivation rules to
transformation rules to reaction rules [. . .].“25

Approach RuleML is developed in a modular specification and promises trans-
formations from and to other rule standards/systems. A hierarchy of rule lan-
guages has been envisioned that builds more expressive languages from simpler
languages, but eventually tries to provide all variants of rule languages, viz. ev-
erything from reaction rules, integrity constraints and derivation rules in logic pro-
grams. The modularized RuleML definition currently includes 12 sublanguages.
The fourth row of Table 3.6 on page 71 defines an example rule in RuleML.

Limitations The main limitations of RuleML are due to the broad scope of the
effort. It is still incomplete both syntactically and semantically. For example, a syn-
tax (DTD) (RuleML v0.8) has only be designed for the Datalog subset. The lack of
semantics is the main limitation of the effort, which describes its intention as fol-
lows ”All sublanguages [...] correspond to well-known rule systems, where each
sublanguage has a corresponding semantic (model- and proof-theoretic) character-
ization.“ (Boley et al., 2001). However, due to the multitude of different semantics
used in different rule systems a clear, normative semantics should actually be the
main requirement.

3.5.2. RDF-based Approaches - N3 and Triple

Other approaches to rules for the Semantic Web have chosen RDF graphs as knowl-
edge bases. Every language provides a text-based syntax for the definition of rules.
None of the systems provide built-in support for RDF semantics. They also usually
do not automatically adhere to the RDF semantics.

Goals All approaches presented here share the goal of allowing to state rules on
top of RDF graphs.

25http://www.ruleml.org/ (Mission Statement).

72

http://www.ruleml.org/


3.5. The Logic Layer - Rules

Common approach All approaches operate on plain RDF graphs (with anony-
mous resources) and allow to specify a set of rules that provides some axiomatic
form of entailment. Of course, this rule set could be an axiomatization of the RDF
semantics (cf. Table 3.1 on page 59 for the incomplete RDF axiomatization used by
the system Euler (Roo, 2002)).

3.5.2.1. Notation3 (N3)

Some systems like Euler (Roo, 2002) and CWM (Berners-Lee, 2000a) use Notation3
(N3) as syntax for rules. N3 was invented for the CWM reasoner (Berners-Lee,
2000a) as an alternative syntax of RDF that is easier to write since it is text-based
and additionally allows to specify Horn-like rules.

The fifth row of Table 3.6 on page 71 defines an example rule in N3. The terms in
braces { } are collections of (nested) statements, where ?x denotes an all-quantified
variable. N3 additionally allows a form of existential quantification to occur in the
head of rules. All available N3 systems appear to deal with the existentials in the
head of N3 rules by introducing new skolem constants. Therefore, the expressivity
of N3 appears to be that of Datalog restricted to ternary predicates.

Limitations No formal account of the language has been given yet. Therefore the
semantics and computational properties of N3 are not completely clear.

3.5.2.2. Triple

Triple reasons with RDF data in a frame-based syntax, which has been inspired
by F-Logic (Kifer et al., 1995). It can operate on several RDF graphs similarly and
distinguishes between graphs in a similar way to the Mediator Specification Lan-
guage (MSL) (Garcia-Molina et al., 1997). Triple programs are based on Horn logic
and are compiled into Prolog programs. Unlike F-Logic, Triple does not have a
fixed semantics for object-oriented features like classes and inheritance. In order to
support languages like OWL, which cannot be handled completely in Horn logic,
Description Logic classifiers such as Racer (Haarslev & Moller, 2001) can be called
as external systems. Hence, Triple can be regarded as a hybrid rule language.

The sixth row of Table 3.6 on page 71 defines the example rule in Triple. A set of
Triple rules is associated with an identifier (@rules in the example). This identifier
is used to identify the facts that have been derived by the respective set of rules. The
rule set is instantiated on a parameterized set of source RDF graphs or other rule
sets. These parameters (@model in the example) are then used to identify the set of
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facts which should be used as ground data for the derivation. All derived data is
automatically part of the rule set.

Limitations The limitations of Triple are fourfold. Firstly, Triple does not pro-
vide a rich set of built-in functions, such as available in most Logic Programming
environments and also in many systems that support N3. Secondly, Triple is an un-
decidable language, since it allows unrestricted use of function symbols. Thirdly,
the combination of Triple rule bases with Description Logic primitives yields an un-
decidable language, since the combination does not make restrictions such stated
as other hybrid logics like CARIN (Levy & Rousset, 1996). Fourthly, a precise se-
mantics of the triple language is still missing.

3.5.3. OWL-based Approaches

The first approach working towards a combination of OWL and rules was pre-
sented in (Grosof et al., 2003) and is detailed in the subsequent part of this thesis.
Recently, a second proposal for an OWL rule language was made in (Horrocks
et al., 2003a). Since this proposal was made during the time of writing this thesis,
our discussion is very preliminary. The proposal suggests the extension of OWL
axioms with horn clause rules.

Unlike the other rule languages presented in this chapter, an extension of the OWL
model-theoretic semantics is given to provide a formal meaning for OWL ontolo-
gies including rules written in the proposed language. However, it is easy to see
that the proposal yields an undecidable language since restrictions, such as stated
for CARIN (Levy & Rousset, 1996), are not made and the proposed language can
be used to simulate role value maps which yield undecidability (Schmidt-Schauß,
1989) when not further restricted. Given the undecidability result, it is questionable
how one would attempt to practically implement the language in systems. Also,
the motivations for other restrictions do not hold anymore. For example, one could
well incorporate further undecidable features like function symbols and envision
an extension to full FOL.
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As we have seen in the previous chapter, Description Logic is expected to play a
key role in ontology modeling for the Semantic Web applications. One of the main
limitations of the ontology language, however, is its intractability (cf. sections 3.4
on page 60 and 2.4.5 on page 41). This part therefore develops Description Logic
Programs (Grosof et al., 2003), a family of well-defined sub languages of OWL,
which meets three goals.

Firstly, the language family can be supported by a large number of available logic
databases and thereby immediately increases the number of systems, which can
be utilized for the purposes of Semantic Web applications. For example, deduc-
tive databases and Logic Programming environments can reason with the new lan-
guages.

Secondly, the language family is tractable and can scale beyond toy examples with
respect to ABox reasoning problems.

Thirdly, an extension of the language family to support rules in style of the ap-
proaches presented in Section 3.5 on page 70 is possible. A basic extension, namely
a language for stating non-recursive rules, i.e. views, has been studied in (Volz
et al., 2003e; Volz, 2003; Volz et al., 2002c; Volz et al., 2003d).

Our goals are achieved by translating an expressive subset of OWL into Logic Pro-
grams, which can be efficiently and tractably executed by numerous logic databases
and Logic Programming environments.

In order to achieve our goals, however, we must

1. establish a meaning-preserving translation between DL and LP;

2. define a new DL language that can be translated into LP and explain how the
typical reasoning and inferences available for DLs can be effected in LP;

3. show the practical usefulness and increased efficiency of reasoning within LP.

The organization of this part follows these three steps: Chapter 4 analyzes how
Description Logic and Logic Programming are related and identifies the fragment
which can be translated from one language into the other.

Chapter 5 on page 113 utilizes the identified fragment for the definition of a family
of new Description Logics Li and presents a semantics for these languages, which
is based on a translation into Logic Programs. Moreover, the chapter shows how
prototypical Description Logic reasoning problems can be reduced to answering
queries on Logic Programs and studies the expressiveness and the complexity of
the new languages. In particular, we show the practical usefulness of the languages
by demonstrating that most parts of currently available Web ontologies can be ex-
pressed in the new languages and that the family of languages is tractable.
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Chapter 6 on page 145 presents incremental maintenance of materialized ontolo-
gies (Volz et al., 2003g) as an approach to handle updates to Li knowledge bases.
We take the two assumptions that (I) updates to knowledge bases in Semantic Web
application are batch and (II) less frequent than queries. We therefore material-
ize the knowledge base and handle updates to the knowledge base by incremental
maintenance of the materialization.
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Logics and Logic Programming

“Let it be assumed that the states by virtue of which
the soul possesses truth by way of affirmation or denial

are five in number, i.e. art, scientific knowledge,
practical wisdom, philosophic wisdom, intuitive reason;

we do not include judgement and opinion
because in these we may be mistaken.”

Aristoteles
(Nicomachean Ethics, Book VI, Idea 3, Paragraph 1)

This chapter explores which subsets of the OWL DL ontology language, i.e. the
SHINO(D) Description Logic (DL), can be translated into different Logic Pro-
gramming (LP) environments. It formalizes and extends the analyses of (Volz et al.,
2002a; Grosof et al., 2003; Volz et al., 2003b). The results of our exploration are used
in chapter 5 to define a family of DL languages, for which a translation into a par-
ticular variant of Logic Programming can be guaranteed.

The chapter is organized as follows: Section 4.1 motivates the translation and dis-
cusses related work. Section 4.2 on page 82 introduces our approach for the trans-
lation from DL to LP and the identification of the LP subsets of DLs. Section 4.3
on page 83 presents syntactic normalization of DL axioms as a preprocessing tech-
nique, which simplifies the translation and maximizes the number of DL axioms
that can be translated. Section 4.4 on page 87 establishes First-Order Logic (FOL)
as a basic medium for a translation between DL and LP and discusses the relation
of both languages with FOL itself. Section 4.5 on page 93 explores whether a loss-
less translation from given DL axioms to LP rules via intermediate FOL formulae
is possible and precisely describes the translation and necessary transformations.
Section 4.6 on page 110 summarizes the contribution of this chapter and establishes
links to the subsequent chapters in this part.
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4.1. Introduction

4.1.1. Motivation

A translation between Description Logic (DL) and Logic Programming (LP) estab-
lishes a correspondence between two fields of knowledge representation that are
largely disparate at the time being. This correspondence will allow to transfer re-
sults, e.g. reasoning techniques, from one field into the other. This synergy can
nourish the advance of both fields. For example, our technique for materializing
DL knowledge bases (cf. Chapter 6 on page 145) makes such a transfer.

Besides this theoretical interest, there are two main motivations for our work:

• We need to formally identify the subset of OWL with which we can reason in
logic databases, since the theoretical complexity of reasoning with OWL di-
rectly shows that a complete translation of reasoning problems is impossible.

• We want to have an a-priori guarantee on the efficiency and scalability of
computing views and query answers, as well as computing the solutions to
standard ABox reasoning problems. However, no scalable algorithms for
ABox reasoning are yet known for expressive Description Logics, such as
OWL Lite and OWL DL.

We therefore use LP as a possible formal basis for Web ontology languages and
provider of efficient and scalable reasoning algorithms. Our decision is grounded
on the theoretical results on the complexity of Datalog (cf. Section 2.3.5 on page
27), which show that the complexity of answering queries, viz. the main inference
relevant for view management, is polynomial.

4.1.2. Related Work

Two approaches, CARIN (Levy & Rousset, 1996) and AL-log (Donini et al., 1998),
can be considered as related work, since they provide a direct extension of a par-
ticular DL with Datalog rules. However, they do not directly address our problem
of translating DL to LP. They rather extend a given DL with a rule component. In
order to retain the decidability of the extended language, the underlying DL is kept
simple (AL-log (Donini et al., 1998)) or restrictions are imposed on the form of rules
(CARIN (Levy & Rousset, 1996)). Moreover, both approaches create intractable De-
scription Logics. Consequently, both cannot be expressed directly in LP and require
specialized reasoners, which are not publicly available.
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Several other approaches do not target an extension with rules but try to reason
with DL ontologies in LP environments. These approaches are based on an ax-
iomatization of the DL primitives, i.e. they introduce special predicates, whose
extension captures TBox and ABox data, and axiomatize these predicates in some
way. For example, an axiomatisation of DAML+OIL, the direct precursor of OWL,
was given by McGuinness and Fikes in (Fikes & McGuiness, 2001). Their axioma-
tization is based on the Knowledge Interchange Format (KIF) (Genesereth & Fikes,
1992).1 Therefore, the axiomatization is not directly executable in Logic Program-
ming systems, but rather in theorem provers. (Zou, 2001) address, however, how
their axiomatization could be executed using a Prolog dialect by ignoring some ax-
ioms.2 Besides being slightly outdated, the approach of (Fikes & McGuiness, 2001)
is incomplete and most likely not sound. For example, neither the substitutivity
nor all algebraic axioms of equivalence are captured.

Similarly, the two N3 systems Euler (Roo, 2002) and CWM (Berners-Lee, 2000a)
try to reason with OWL via an axiomatization of RDF statements using the OWL
vocabulary. Again their approach is incomplete, for example (Roo, 2002) does not
correctly capture the substitutivity of equality. Additionally, no proof that their
axiomatization is sound has been given yet.

(Borgida & Brachman, 1993) has focused on pushing parts of reasoning to query
processing in relational databases with the intention to store the ABox in a database.
This approach, although slightly related, has different objectives, i.e. storage, while
taking the Closed World Assumption which is incompatible with OWL and still
requiring processing outside of the database.

4.1.3. Assumptions

Axiomatization is problematic There are two main problems with axiomatiza-
tion and the above mentioned approaches. Firstly, it is obviously even difficult to
prove soundness, which is usually easy, as no such proof has been given yet. Sec-
ondly, even elementary constructs like subsumption, which can be understood as
logical implication in LP, have to be axiomatized.

For example, we have to introduce a predicate SubClassOf and axiomatize the
transitivity of SubClassOf by a set of rules. Therefore, the built-in optimizations
provided by Logic Programming systems for elementary constructs cannot be used.

Incompleteness is unproblematic Since we want to identify a subset of the lan-
guage in the first place, incompleteness is not a problem but a goal. The incom-

1Cf. http://www-ksl.stanford.edu/knowledge-sharing/kif/ .
2Obviously, some KIF rules of the axiomatization can not be captured, e.g. Ax 105 and Ax 128.
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pleteness, however, should be precisely characterized. This characterization is the
main contribution of this chapter. Moreover, an implementation of the language
within logic databases must be sound, viz. all given answers should be correct.

4.2. Approach

This section presents our general approach to the translation of a DL LIn to LP.
Our approach is grounded on two fundamental ideas: Firstly, we rely on the well-
known semantics and evaluation procedures for Logic Programs and, secondly, we
extensively reuse available LP constructors in the translation. This should make it
more easy to show soundness and should allow us to seamlessly use the optimiza-
tions built into LP systems.

4.2.1. Semantic Correspondence

Our first idea requires that we understand the correspondence between the seman-
tics of DLs and the semantics of LP. We develop this understanding by relying on
the correspondence between DL and FOL and the correspondence between FOL
and LP.

4.2.2. Translation

The second idea requires us to show how a particular DL axiom can be translated
into LP rules. By looking at the different complexity results for DLs and LP, we
can tell beforehand that not all DL axioms can be translated. We therefore show
by ”affirmation or denial“ whether a given constructor of a DL LIn can be trans-
lated, when situated at a certain position of an LIn axiom. It will be sufficient to
distinguish two situations, namely whether a LIn constructor occurs on the left or
right-hand side of inclusion axioms.

The ”affirmation or denial“ of the possible translation is carried out in three steps:

1. Translate the given LIn axiom into a logically equivalent FOL formula ϕ (cf.
the subsequent Section 4.4);

2. Transform ϕ into skolem standard form ϕ′ (cf. Section 4.5 on page 93);

3. Determine for every conjunct in ϕ′ whether it is a Horn formula (cf. Section 4.5
on page 93).
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4.2.3. Logic Programming variants

The fact that several LP variants impose restrictions on the form of Horn formulae,
requires further distinctions. We consider the following important variants of Logic
Programming languages as possible target logics, since they are often supported by
logic databases:

• Datalog (LP0), which generally disallows unsafe Horn formulae, Horn for-
mulae with empty head, the use of equality and the use of function symbols
other than constants;

• Datalog(=) (LP1), generalizes Datalog (LP0) by allowing the use of equality;

• Datalog(=,IC) (LP2), generalizes Datalog(=) (LP1) by allowing Horn formu-
lae with empty head (so-called integrity constraints);

• Prolog(=,IC) (LP3), generalizes Datalog(=,IC) (LP2) by allowing function
symbols and unsafe Horn formulae.

The individual logics are upwards compatible and of increasing expressivity. Every
LP i program is also an LP(i+1) program and, more importantly, is interpreted in
exactly the same way in all LP(i+1).

4.3. Preprocessing Techniques

This section describes three techniques that reduce the total number of constructor
combinations that we have to consider in the following and turn out to maximize
the number of axioms that can be translated into LP . Two techniques carry out
a normalization and simplification of class descriptions and axioms. The third tech-
nique is structural transformation, which is not necessarily required, but allows
us to concentrate on individual DL constructors and not arbitrary complex class
descriptions.

The first two techniques are motivated by the fact that expressive Description Log-
ics such as SHINO often expose a certain redundancy in the set of its constructors.
For example, logics with full negation often provide pairs of operators of which ei-
ther one can be expressed as the other by using negation. We therefore will consider
such tautologies (cf. Table 4.1, where −→≡ is used to denote the equivalence and the
direction of application) to avoid redundant work in our translation.

It is important to note that it is useful to have this redundancy from an epistemolog-
ical perspective, since it is much more natural for a human knowledge engineer to
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¬∀R.C −→≡ ∃R.¬C ¬∃R.C −→≡ ∀R.¬C ≤nR −→≡ ¬≥ (n+ 1)R
¬(uiCi) −→≡ ti(¬Ci) ¬(tiCi) −→≡ ui(¬Ci) ¬> −→≡ ⊥
> u C −→≡ C ⊥ u C −→≡ ⊥ ∀R.> −→≡ >
> t C −→≡ > ⊥ t C −→≡ C ∃R.⊥ −→≡ ⊥
≤ 0R −→≡ ∀R.⊥ ≥ 1R −→≡ ∃R.> ≥ 0R −→≡ >

Table 4.1.: Equivalences for Normalization/Simplification of Class Descriptions

state a disjunction of classes than the negation of a conjunction of negated classes.
Similarly, humans typically do not engineer knowledge bases with the focus that
subsequent reasoning is faster.

Modern DL systems therefore normalize and simplify axioms using preprocessing
techniques to speed up reasoning by avoiding the encoding of (parts of) axioms
that are logically unnecessary. For example, one can detect certain contradictions
syntactically. We adapt these techniques for the two aforementioned purposes.

Firstly, we transform class descriptions into a form that can be translated into LP
more easily. Secondly, we remove redundancies to reduce our effort of determining
the intersection.

4.3.1. Normalization/Simplification of class descriptions

Our normalization and simplification of class descriptions is different from the nor-
malization and simplification carried out in modern DL reasoners. In DL reasoners,
normalization transforms expressions into negation normal form by pushing nega-
tion in an expression towards atomic class names while reducing the language
features. For example, in ALC all occurrences of ∃ and t would be completely
removed and always be replaced by ¬∀ and ¬u.

In our case, we do not completely remove the constructs, but incorporate basic
equivalences such as the DeMorgan laws and other equivalences that we have pre-
sented in Table 4.1. In fact, our particular choice of direction in the application
of these equivalences is motivated by the results of our exploration in Section 4.5.
In particular, we try to eliminate negation as far as possible by pushing negation
in an expression towards atomic class names. Unlike the normalization used to
construct the negation normal form, we do, however, not introduce negation by
replacing constructors.

Example 4.3.1 As we will see later, the following axiom cannot be translated into LP , if
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Norm(A) = A for atomic class A
Norm(uiCi) = Simp(ui{Norm(C1) . . . {Norm(Cn)}})
Norm(tiCi) = Simp(ti{Norm(C1) . . . {Norm(Cn)}})

Norm(∀R.C) = Simp(∀R.Norm(C))
Norm(∃R.C) = Simp(∃R.Norm(C))

Norm({o1, . . . , on}) = {o1, . . . , on}
Norm(≥nR) = Simp(≥nR)
Norm(≤nR) = Simp(≤nR)

Norm(¬C) = Simp(¬Norm(C))(A)

Norm(¬ ui Ci) = Simp(ti{Norm(¬C1) . . . {Norm(¬Cn)}})
Norm(¬ ti Ci) = Simp(ui{Norm(¬C1) . . . {Norm(¬Cn)}})
Norm(¬∀R.C) = Simp(∃R.Norm(¬C))
Norm(¬∃R.C) = Simp(∀R.Norm(¬C))
Norm(¬≥nR) = Simp(≤n− 1R)
Norm(¬≤nR) = Simp(≥ (n+ 1)R)

Simp(A) = A for atomic class A
Simp(¬C) = ⊥, if C = >

>, if C = ⊥
Simp(D), if C = ¬D
¬C, otherwise

Simp(uS) = ⊥, if ⊥ ∈ S
⊥, if {C,¬C} ⊆ S
>, if S = ∅
Simp(S \ {>}), if > ∈ S
uS, otherwise

Simp(tS) = >, if > ∈ S
>, if {C,¬C} ⊆ S
⊥, if S = ∅
Simp(S \ {⊥}), if ⊥ ∈ S
tS, otherwise

Simp(∀R.C) = >, if C = >
∀R.C, otherwise

Simp(∃R.C) = ⊥, if C = ⊥
∃R.C

Simp(≥nR) = >, if n = 0
∃R.>, if n = 1
≥nR, otherwise

Simp(≤nR) = ⊥, if n = −1(B)

∀R.⊥, if n = 0
≤nR, otherwise

(A) Defeasible rule, which is only used if the other negation rules cannot be applied.
(B) Required for normalization of negation.

Table 4.2.: Normalization and Simplification Rules
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we only consider the structure of the axiom:

C v ¬≥ 0P t (≥ 1R u ¬(∃R.(¬A t ¬B)))

Simplification and normalization, however, lead to the following logically equivalent ex-
pression, for which we will learn that it can be translated into LP :

C v ∃R> u ∀R.A uB

The simplification is achieved by the recursive application of the normalization and simpli-
fication functions described in Table 4.2 on page 85:

¬≥ 0P t (≥ 1R u ¬(∃R.(¬A t ¬B)))
Simp(t{Norm(¬≥ 0P ),Norm((≥ 1R u ¬(∃R.(¬A t ¬B))))})
Simp(t{Simp(≤−1P )},Simp(u{Norm(≥ 1R),Norm(¬(∃R.(¬A t ¬B)))}))
Simp(t{Simp(⊥),Simp(u{Simp(≥ 1R),Simp(∀R.Norm(¬(¬A t ¬B)))})})
Simp(t{⊥,Simp(u{∃R>,Simp(∀R.Simp(u{Norm(A),Norm(B)}))})})
Simp(t{⊥,Simp(u{∃R>,Simp(∀R.Simp(u{A,B}))})})
Simp(t{⊥,Simp(u{∃R>,Simp(∀R. u {A,B})})})
Simp(t{⊥,Simp(u{∃R>,∀R. u {A,B}})})
Simp(t{⊥,u{∃R>,∀R. u {A,B}}})
u{∃R>,∀R. u {A,B}}

An important refinement that we also include here, is to treat n-ary class construc-
tors as sets, which eases implementation (cf. Section 7.4 on page 180). The simplifi-
cation rules also try to detect basic inconsistencies within these sets. For example, if
⊥ is included in a conjunction, then the whole set evaluates to⊥. Also, if C and ¬C
are contained in the set, we can deduce ⊥ automatically. Obviously, the opposite
simplifications can be made for disjunctions.

Empirically, simplification and normalization showed to be very effective for satis-
fiability problems in large or mechanically generated TBoxes. For example, some
classes of problem in the Tableaux 98 benchmark comparison of modal logic the-
orem provers could completely be solved using structural simplification and nor-
malization (Balsiger & Heuerding, 1998).

In our case, simplification and normalization turn out to be very useful in the Se-
mantic Web setting, where we are likely to encounter OWL ontologies that have
been designed by others who might not have given consideration to whether the
designed ontologies can be directly used in logic databases.

4.3.2. Normalization of axioms

In some cases we are able to remove negation from axioms. Two pre-processing
optimizations deal with these situations and operate on an axiom level.
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Firstly, we can use the following equivalence

C v D t ¬N1 t . . . t ¬Nn ⇔ C uN1 u . . . uNn v D

to translate disjunctions on the right-hand side of an axiom, if the disjunction con-
tains at most one positive disjunct.

Secondly, we can use the following equivalence

¬C v ¬D ⇔ D v C

to translate inclusion and equivalence axioms where negation occurs on the outer
side of the class descriptions on both sides of the axiom.

4.3.3. Structural Transformation

For complex class descriptions we apply structural transformation (Plaisted &
Greenbaum, 1986), also known as renaming, i.e. assign a new name for each in-
stantiation of a DL constructor in a (complex) class description and axiomatize this
name via a separate inclusion axiom.

Example 4.3.2 (Structural Transformation) Consider the axiom ∃P.A v ∀Q.B, where
A,B (P,Q) are atomic class (property) names. Structural transformation produces three
axioms using the previously unused class identifiers N1 and N2:

{∃P.A v N1, N2 v ∀Q.B,N1 v N2}

We can thereby restrict our attention to the translation of individual DL construc-
tors. Obviously, since the number of constructors used in a complex DL class de-
scription C is linear in the size of C, we only introduce a linear number of new DL
axioms.

4.4. From DL to FOL to LP

We can now turn to the core of our approach and start with the analysis of the
semantic correspondence between DL and LP. As mentioned before, we use FOL
as a mediator between the two logics. Our analysis of the correspondence between
DL and FOL in the following subsection, will also address step 1 of our approach
(cf. Section 4.2 on page 82), viz. the translation of a given Description Logic LIn into
FOL. To this extent, we equate LIn with the Description Logic underlying OWL DL
and ignore the aspects of data typing. Therefore, we are actually concerned with
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Figure 4.1.: Expressive Overlap of DL with LP.

LIn=SHINO. Section 4.4.2 on page 92 will then consider how FOL and LP are
related with each other.

Figure 4.1 on page 88 illustrates the relationship between First Order Logic (FOL),
Horn Logic, Description Logics and Logic Programs. Both Description Logic and
function-free Horn Logic are strict (decidable) subsets of FOL. The decidability,
however, has been achieved by making different syntactic restrictions:

• Function-free Horn Logic basically only allows Horn formulae (cf. Defini-
tion 2.2.26 on page 19) and disallows function-symbols in term construction.

• Description Logics limit the way how variables and quantifiers can be used.
In particular, quantifiers must be relativized via atomic formulae (as in the
guarded fragment of FOL (Grädel, 1999)), i.e. the quantified variable must
occur in a property predicate along with the free variable.

Our approach to translation can therefore also be formulated as determining the
correspondence between these two restrictions.

4.4.1. From DL to FOL

Description Logics can be understood as a notational variant of a fragment of FOL.
To this extent, classes (properties) can be understood as unary (binary) predicates,
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since I interprets them as unary and binary relations over ∆I.

We can therefore translate each class description C into a FOL formula φC(x) with
one free variable such that for every interpretation I, elements of ∆I satisfy φC(x)
iff they satisfy CI. To be more precise, we conceptually follow (Borgida, 1996)3 and
define:

Definition 4.4.1 (Equivalence of DL Class to FOL formula) A class C and its trans-
lation φC(x) to a FOL formula are equivalent if we have for all interpretations I = (∆I, ·I)
and all a ∈ ∆I:

a ∈ CI if I |= φC(a).

4.4.1.1. Translation of Class Descriptions

(Borgida, 1996) inductively defines a translation4 that obeys the above definition
and translates all DL-classes and DL-properties into equivalent FOL formulae.

We simplify the translation of (Borgida, 1996), such that multiple variables are
used5:

• φx(A) produces an unary predicate A(x) whose free variable is x for its argu-
ment class A;

• φ(x,y)(R) produces, for its argument property R, a binary predicate R(x, y)
whose free variables are x and y;

• The mapping function φ(x,y,z)(R+ v R) partially6 captures transitive proper-
ties and produces, for its argument axiom, a FOL sentence

∀x, y, z.(R(x, y) ∧R(y, z))→ R(x, z)

The inductive definition of the translation functions for our particular LIn, viz.
SHINO, is given in Table 4.3 (for classes) and Table 4.4 (for properties). The trans-

3We weaken the equivalence of (Borgida, 1996) to satisfiability only, which is sufficient for DL rea-
soning problems and OWL entailment.

4It parallels the translation of propositional modal logic into FOL given by (van Benthem, 1984).
5(Borgida, 1996) constructs the translation using two variables only, which is used for showing that

the resulting FOL formulae are expressible in L2, the subset of first-order formulae with no func-
tion symbols and maximum two variables, which is known to be decidable (Graedel et al., 1997).

6As a consequence of the compactness theorem of first-order logic, we cannot express in FOL that
P+ is indeed the smallest transitive relation including P .
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DL FOL
φx(A) A(x)

φx(C uD) φx(C) ∧ φx(D)
φx(C tD) φx(C) ∨ φx(D)
φx(¬C) ¬φx(C)

φx(∃R.C) ∃y.φ(x,y)(R) ∧ φy(C)
φx(∀R.C) ∀y.φ(x,y)(R)→ φy(C)

φx({i1 . . . in}) x = i1 ∨ . . . ∨ x = in
φx(>) v = v
φx(⊥) ¬(x = x)

φx(≥nR) ∃y1 . . . yn.
∧

i 6=j ¬(yi = yj)
∧

iR(x, yi)
φx(≤nR) ∀y1 . . . yn+1.

∧
iR(x, yi)→

∨
i 6=j(yi = yj)

Table 4.3.: FOL Translation of SHINO Class Descriptions

lation of classes is recursive and introduces new (previously unused) variables in
the translation of restrictions7.

Example 4.4.1 The DL class description C u ∀R.D would be translated by φx into the
following FOL formula:

φx(Cu∀R.D)⇔ φx(C)∧φx(∀R.D)⇔ C(x)∧(∀y.φ(x,y)(R)→φy(D))⇔ C(x)∧(R(x, y)→D(y))

DL FOL
φ(x,y)(R) ∀x, y.R(x, y)

φ(x,y,z)(R+ v R) ∀x, y, z.(R(x, y) ∧R(y, z))→ R(x, z)
φ(x,y)(R−) φ(y,x)(R)

Table 4.4.: FOL Translation of SHINO Property Axioms

Theorem 4.4.1 (Class Satisfiability) A class C is satisfiable if φx(C) is satisfiable.

Proof Sketch: Let the universe of discourse ∆I of the DL be the domain of I. As
usual in FOL, the variable valuation function V : V → ∆I assigns an element

7An alternative that avoids the large number of inequalities that arise from the translation presented
in Table 4.3 would translate number restrictions into counting quantifiers, viz. an extension of
FOL with such quantifiers. Since such quantifiers are not available in LP, this variant is not re-
garded here.
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d ∈ ∆I to every variable v ∈ V . We choose the denotation of predicates to assign
[C(x)]VI = true iff V(x) ∈ CI , viz. we assign the DL interpretation P I as inter-
pretation of each predicate symbol P . The proof is then completed by structural
induction over the formula (cf. (Borgida, 1996)).

So far we were only concerned with meaning preserving translations of classes and
properties into logical formulae, thereby reducing class satisfiability to satisfiability
of formulae in FOL.

4.4.1.2. Translation of Knowledge Bases

Description Logics also allow us to state a TBox T . We can then determine whether
a class C is satisfiable with respect to the semantic conditions stated by the axioms
in T . The equivalence of this procedure in FOL is very simple.

Firstly, all axioms in T are translated into one big universally quantified conjunc-
tion where each conjunct corresponds to an individual axiom. We expand C ≡ D
into two axioms {C v D,D v C}. This allows us to deal with general inclusion
axioms only. We apply the same strategy to axioms which state the equivalence of
properties, viz. P ≡ Q will be expanded into two axioms {P v Q,Q v P}.
Given a TBox T = {Ci v Di|1 ≤ i ≤ n} ∪ {Pj v Qj |1 ≤ j ≤ m} where Ci, Di are
classes and Pj , Qj are properties, we define:

φ(T ) = ∀x.(
n∧

i=1

(φx(Ci)→ φx(Di))) ∧ ∀x, y.(
m∧

j=1

(φx,y(Pj)→ φx,y(Qj))) (4.1)

(Borgida, 1996) shows the following theorem:

Theorem 4.4.2 (Satisfiability w.r.t. a TBox) A class C is satisfiable with respect to T
iff the formula φ(T ) ∧ φx(C) is satisfiable.

All other reasoning problems for Description Logics (cf. Section 2.4.3 on page 38)
can be translated to a single FOL formula in a similar fashion.

DL FOL
C(i) φi(C)
R(a, b) R(a, b)
i = j i = j
i 6= j ¬(i = j)

Table 4.5.: FOL Translation of ABox Assertions
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Assertional axioms Table 4.5 shows the translation of individual assertions. In-
dividual assertions are translated by instantiating φ using a constant i that repre-
sents the individual i in the DL ABox. We can check the satisfiability of an ABox
A, which may contain property assertions, class assertions and assertions stating
the (in)equivalence of individuals, with respect to a TBox T by translating the set
of assertions into a single FOL conjunction. Given an ABox A with

A = {Rk(ai, aj)|(i, j, k) ∈ I)}∪{Cj(ak)|(i, j) ∈ J}∪{ai = aj |(i, j) ∈ K}∪{¬(ai = aj)|(i, j) ∈ L}

where I, J,K,L are simple index sets and all ai are individuals in the ABox, we can
define

φ(A) =
∧

(i,j,k∈I)

Rk(ai, aj) ∧
∧

(i,j)∈J

φai(Cj) ∧
∧

(i,j)∈K

ai = aj ∧
∧

(i,j)∈L

¬(ai = aj) (4.2)

by translating individuals into constants in FOL. The consistency ofAwith respect
to T can then be determined by checking whether the formula φ(A) ∧ φ(T ) is sat-
isfiable. We can determine whether a is an instance of C by checking whether
φ(A)∧φ(T )∧¬φa(C) is unsatisfiable. All other reasoning problems for ABoxes (cf.
Section 2.4.3 on page 38) can be translated similarly, viz. checking (un)satisfiability
of a single FOL formula suffices to solve all DL reasoning problems.

4.4.2. From FOL to LP

The relationship of First-Order Logic to Logic Programs is less clear. When pro-
grams are definite and do not contain negation-as-failure, Logic Programs syntac-
tically correspond to Horn formulae. However, the evaluation procedures of logic
databases typically only calculate the minimal Herbrand model of the set of Horn
formulae (cf. Section 2.3.2 on page 21), i.e. compute the least fixpoint, and entail
only facts, i.e. unit clauses.

The least fixpoint computation itself is not expressible in FOL and the limitation
to entailment of unit clauses means that logic databases do not make conclusions
about the program itself and do not entail new rules. This is, however, possible for
Horn formulae. For example, one can entail from the formulae sunny(Tuesday) ∧
windy(Tuesday)→ kiting(Tuesday) and sunny(Tuesday) thatwindy(Tuesday)→
kiting(Tuesday) holds. The latter derivation is a non-unit clause and can therefore
not be produced by logic databases.
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For these reasons, definite Logic Programs can be understood as an entailment-
weakened form of Horn formulae. This weakening of entailment is not problematic,
since we do not require the entailment of rules (such a reasoning problem is usually
not considered for Description Logics).

Moreover, several features of Logic Programs (cf. Figure 4.1 on page 88), which are
frequently used in practical rule-based applications, are inexpressible in FOL (and
consequently also outside of the Horn-fragment of FOL). One example is negation-
as-failure, a basic kind of logical non-monotonicity. Another example is procedural
attachments, e.g. the association of action-performing procedural invocations with
the drawing of conclusions about particular predicates.

4.5. Finding the Intersection

This section is concerned with the steps 2 and 3 of our approach, viz. transforming
the FOL formula obtained from the translation in the previous section into skolem
standard form and determining for every conjunct whether it is a Horn formula. We
thereby decide, whether a language construct in LIn = SHINO can be translated
into a LP variant. The impatient reader may refer to Table 4.7 on page 111 which
summarizes our findings.

The subsequent sections will explore all (normalized) SHINO constructors and
axioms in detail. We will state several simple corollaries and fully give (trivial)
proofs since we will refer to the conclusions and transformations established here
in subsequent sections.

We will use the following theorem to show that a particular formula can not be
translated into Logic Programs:

Theorem 4.5.1 A non-tautological Gentzen formula with more than one positive literal
cannot be reduced to a single set of Horn formulae.

Proof: A non-tautological Gentzen formula with more than one positive literal has
more than one minimal model, all of which characterize its logical consequences.
Since a set of Horn formula only has one minimal model, the set cannot possibly
capture all logical consequences of a non-tautological Gentzen formula with more
than one positive literal.

2
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Example 4.5.1 (Multiple Minimal Models for Gentzen formulae) The Gentzen
formula P (a) ∨ P (b), where a and b are constants, has {{P (a)}, {P (b)}} as a non-
empty set of models. The intersection of the two models is empty, i.e. a valid Herbrand
interpretation, but not a model. (From (van Emden & Kowalski, 1976))

Remark 4.5.1 The following proofs will provide a transformation to a conjunction of dis-
junctions. If every disjunction is a Horn formula, the translation into a LP is straight-
forward, i.e. the conjunction corresponds to a set of LP rules. Since this transformation is
purely syntactic, we will omit it in the proofs.

4.5.1. Assertions

Description Logic ABox assertions are (unit) clauses in their FOL notation, viz. they
are Horn formulae and it is directly clear how they are represented as LP facts. Note
that almost all ground constants in the logic program are introduced via such ABox
assertions.

4.5.1.1. Anonymous Individuals

We assume that all occurrences of anonymous individuals have been replaced by
skolem constants via the reduction described in Section 3.4.3.2 on page 66. Note,
however, that an implementation must be able to distinguish between “real” indi-
viduals and skolem constants.

4.5.1.2. Individual assertions

All ABox individual assertions on atomic classes A(a) are translated to unit clauses
A(a). Similarly, all ABox property fillers are translated to unit clauses P (a, b). As-
sertions on complex classes C are handled by introducing a new atomic class name
Ii. The ABox assertion C(a) is then replaced by a new ABox assertion Ii(a) and
a new axiom Ii v C is introduced into the TBox. In an implementation, Ii is a
system-internal class (in style of the names generated by structural transformation)
and may not necessarily be shown to the user.

Example 4.5.2 The individual assertion

∃HASCHILD.MAN(JOHANN-AMBROSIUS)

from Table 2.5 on page 35 is represented as follows

I1(JOHANN-AMBROSIUS)
I1 v ∃HASCHILD.MAN
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Individual equality Individual equality axioms can only be asserted in a LP that
allows an equality predicate, viz. LP1 or above.

Individual inequality Individual inequality axioms can only be asserted in a LP
that allows an equality predicate and integrity constraints, viz. LP2 or above. Ev-
ery inequality assertion ¬(a = b) is essentially an integrity constraint.

4.5.2. Atomic Classes and Properties

In the following, we will restrict our attention to atomic classes, viz. the symbolsAi

and Bi do not refer to class descriptions but only class names. In LIn, i.e. SHINO,
all properties Pi and Qi are atomic by default.

Corollary 4.5.1 Subsumption and equivalence of atomic classes and properties can be rep-
resented in LP0.

Proof: Immediate consequence of the translation from DL to FOL (cf. Equation 4.1
on page 91):

• Class Inclusion Axioms

φ(A v B) = ∀x.(A(x)→B(x))

• Class Equivalence Axioms

φ(A ≡ B) = ∀x.((A(x)→B(x)) ∧ (B(x)→A(x)))

• Property Inclusion Axioms

φ(P v Q) = ∀x, y.(P (x, y)→Q(x, y))

• Property Equivalence Axioms

φ(P ≡ Q) = ∀x, y.((P (x, y)→Q(x, y)) ∧ (Q(x, y)→P (x, y)))

2

4.5.3. Universal class > and Empty Class ⊥

According to Table 4.3 on page 90, > is translated into FOL by expressing the tau-
tology x = x. Similarly ⊥ is translated to a formula that can never be satisfied, viz.
¬(x = x).

We can immediately see that the translation of > and ⊥ at least needs equality.
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4.5.3.1. Universal class >

Corollary 4.5.2 (Equivalence >) An occurrence of > in class equivalence axioms can be
represented in LP1.

Proof: Immediate consequence of the translation from DL to FOL and the fact that
the resulting formulae make use of equality:

• > on the left-hand side of DL inclusion axioms

φ(> v C) = ∀x.((x = x)→C(x))

• > on the right-hand side of DL inclusion axioms

φ(C v >) = ∀x.(C(x)→(x = x))

• > in class equivalence axioms

φ(> ≡ C) = φ(> v C)∧φ(C v >) = ∀x.(((x = x)→C(x))∧ (C(x)→(x = x)))

2

4.5.3.2. Empty class ⊥

Corollary 4.5.3 (right-hand side ⊥) An occurrence of ⊥ on the right-hand side of DL
inclusion axioms can be represented in LP2.

Proof: The following transformation shows that the corresponding formula is a
Horn formula with empty head, i.e. an integrity constraint:

φ(C v ⊥) = ∀x.(C(x)→¬(x = x))⇔ ∀x.(¬C(x) ∨ ¬(x = x))

2

Corollary 4.5.4 (left-hand side ⊥) An occurrence of ⊥ on the left-hand side of DL in-
clusion axioms and class equivalence axioms can not be represented in LP .

Proof:

• left-hand side of DL inclusion axioms

φ(⊥ v C) = ∀x.(¬(x = x)→C(x)) ⇔ ∀x.(C(x) ∨ (x = x)) is a Gentzen
formula. In consequence of Theorem 4.5.1 on page 93, the formula can not be
translated into a set of Horn formulae.
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• Class equivalence axioms follow directly from the translation of equivalence
into pairs of inclusion axioms.

2

Example 4.5.3 (Basic Inconsistency) A consequence of Corollary 4.5.3 is that we can
make the whole knowledge base unsatisfiable by a single axiom:

> v ⊥

This would be translated to the following integrity constraint

:- (x = x).

Hence, it is impossible to create any facts, since we can deduce x = x for every element in
the Herbrand base (x ∈ BH ) of the LP .

Remark 4.5.2 Several alternative ways to encode > and ⊥ exist

• true/false: One possibility is to translate > to true and ⊥ to false. However, a
left-hand side occurrence of > would be an unsafe rule, whereas a right-hand side oc-
currence of top would lead to an elimination of the rule, viz. the symbol for the class
could possibly disappear from the logic program. It would be impossible to detect
within the logic program, whether the class has ever been declared or not. For exam-
ple, the class could never be used in a user query. The alternative translation into
true/false can, however, be used in implementations for an a-posteriori optimization
of the logic program.

• TOP(x)/BOTTOM(x): One could axiomatize these two predicates, by stating that all
elements of the Herbrand universe of the logic program are members of TOP(x) and
stating the integrity constraint :- BOTTOM(x). However, it would be more cumber-
some to prove the correctness, which immediately follows in our approach from the
FOL translation and tautological transformation into a conjunction of Horn rules.

4.5.4. Boolean Class Descriptions

A Description Logic class description can be formed by the combination of various
constructors. Without loss of generality, we limit the following classes Ci, Di to
atomic class names.
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4.5.4.1. Conjunction

Corollary 4.5.5 (Equivalence u) A conjunction uiCi with Ci 6= {>,⊥} in class equiv-
alence axioms can be represented in LP0.

Proof:

Immediate consequence of the translation of equivalence into a conjunction of two
inverse inclusion axioms and the following transformations:

• u on the left-hand side of DL inclusion axioms

φ(C1 u . . . u Cn v D) = ∀x.(C1(x) ∧ . . . Cn(x)→D(x))

• u on the right-hand side of DL inclusion axioms

φ(D v C1 u . . . u Cn) = ∀x.(
∧

i∈[1,n](D(x)→Ci(x)))

• Class equivalence axioms

φ(C1 u . . . u Cn ≡ D) = φ(C1 u . . . u Cn v D) ∧ φ(D v C1 u . . . u Cn)
⇔ ∀x.(C1(x) ∧ . . . Cn(x)→D(x))) ∧ (

∧
i∈[1,n](D(x)→Ci(x))

2

Example 4.5.4 The class equivalence axiom

MALECOMPOSER ≡ COMPOSER uMALE

from Table 2.5 on page 35 is represented as follows in LP:

COMPOSER(x):- MALECOMPOSER(x).
MALE(x):- MALECOMPOSER(x).

MALECOMPOSER(x):- COMPOSER(x),MALE(x). (4.3)

Remark 4.5.3 (> and ⊥ in conjunctions) In consequence of the tautology C u > ≡ C,
LP1 is not needed to represent the conjunction, if one conjunct is >. On the other hand,
since Cu⊥ ≡ ⊥ we need LP2, i.e. equality and the ability to express integrity constraints,
to represent a conjunction on the right-hand side of an inclusion axiom if one conjunct
is ⊥; we cannot express conjunction on the left-hand side of the inclusion axiom nor in
equivalence axioms, if a conjunct is ⊥.
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4.5.4.2. Disjunction

Corollary 4.5.6 (left-hand side t) A disjunction tiCi with Ci 6= {>,⊥} on the left-
hand side of DL inclusion axioms can be represented in LP0.

Proof: We can apply the following transformation

C1 t . . . t Cn v D ⇔ {Ci v D}.
φ({Ci v D|i ∈ [1, n]}) =

∧n
i=1 φ(Ci v D).

The conjunction can be represented in LP0 since every conjunct can be represented
in LP0 by Corollary 4.5.1 on page 95.

2

Corollary 4.5.7 (right-hand side t) A disjunction tiCi with more than one disjunct
Ci 6= {>,⊥} on the right-hand side of a DL inclusion axiom can not be represented in
LP .

Proof: The following transformation shows that the corresponding FOL formula is
a Gentzen formula and only horn for n = 1:

φ(C v C1 t . . . t Cn) = ∀x.(C(x)→
∨

i∈[1,n]Ci(x))⇔ ∀x.(C(x)→
∨

i∈[1,n]Ci(x))

In consequence of Theorem 4.5.1 on page 93, the formula cannot be translated into
a set of Horn formulae.

2

Remark 4.5.4 One could represent the Gentzen formula above in Disjunctive Data-
log (Eiter et al., 1997), which allows disjunctions in the head of rules. We presented such
an extension in (Motik et al., 2003). Due to the discouraging complexity results for Dis-
junctive Datalog (Dantsin et al., 2001), however, we do not meet our target of scalability
with such an extension and we do not further regard this possibility here.

Remark 4.5.5 A direct consequence of corollary 4.5.7 is that we can not use disjunction
in individual assertions, e.g. the following assertion cannot be translated to LP .

GOODTEACHER t BADTEACHER(JOHANN-AMBROSIUS)

The following corollary follows directly from Corollary 4.5.7:
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Corollary 4.5.8 (Equivalence t) A disjunction t with n > 1 disjuncts in class equiva-
lence axioms can not be represented in LP .

Remark 4.5.6 (> and ⊥ in disjunctions) In consequence of the tautology C t > ≡ >
and corollary 4.5.2, we need LP1, i.e. equality, to represent the disjunction, if one disjunct
is >. Similarly, since C t ⊥ ≡ C, the results of corollaries 4.5.6, 4.5.7 and 4.5.8 still hold
if more than two disjuncts exist and one disjunct is ⊥. If two disjuncts are present, the
disjunction can be represented in LP0 on the right-hand side of an inclusion axiom and
consequently in class equivalence axioms.

4.5.4.3. Negation

Negation in Description Logics corresponds to the classical form of negation in
FOL. However, this form of negation is substantially different from the negation-
as-failure that is available in some Logic Programming environments and logic
databases.

Negation-as-failure implicitly applies the closed world assumption (CWA),
viz. ¬COMPOSER(JOHANN-SEBASTIAN) holds, if we do not have a fact
COMPOSER(JOHANN-SEBASTIAN). Classical negation does not make this conclu-
sion, viz. absence of information does not allow to conclude the negation of infor-
mation.

Corollary 4.5.9 (right-hand side ¬) Negation ¬B on the right-hand side of a DL inclu-
sion axiom can be represented in LP2.

Proof: The following transformations show that the corresponding formula is Horn
but does not contain any positive literals:

• B 6= ⊥
φ(A v ¬B) = ∀x.(A(x)→¬B(x))⇔ ∀x.(¬A(x) ∨ ¬B(x))

• B = ⊥
¬⊥ ≡ >, i.e. corollary 4.5.2 holds, which states that LP1 suffices.

2

Example 4.5.5 A logic database would disallow any state of the knowledge base where the
constraint introduced by negation is not met. Given the axiom MAN v ¬WOMAN and
the fact MAN(JOHANN-AMBROSIUS), we will be prevented from making the assertion

WOMAN(JOHANN-AMBROSIUS).
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Corollary 4.5.10 (left-hand side ¬) Negation ¬A with A 6= ⊥ on the left-hand side of a
DL inclusion axiom can not be represented in LP .

Proof: The following transformation shows that the corresponding formula is al-
ways a Gentzen formula:

φ(¬A v B) = ∀x.(¬A(x)→B(x))⇔ ∀x.(A(x) ∨B(x))

In consequence of Theorem 4.5.1 on page 93, the formula cannot be translated into
a set of Horn formulae.

2

Remark 4.5.7 As we will see in Section 5.4 on page 130, we can also not check for in-
stances of some class ¬A, which is clearly possible in Description Logics.

The following corollary follows directly from Corollary 4.5.10.

Corollary 4.5.11 (Equivalence ¬) Negation ¬B with B 6= ⊥ in class equivalence ax-
ioms can not be represented in LP .

4.5.5. Enumeration

Classes can be defined by explicit enumeration of nominals (individuals with
a well-known name) using the enumeration constructor. For example, a class
CONTINENTS would include the nominals AFRICA, ASIA, EUROPE . . ..

The enumerated set of nominals is closed, viz. users cannot specify new individ-
uals outside the definition of the enumeration. A naive translation of nominals
{i1, ..., in}which would translate each enumeration into a new class nameNi, along
with membership assertions Ni(ij) for each nominal, is therefore not correct, since
the semantics of enumeration specifies that newly asserted individuals must be
equivalent to one of the nominals used in the definition of the class.

4.5.5.1. Enumeration with n > 1 elements

Corollary 4.5.12 (left-hand side Enumeration {i1, . . . , in}) Enumeration
{i1, . . . , in} with n > 1 on the left-hand side of a DL inclusion axiom can be repre-
sented in LP1.
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Proof: The following transformation shows that the corresponding formula is a
conjunction of Horn formulae:

φ({i1, i2, . . . in} v C) = ∀x.((x = i1 ∨ . . . ∨ x = in)→C(x))
⇔ ∀x.(

∧
l∈[1,n] x = il→C(x))

2

Corollary 4.5.13 (right-hand side Enumeration {i1, . . . , in}) Enumeration
{i1, . . . , in} on the right-hand side of a DL inclusion axiom can not be represented in
LP .

Proof: The translation yields a Gentzen formula:

φ(C v {i1, i2, . . . in}) = ∀x.(¬C(x) ∨ x = i1 ∨ . . . ∨ x = in)

In consequence of Theorem 4.5.1 on page 93, the formula cannot be translated into
a set of Horn formulae.

2

Remark 4.5.8 Obviously, these rules can be optimized in an implementation into n asser-
tionsC(in). We do not directly incorporate this optimization here, since it would complicate
the translation function presented in Section 5.2 on page 119.

The following corollary follows directly from Corollary 4.5.13:

Corollary 4.5.14 (Equivalence {i1, . . . , in}) Enumeration {i1, . . . , in} in class equiva-
lence axioms can not be represented in LP .

4.5.5.2. Enumeration with n = 1 element

Corollary 4.5.15 (Equivalence {i1}) Enumeration {i1} in class equivalence axioms can
be represented in LP1.

Proof: As Corollary 4.5.12 shows the possibility to translate the left-hand side of
inclusion axioms, it remains to show the right-hand side, which is a single Horn
formula φ(C v {i1}) = ∀x.(C(x)→(x = i1)).

2
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4.5.5.3. hasValue

The results for enumeration with one element can be used for the hasValue con-
struct, which is available in OWL as a convenient primitive for stating an existential
restriction that limits the value of some property to a single nominal ∃R.{a}. The
resulting rules can be simplified such that equality is absorbed in FOL. Therefore
hasValue can be represented in LP0.

Corollary 4.5.16 (Equivalence hasValue ∃R.{a}) hasValue ∃R.{a} in class equiva-
lence axioms can be represented in LP0.

Proof: The following transformations show that we obtain a conjunction of Horn
formulae:

• hasValue on the left-hand side of DL inclusion axioms

φ(∃R.{a} v C) = ∀x.((∃y.(R(x, y) ∧ (y = a))→C(x)))
⇔ ∀x.(R(x, a)→C(x))

• hasValue on the right-hand side of DL inclusion axioms

φ(C v ∃R.{a}) = ∀x.(C(x)→∃y.(R(x, y) ∧ (y = a)))
⇔ ∀x.(C(x)→R(x, a))

• Class equivalence axioms

φ(C ≡ ∃R.{a}) = φ(∃R.{a} v C) ∧ φ(C v ∃R.{a})
⇔ ∀x.((R(x, a)→C(x)) ∧ (C(x)→R(x, a)))

2

4.5.6. Property Restrictions

4.5.6.1. Value Restriction

Remark 4.5.9 Preprocessing transforms ∀R.> into >. The translation then follows from
Corollary 4.5.2 on page 96.

Corollary 4.5.17 (left-hand side ∀R.D) Value restrictions ∀R.D for D 6= {>} on the
left-hand side of a DL inclusion axiom can not be represented in LP .
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Proof: The following transformation shows that we obtain one conjunct that is not
Horn:
φ(∀R.D v C) = ∀x.((∀y.(R(x, y)→D(y)))→C(x))
⇔ ∀x.(¬(∀y.(¬R(x, y) ∨D(y))) ∨ C(x))
⇔ ∀x.∃y((R(x, y) ∧ ¬D(y)) ∨ C(x))
⇔ ∀x.∃y.((R(x, y) ∨ C(x)) ∧ (D(y)→C(x)))

In consequence of Theorem 4.5.1 on page 93, the formula cannot be translated into
a set of Horn formulae.

2

The following corollary follows directly from Corollary 4.5.17:

Corollary 4.5.18 (Equivalence ∀R.D) Value Restrictions ∀R.D for D 6= {>,⊥} in
class equivalence axioms can not be represented in LP .

Corollary 4.5.19 (right-hand side ∀R.D) Value restrictions ∀R.D on the right-hand
side of a DL inclusion axiom can be represented in

• LP0 for D 6= {>,⊥}

• LP2 for D = ⊥.

Proof:

• For D 6= {>,⊥}, the following transformation shows that the corresponding
formula is a Horn formula:

φ(C v ∀R.D) = ∀x.(C(x)→(∀y.(R(x, y)→D(y))))
⇔ ∀x.(¬C(x) ∨ (∀y.(¬R(x, y) ∨D(y))))
⇔ ∀x, y.(¬C(x) ∨ ¬R(x, y) ∨D(y))⇔ ∀x, y.((C(x) ∧R(x, y))→D(y))

• For D = ⊥, the following transformation shows that the formula is Horn and
does not have any positive literals, which requires LP2:

φ(C v ∀R.⊥) = ∀x.(C(x)→(∀y.(R(x, y)→¬(y = y))))
⇔ ∀x.(¬C(x) ∨ (∀y.(¬R(x, y) ∨ ¬(y = y))))
⇔ ∀x, y.(¬C(x) ∨ ¬R(x, y) ∨ ¬(y = y))

2
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4.5.6.2. Existential Restriction

Remark 4.5.10 Preprocessing simplifies ∃R.⊥ to ⊥. The translation then immediately
follows from Corollaries 4.5.3 and 4.5.4.

Corollary 4.5.20 (left-hand side ∃R.C) Existential restrictions ∃R.C with C 6= ⊥ on
the left-hand side of a DL inclusion axiom can be represented in LP0.

Proof: The following transformation shows that the corresponding formula is a
Horn formula:

φ(∃R.C v D) = ∀x.((∃y.(R(x, y)∧C(y)))→D(x))⇔ ∀x, y.((R(x, y)∧C(y))→D(x))

2

Corollary 4.5.21 (right-hand side ∃R.C) Existential restrictions ∃R.C with C 6= ⊥ on
the right-hand side of a DL inclusion axiom can be represented in LP3.

Proof: The following transformations show that the corresponding formula is a
conjunction of Horn formulae. We require, however, skolemization to replace the
existential quantifier which leads to equi-satisfiability of both formulae:

φ(D v ∃R.C) = ∀x.(D(x)→(∃y.(R(x, y) ∧ C(y))))
⇔ ∀x.(¬D(x) ∨ (∃y.(R(x, y) ∧ C(y))))
⇔ ∀x.∃y.((D(x)→R(x, y)) ∧ (D(x)→C(y)))

Skolemization: Replace ∃y with new, previously unused f(x):

∀x.((D(x)→R(x, f(x))) ∧ (D(x)→C(f(x))))

2

Example 4.5.6 (Non-termination) In case of terminological cycles, we can easily effect
non-terminating rules. For example, the axiom C v ∃R.C and some individual assertion
C(a) yields infinite recursion, since we would have to generate

{C(f(a)), C(f(f(a))), C(f(f(f(a)))), . . . , C(f∞(a))}

Remark 4.5.11 Logically, this infinite recursion does not pose any difficulties. However,
in practise, the infinite recursion is not acceptable. In fact, the same infinite recursion would
also occur in tableau based reasoners, if the blocking technique (Buchheit et al., 1993) would
not be used. In a nutshell, blocking regains termination by trying to detect such cyclic
computations and then blocking the application of generating rules.
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The detection of infinite recursion has to be provided by the logic database. For example,
Euler (Roo, 2002) prevents this recursion by so-called Euler paths, which avoid that the
same terms are unified twice.

The following corollary follows directly from Corollaries 4.5.20 and 4.5.21.

Corollary 4.5.22 (Equivalence ∃R.C) Existential Restrictions ∃R.C with C 6= ⊥ in
class equivalence axioms can be represented in a LP that allows function symbols.

4.5.6.3. Minimal Number Restrictions

Remark 4.5.12 The simplification step carried out during preprocessing uses the equiva-
lences ≥ 0R ≡ > and ≥ 1R ≡ ∃R.> to eliminate minimal number restrictions ≥ 0R and
≥ 1R. The translation of these constructors therefore follows from the translation of > and
∃R.> respectively.

Corollary 4.5.23 (left-hand side ≥nR) The minimal number restriction ≥nR with
n > 1 on the left-hand side of a DL inclusion axiom can not be represented in LP .

Proof: The following transformation shows that the formula is equivalent to a sin-
gle Gentzen formula:

φ(≥nR v C) =
∀x.((∃y1, . . . , yn.

∧
i6=j ¬(yi = yj)

∧
iR(x, yi))→C(x))⇔

∀x, y1, . . . , yn.((
∨

i6=j(yi = yj)
∨

i ¬R(x, yi)) ∨ C(x))

In consequence of Theorem 4.5.1 on page 93, the formula cannot be translated into
a set of Horn formulae.

2

Corollary 4.5.24 (right-hand side ≥nR) The minimal number restriction ≥nR with
n > 1 on the right-hand side of a DL inclusion axiom can be represented in LP3.

Proof: The following transformation shows that we can get a conjunction of Horn
formulae:
φ(C v ≥nR) =
∀x.(C(x)→(∃y1, . . . , yn.

∧
i6=j ¬(yi = yj)

∧
iR(x, yi))

⇔ ∀x.∃y1, . . . , yn.(¬C(x) ∨ (
∧

i6=j ¬(yi = yj)
∧

iR(x, yi))
⇔ ∀x.∃y1, . . . , yn.(

∧
i6=j(¬C(x) ∨ ¬(yi = yj)) ∧

∧
i(¬C(x) ∨R(x, yi)))
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We have to introduce n fresh skolem functions of arity 1 to eliminate the existential
quantifier and carry out substitutions for all yi :{[yi/fi(x)]}. This allows to obtain
the following equi-satisfiable formula:

∀x.(
∧

1≤i<j≤n(¬C(x) ∨ ¬(fi(x) = fj(x))) ∧
∧

i∈[1,n](C(x)→R(x, fi(x))))

This is a large conjunction of Horn formulae, some of which make use of function
symbols and have no positive literals, i.e. they are integrity constraints.

2

The following corollary immediately follows from Corollary 4.5.23:

Corollary 4.5.25 (Equivalence ≥nR) The minimal number restriction≥nR with n >
1 in class equivalence axioms can not be represented in LP .

4.5.6.4. Maximum Number Restriction

Remark 4.5.13 The simplification step carried out during preprocessing uses the equiva-
lences ≤ 0R ≡ ∀R.⊥ to eliminate maximal number restrictions ≤ 0R. The translation of
≤ 0R therefore immediately follows from the translation of ∀R.⊥.

Corollary 4.5.26 (right-hand side ≤ 1R) The maximal number restriction ≤nR with
n = 1 on the right-hand side of a DL inclusion axiom can be represented in LP1.

Proof: The following transformation shows that the corresponding formula is Horn
and requires equality in the head:

φ(D v ≤ 1R) = ∀x.(D(x)→(∀y1, y2(R(x, y1) ∧R(x, y2)→y1 = y2)))
⇔ ∀x, y1, y2.(¬D(x) ∨ ¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 = y2)

2

Corollary 4.5.27 (Translation of ≤nR) The maximal number restriction ≤nR with
n > 0 can not be represented in LP when used

• on the left-hand side of inclusion axioms;

• on the right-hand side of inclusion axioms (for n > 1);

• in class equivalence axioms.

Proof:
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• ≤nR on the left-hand side of DL inclusion axioms

Using the equivalences ≤nR ≡ ¬≥ (n + 1)R and ¬C v ¬D ⇔ D v C we
can transform the ≤nR v C into ¬C v ≥ (n+ 1)R

φ(¬C v ≥ (n+ 1)R) = ∀x.(¬C(x)→(∃y1, . . . , y(n+1).
∧

i6=j ¬(yi = yj)
∧

iR(x, yi))
⇔ ∀x.∃y1, . . . , y(n+1).(C(x) ∨ (

∧
i6=j ¬(yi = yj)

∧
iR(x, yi))

∀x.∃y1, . . . , yn.(
∧

i6=j(C(x) ∨ ¬(yi = yj)) ∧
∧

i(C(x) ∨R(x, yi)))

• ≤nR on the right-hand side of DL inclusion axioms

Using the equivalences≤nR ≡ ¬≥ (n+1)R and ¬C v ¬D ⇔ D v C, we can
transform the C v ≤nR into ≥ (n+ 1)R v ¬C. Since n > 1 Corollary 4.5.23
applies, which states that the constructor cannot be translated.

• Class equivalence axioms

φ(C ≡ ≤nR) = φ(≤nR v C) ∧ φ(C v ≤nR)

In all three cases, Theorem 4.5.1 on page 93 applies and states that the formula
cannot be translated into a set of Horn formulae.

2

Remark 4.5.14 The inability to translate arbitrary number restrictions is not tragic, since
these language features are seldomly used in practise (Goble, 2000) (cf. also Section 5.3.2
on page 128 for the analysis of the DAML.ORG ontology library).

4.5.6.5. Exact Number Restriction

OWL DL additionally includes a convenience primitive cardinality , which al-
lows to state exact number restrictions. It can be understood as the conjunction
of stating both a maximum number restriction and a minimum number restriction
with the same number on the same property.

We can directly deduce from the previous corollaries, that the minimum and max-
imum cardinalities may only appear on the same side of an inclusion axiom for
n ∈ {0, 1}. For n > 1, Corollary 4.5.27 states that ≤nR can only appear on the
left-hand side of an inclusion axiom, whereas Corollary 4.5.24 states that ≥nR can
only appear on the right-hand side of an inclusion axiom.

Corollary 4.5.28 (right-hand side =0R) The maximal number restriction =0R on the
right-hand side of DL inclusion axioms can be represented in LP2.
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Proof: C v =0R⇔ C v ≤ 0R u ≥ 0R⇔ C v ∀R.⊥.

The translation directly follows from Corollary 4.5.19.

2

Corollary 4.5.29 (right-hand side =1R) The maximal number restriction =1R on the
right-hand side of an DL inclusion axiom can be represented in LP3.

Proof: C v =1R⇔ C v ≥ 1R u ≤ 1R⇔ C v ∃R.> u≤ 1R.

The translation directly follows from corollaries 4.5.21 and 4.5.26.

2

Example 4.5.7 (=1R) Using the transformations carried out in the proofs of Corollar-
ies 4.5.21, 4.5.26 and 4.5.29, we can now translate the inclusion axiom

HUMAN v =1 HASLIFE

into the following set of LP rules:

y1 = y2:- HUMAN(x),HASLIFE(x, y1),HASLIFE(x, y2).
f1(x) = f1(x):- HUMAN(x).
HASLIFE(x, f1(x)):- HUMAN(x).

4.5.7. Property Characteristics

OWL DL includes various possibilities to augment the definition of properties.
Most of these definitions, e.g. domain, range and functionalities, can be under-
stood as syntactic shortcuts for other expressions (cf. Table 3.2 on page 64). We can
therefore reuse the established results and directly present the result of the trans-
formation. The reader may note that we eliminated the tautological conjunct x = x
in the transformation of translated global domain and range restrictions:

φx(> v ∀P−.C1) = ∀x, y.((P (x, y) ∧ (y = y))→C1(x))⇔ ∀x, y.(P (x, y)→C1(x))

Inverse and transitivity of properties are indeed new features in LIn. However,
their FOL equivalent is a Horn formula (cf. Table 4.4 on page 90). Therefore, no
transformation has to be carried out and the corresponding LP rule follows imme-
diately. The resulting LP translations for property characteristics are summarized
in Table 4.6 on page 110.
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OWL DL Abstract Syntax DL LP
ObjectProperty (P

domain(C1) > v ∀P−.C1 C1(x):- P (x, y).
. . . . . . . . .

domain(Cn) > v ∀P−.Cn Cn(x):- P (x, y).
range(R1) > v ∀P.R1 R1(y):- P (x, y).

. . . . . . . . .
range(Rn) > v ∀P.Rn Rn(y):- P (x, y).
inverseOf(Q) P ≡ Q− P (x, y):- Q(y, x).

Q(x, y):- P (y, x).
Functional > v ≤ 1P y1 = y2:- P (x, y1), P (x, y2).
InverseFunctional > v ≤ 1P− x1 = x2:- P (x1, y), P (x2, y).
Symmetric P ≡ P− P (x, y):- P (y, x).
Transitive P+ v P P (x, z):- P (x, y), P (y, z).

)

Table 4.6.: Translation of Property Characteristics to LP

4.5.8. Summary

Table 4.7 on page 111 summarizes the previous corollaries and shows which lan-
guage feature can be translated fully (X) or may only appear on the left- (L) respec-
tively right-hand side (R) of inclusion axioms or cannot be translated at all (-).

4.6. Conclusion

4.6.1. Contribution

In this chapter we showed how a meaning-preserving translation of some DL ax-
ioms to a logic program can be achieved via a translation into FOL formulae and
subsequent transformation into a logic program. Moreover, we presented a novel
technique for preprocessing DL axioms such that an effective translation into LP is
possible. Preprocessing removes redundancies in the syntax and removes negation
from TBox axioms (as far as possible). We showed which significant and expressive
fragment of the SHINO DL can be translated into Logic Programs and illustrated
the necessary transformation steps to gain LP rules.

We use this fragment in the next chapter for the definition of a family of new De-
scription Logics Li and present a semantics for these languages, which is based on
a formal translation into logic programs. Moreover, we show how prototypical De-
scription Logic reasoning problems can be reduced to answering queries on Logic
Programs and study the expressiveness and the complexity of the new languages.
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SHINO Primitive DL Datalog Datalog= Datalog=,IC Prolog=,IC

LP0 LP1 LP2 LP3

ABox
Indiv. assertion C(a) X X X X
Prop. assertion P (a, b) X X X X
Indiv. equivalence a = b - X X X
Indiv. inequivalence ¬(a = b) - - X X
TBox
Atomic Class A L,R L,R L,R L,R
Atomic Properties P L,R L,R L,R L,R
Top > - L,R L,R L,R
Bottom ⊥ - - R R
Conjunction u L,R L,R L,R L,R
Disjunction t L L L L
Atomic Negation ¬A - - R R
Value Restriction ∀R.(C 6= ⊥) R R R R
Value Restriction ∀R.⊥ - - R R
Existential Restriction ∃R.(C 6= ⊥) L L L L,R(1)

Existential Restriction ∃R.⊥ - - R R
One-Of 1 {o} - L,R L,R L,R
hasValue ∃R.{o} L,R L,R L,R L,R
One-Of {o1, . . . , on} - L L L
Min. Cardinality 0 ≥ 0R = > - L,R L,R L,R
Min. Cardinality 1 ≥ 1R = ∃R.> - L L L,R(1)

Min. Cardinality n ≥nR - - - R
Max. Cardinality 0 ≤ 0R = ∀R.⊥ - - R R
Max. Cardinality 1 ≤ 1R - R R R
Max. Cardinality n ≤nR - - - -
Property Characteristics
Domain X X X X
Range X X X X
Inverse X X X X
Symmetry X X X X
Transitivity X X X X
Functionality - X X X
InverseFunctionality - X X X

(1) Only satisfiability preserving (due to skolemization).
(L) = May appear in body of a LP rule, left-hand side of a DL inclusion axiom.
(R) = May appear in head of a LP rule, right-hand side of a DL inclusion axiom.

Table 4.7.: Expressivity of Different LP Variants
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In particular, we show that most parts of currently available Web ontologies can be
expressed in the new languages and that the family of languages is tractable.

4.6.2. Further uses

Other work can make use of the translation studied in this chapter. For example,
one can:

• “Build rules on top of ontologies”: It enables the logic program to have access
to ontological definitions of the vocabulary (e.g., classes, properties and indi-
viduals) used by the rules.

• “Build ontologies on top of rules”: Conversely, the technique enables ontological
definitions to operate on the output of rules, which basically create the ABox
upon which the TBox operates.

• “Learn ontologies”: It allows to apply Inductive Logic Programming (ILP) tech-
niques to learn ontologies from a given set of relational data by reversing the
transformation and translation. This would allow to transfer the output of
ILP algorithms into Description Logic axioms.

• “Extend the translation”: It can serve as the starting point (Motik et al., 2003) for
extending the translation into more expressive Logic Programming variants
such as Disjunctive Datalog (Eiter et al., 1997), which allows disjunctions in
the head of rules.
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“If our basic tool, the language in which we
design and code our programs, is also complicated,

the language itself becomes part of the problem
rather than part of its solution.”

C. A. R. Hoare
The Emperor’s Old Clothes (Turing Award Lecture)

This chapter defines Description Logic Programs (DLP) as a family of new De-
scription Logics Li and presents a semantics for these languages which is based on
a translation into Logic Programs. It thereby utilizes the results established in the
previous chapter to extend the L0 language, which was presented in (Grosof et al.,
2003). Moreover, the chapter shows how prototypical Description Logic reasoning
problems can be reduced to answering queries on Logic Programs and studies the
expressiveness and the complexity of the new languages. In particular, we show
that most parts of currently available Web ontologies can be expressed in the new
languages and that the family of languages is tractable.

The chapter is organized as follows: Section 5.1 introduces the syntax of the in-
dividual languages Li in the DLP family. Section 5.2 on page 119 presents the
semantics of the DLP languages, which is based on a formal translation of DLP
knowledge bases into extended Logic Programs. Section 5.3 on page 125 describes
the expressivity of the individual Li languages through a comparison with the dif-
ferent proposals for Web ontology languages in the Semantic Web, i.e. RDFS, OWL
Lite and OWL DL. We particularly show that the majority of currently available
Web ontologies can be expressed in DLP. Section 5.4 on page 130 shows how typi-
cal DL reasoning problems can be reduced to answering queries on logic programs.
We also show which reasoning problems make sense for a particular Li variant.
Section 5.5 on page 141 briefly characterizes the complexity of reasoning with each
DLP variant and the translation process itself and shows a more tight polynomial
bound for the Datalog-based DLP languages. Section 5.6 on page 143 summarizes
the contribution of this chapter and links to the last chapter in this part.
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5.1. Syntax

The results of chapter 4 naturally lead to the definition of a set of paired DL lan-
guages, which allow to construct class descriptions on a certain side of an inclusion
axiom. We will refer to these paired languages as LL

i and LR
i respectively.

LR
i is the language which allows to form class descriptions on the right-hand side of

DL inclusion axioms. Conversely, LL
i is the language which allows to form classes

on the left-hand side of DL class inclusion axioms.

LR
i and LL

i are extensions of a core language Li. Li captures class descriptions
that can be expressed on both sides of inclusion axioms and, consequently, is the
language that can be used to formulate class equivalence axioms. We will be able
to ensure by construction that all inclusion axioms formed with LR

i and LL
i and all

equivalence axioms formed with Li can be translated into the Logic Programming
variant LP i.

We can recall from Section 4.2.3 on page 83 that we consider the following variants
of Logic Programming systems as possible target logics:

LP0 Datalog,

LP1 Datalog(=), which augments Datalog with equality,

LP2 Datalog(=,IC), which augments Datalog(=) with integrity constraints,

LP3 Prolog(=,IC), which augments Datalog(=,IC) with function symbols and al-
lows unsafe rules.

The reader may note that all Li include language constructors that can later be
eliminated in the preprocessing step described in Section 4.3 on page 83. We in-
clude these constructors to allow an epistemologically adequate representation of
knowledge.

In the following, we use the established notation, viz. A refers to an atomic class,
C and D to class descriptions, P and R to atomic properties and o is an individual.
Class descriptions can be built inductively from atomic class names using the class
constructors available in a given language LL/R

i . Figure 5.1 illustrates the construc-
tors provided by the DLP variants.

5.1.1. Datalog (L0)

L0 presents the DL language which allows the construction of class equivalence
axioms that can be translated into Datalog programs. The extensions LL

0 and LR
0
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Figure 5.1.: DLP Language Variants

allow to formulate class descriptions that can appear on the left (LL
0 ) or right (LR

0 )
hand side of DL class inclusion axioms.

Definition 5.1.1 (L0) Class descriptions in L0 are formed according to the following syn-
tax rules:
C,D → A | (atomic class)

C uD | (conjunction)
∃R.{o} | (hasValue)

Definition 5.1.2 (LR
0 ) Class descriptions in LR

0 are formed according to the syntax rules
of L0 and the additional rule:

C,D → ∀R.C | (value restriction)

Definition 5.1.3 (LL
0 ) Class descriptions in LL

0 are formed according to the syntax rules
of L0 and the additional rules:

C,D → C tD | (disjunction)
∃R.C | (existential restriction)

Definition 5.1.4 (T DLP
0 ) A DLP TBox T DLP

0 is a set DLP TBox axioms (cf. Table 5.1)
where C is a LL

0 class, D is a LR
0 class, E,F are L0 classes and P,Q are properties.
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C v D, (class inclusion)
E ≡ F , (class equivalence)
P v Q, (property subsumption)
P ≡ Q, (property equivalence)
P ≡ Q−, (property inverse)
P ≡ P−, (property symmetry)
P+ v P , (property transitivity)
> v ∀P−.D, (property domain)
> v ∀P.D, (property range)

Table 5.1.: DLP TBox axioms

Remark 5.1.1 We allow users to state property domains and ranges, since > can be elim-
inated from the resulting rules. For example, the axiom > v ∀P−.D will be translated
to the rule {D(x):- P (x, y).} instead of {D(x):- (x = x), P (x, y).}, which is clearly
equivalent.

Definition 5.1.5 (ADLP
0 ) A DLP ABox ADLP

0 is a set of axioms of the form

P (a, b) (property fillers)
D(a) (individual assertion)

where P is a property and D is a LR
0 class and a, b are individuals.

Definition 5.1.6 (KBDLP
0 ) A DLP knowledge base KBDLP

0 is a pair 〈T DLP
0 ,ADLP

0 〉.

5.1.2. Datalog with equality (L1)

L1 presents a DL language which allows the definition of class equivalence axioms
that can be translated into Datalog(=) programs. The extensions LL

1 and LR
1 allow

to formulate class descriptions that can appear on the left (LL
1 ) or right (LR

1 ) hand
side of DL class inclusion axioms.

Definition 5.1.7 (L1) Class descriptions in L1 are formed according to the syntax rules of
L0 and the additional rules:

C,D → {o} | (one-of with arity 1)
> | (Universal class)
≥ 0R | (Min. Cardinality 0)

Definition 5.1.8 (LR
1 ) Class descriptions in LR

1 are formed according to the syntax rules
of L1 and LR

0 and the additional rule:

C,D → ≤ 1R | (Max. Cardinality 1)
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Definition 5.1.9 (LL
1 ) Class descriptions in LL

1 are formed according to the syntax rules
of L1 and LL

0 and the additional rules:

C,D → ≥ 1R | (Min. Cardinality 1)
{o1, . . . , on} | (one-of with arity n)

Definition 5.1.10 (T DLP
1 ) A DLP TBox T DLP

1 is a set of DLP TBox axioms (cf. Table 5.1
on page 116) where each C is a LL

1 class, D is a LR
1 class, E,F are L1 classes and P,Q are

properties.

Definition 5.1.11 (ADLP
1 ) A DLP ABox ADLP

1 is a set of ADLP
0 axioms and a set of

axioms of the form

D(a) (individual assertion)
a = b (individual equivalence)

where D is a LR
1 class and a, b are individuals.

Definition 5.1.12 (KBDLP
1 ) A DLP knowledge base KBDLP

1 is a pair 〈T DLP
1 ,ADLP

1 〉.

5.1.3. Datalog with equality and integrity constraints (L2)

L2 presents a DL language which allows the construction of class equivalence ax-
ioms that can be translated into Datalog(=,IC) programs. The extensions LL

2 and
LR

2 allow to formulate class descriptions that can appear on the left (LL
2 ) or right

(LR
2 ) hand side of DL class inclusion axioms.

Definition 5.1.13 (L2) Class descriptions in L2 are formed according to the syntax rules
of L1.

Definition 5.1.14 (LR
2 ) Class descriptions in LR

2 are formed according to the syntax rules
of LR

1 and the following additional rules:

C,D → ¬A | (atomic negation)
⊥ | (empty class)
≤ 0R | (Max. Cardinality 0)
∃R.⊥ | (Prop. has filler that belongs to ⊥)

Remark 5.1.2 The surface syntax exposed to users can actually be richer with respect to
negation, viz. users may be allowed to state non-atomic negation in front of class descrip-
tion, as long as the expression can be normalized into a syntactically valid LR

2 expression.
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Definition 5.1.15 (LL
2 ) Class descriptions in LL

2 are formed according to the syntax rules
of LL

1 .

Definition 5.1.16 (T DLP
2 ) A DLP TBox T DLP

2 is a set of DLP TBox axioms (cf. Table 5.1
on page 116) where each C is a LL

2 class, eachD is a LR
2 class, E,F are L2 classes and P,Q

are properties.

Definition 5.1.17 (ADLP
2 ) A DLP ABox ADLP

2 is a set of ADLP
1 axioms and a set of

axioms of the form

D(a) (individual assertion)
¬(a = b) (individual inequivalence)

where D is a LR
2 class and a, b are individuals.

Definition 5.1.18 (KBDLP
2 ) A DLP knowledge base KBDLP

2 is a pair 〈T DLP
2 ,ADLP

2 〉.

5.1.4. Prolog (L3)

L3 presents a DL language which allows the construction of class equivalence ax-
ioms that can be translated into Prolog(=,IC) programs. The extensions LL

3 and LR
3

allow to formulate class descriptions that can appear on the left (LL
3 ) or right (LR

3 )
hand side of DL class inclusion axioms.

Definition 5.1.19 (L3) Class descriptions in L3 are formed according to the syntax rules
of L2 and the additional rule:

C,D → ∃R.C | (existential restriction)
≥ 1R | (Min. Cardinality 1)

Definition 5.1.20 (LR
3 ) Class descriptions in LR

3 are formed according to the syntax rules
of LR

2 and L3 and the additional rule:

C,D → ≥nR | (Min. Cardinality n)

Definition 5.1.21 (LL
3 ) Class descriptions in LL

3 are formed according to the syntax rules
of LL

2 .

Definition 5.1.22 (T DLP
3 ) A DLP TBox T DLP

3 is a set of DLP TBox axioms (cf. Table 5.1
on page 116) where C is a LL

3 class, D is a LR
3 class, E,F are L3 classes and P,Q are

properties.

Definition 5.1.23 (ADLP
3 ) A DLP ABox ADLP

3 is a set of ADLP
2 axioms.

Definition 5.1.24 (KBDLP
3 ) A DLP knowledge base KBDLP

3 is a pair 〈T DLP
3 ,ADLP

3 〉.
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5.1.5. Exchanging DLP Ontologies

In order to facilitate the specification of DLP ontologies, we adapt the abstract syn-
tax of OWL (Patel-Schneider et al., 2003) for the purposes of DLP. The necessary
adaptations to make the abstract syntax concrete have been presented in (Bech-
hofer et al., 2003a), which is restricted to permissible L3 elements in Appendix A
on page 233. The exchange of DLP ontologies using an RDF-based syntax can
then make direct use of the abstract syntax to RDF statement mapping presented
in (Patel-Schneider et al., 2003).

5.2. Semantics

We have several alternatives to assign semantics to the class descriptions of a DLP
language L. Firstly, we can assign semantics directly using a Tarski-style model
theory such as done in Section 2.4.2 on page 34. Secondly, we can provide a reduc-
tion to some other logic such as done in Section 3.4.3 on page 64 for OWL, since we
defined syntactic subsets of SHINO(D). Thirdly, we can rely on the translation
function φ presented in Section 4.4 on page 87 and translate into FOL formulae,
which in turn relies on the semantics of FOL. By construction, all three alternatives
clearly yield the same semantics.

A fourth alternative is more convenient for our purpose, namely to rely on a trans-
lation function φLP which directly translates into LP programs.

5.2.1. Translation of Classes

We adapt the approach of (Borgida, 1996) and define a recursive translation func-
tion φLP which translates DL axioms of the form C v D and C ≡ D into extended
LP rules, which can be transformed into a conjunction (set of) LP rules using the
well-known Lloyd-Topor transformations (Lloyd, 1987).

This translation function differs from the translation function of (Borgida, 1996)
presented in Table 4.3 on page 90 by making the translation of constructors ad-
ditionally dependent on the location of the constructor. Therefore, φL

LP(C, x) (
φR
LP(C, x) ) uses the variable x to translate class descriptions C occurring on the

left (right) hand side of an inclusion axiom into an LP formula.

Table 5.2 on page 120 describes the translation function φLP and sorts the indi-
vidual translation components according to the LP variant in which the resulting
formula can be expressed. For the purpose of translation, we do not treat the core
L1 languages separately, but duplicate the respective constructors into LL

1 and LR
1 .
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5. Description Logic Programs

LP0 = Datalog

φLP(C ≡ D) −→
{
φLP(C v D)
φLP(D v C)

φLP(C v D) −→ φL
LP(C, yi)→ φR

LP(D, yi)
φR
LP(A, x) −→ A(x)

φR
LP((C uD), x) −→ φR

LP(C, x) ∧ φR
LP(D,x)

φR
LP((∀R.C), x) −→ R(x, yi)→ φR

LP(C, yi)
φR
LP((∃R.{o}), x) −→ R(x, o)

φL
LP(A, x) −→ A(x)

φL
LP((C uD), x) −→ φL

LP(C, x) ∧ φL
LP(D,x)

φL
LP((C tD), x) −→ φL

LP(C, x) ∨ φL
LP(D,x)

φL
LP((∃R.C), x) −→ R(x, yi) ∧ φL

LP(C, yi)
φL
LP((∃R.{o}), x) −→ R(x, o)

LP1 = Datalog(=)
φL
LP(>, x) −→ x = x

φL
LP({o1, . . . , on}, x) −→ x = o1 ∨ . . . ∨ x = on

φR
LP({o}, x) −→ x = o)
φR
LP(>, x) −→ x = x

φR
LP(≤ 1R, x) −→ (R(x, y1) ∧R(x, y2))→ (y1 = y2)

LP2 = Datalog(=,IC)
φR
LP(¬A, x) −→ ¬A(x)
φR
LP(⊥, x) −→ ¬(x = x)

LP3 = Prolog(=,IC)
φR
LP((∃R.C), x) −→ R(x, f(x)) ∧ φR

LP(C, f(x))
φR
LP((≥nR), x) −→ (

∧
1≤i<j≤n(¬C(x) ∨ ¬(fi(x) = fj(x)))∧∧

i∈[1,n](¬C(x) ∨R(x, fi(x))))

Table 5.2.: Translation of Class Constructors to Logic Programs
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The φLP(C ≡ D) function decomposes class equivalence axioms into two inverse
inclusion axioms. The later are translated by φLP(C v D), which calls (recursively)
the respective φL

LP(C, x) and φR
LP(D,x) functions depending on the constructor,

which is used in the description of C and D.

In the table we use our standard notation, viz. A is an atomic class name, C and D
are class descriptions, R is a property and x, yi are variables. It is important to note
that yi always refers to a fresh variable, which has not been previously used in the
formula.

We further assume in the definition of φLP , that the preprocessing techniques de-
scribed in Section 4.3 on page 83 have been applied beforehand. φLP therefore does
not include translations for constructors that are equivalent to other constructors
and can be constructed from the combination. For example ∀R.⊥, which has been
explicitly stated in Table 4.7 on page 111 is not explicitly mentioned as a translation
component of Datalog(=,IC). The φR

LP(∀R.⊥, x) translation rather follows from the
combination of φR

LP(∀R.C, x) and φR
LP(⊥, x).

Example 5.2.1 The following DL axiom

A u ∃R.C v B u ∀P.D

would be translated by φLP into the extended LP formula

(A(x) ∧R(x, y1)) ∧ C(y1)→(P (x, y2)→(B(x) ∧ (D(y2))))

We can now guarantee by the definition of φLP and the Lloyd-Topor transformations (Lloyd,
1987) that this formula can be transformed into a conjunction of Horn formulae, viz. the
following two of Datalog rules

B(x):- A(x), R(x, y1), C(y1).
D(y2):- A(x), R(x, y1), C(y1), P (x, y2).

5.2.2. Translation of Properties and Assertions

The translation of properties immediately follows from Table 4.6 on page 110, with
the obvious restriction that the (inverse) functionality characteristic can only be
expressed in Datalog(=) or more expressive LP languages.

For the translation of ABox assertions, we can immediately reuse the results of
Section 4.5.1.2 on page 94. Obviously, individual equality assertions can only be
expressed in Datalog(=) or more expressive LP languages. Individual inequality
assertions are only possible in Datalog(=,IC) or more expressive LP languages.

Table 5.3 on page 122 describes the extension of the translation function φLP for the
translation of properties and assertions.
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LP0 = Datalog

φLP(P ≡ Q) −→
{
φLP(P v Q)
φLP(Q v P )

φLP(P ≡ Q−) −→
{
Q(y, x)→ P (x, y)
P (y, x)→ Q(x, y)

φLP(P v Q) −→ Q(x, y)→ P (x, y)
φLP(P+ v P ) −→ P (x, y)→ P (x, z) ∧ P (z, y)

φLP(D(a)) −→ φR
LP(D, a)

φLP(P (a, b)) −→ P (a, b)
LP1 = Datalog(=)

φLP(a = b) −→ a = b
LP2 = Datalog(=,IC)

φLP(¬(a = b)) −→ a 6= b

Table 5.3.: Translation of Properties and Assertions to Logic Programs

5.2.3. Postprocessing

As we saw in Section 4.5 on page 93, extended LP formulae of the following basic
structural types occur and have a well-defined transformation (Lloyd, 1987) into
conjunctive normal forms:

(1) B→(H ∧H ′) ⇔ (B→H) ∧ (B→H ′)
(2) B→(H ′→H) ⇔ (B ∧H ′)→H
(3) (B ∨B′)→H ⇔ (B→H) ∧ (B′→H)
(4) B→¬H ⇔ (B ∧H)→

Since we apply the structural transformation as a preprocessing step (cf. Section 4.3
on page 83), we do not have to apply these transformations repeatedly, but can
generate the target LP rules in one pass. We can additionally make use of these
well-known transformations and will present a procedural variant of the transla-
tion function in Section 7.4.3 on page 183, which incorporates the a-posteriori trans-
formation directly into the translation. This algorithmic version of the translation
also incorporates the skolemization, which is needed to translate L3. The reader
may wonder why we did not immediately present this integrated algorithm here.

The primary reason is that we can make use of φLP for answering queries in Sec-
tion 5.4 on page 130 and need a different transformation there, for which φLP is
more convenient and simpler to use. Additionally, as mentioned before, further
optimizations of the LP program, e.g. the removal of unnecessary equivalences,
can be achieved and can depart more effectively from extended LP programs.
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5.2.4. Translation Semantics

We can now utilize φLP to define the semantics of KBDLP
i knowledge bases.

Definition 5.2.1 (Translation Semantics) Given an interpretation I, I satisfies
KBDLP

i , iff.

I |= ∀
∧
{φLP(Norm(φ))| φ ∈ KBDLP

i }

where the prefix ∀ is a sequence of universal quantifications for all variables in the conjunc-
tion and φ is an axiom in KBDLP

i .

Remark 5.2.1 The reader may note that we consider the FOL interpretation of KBDLP
i to

be normative. If the semantics of a given logic database departs from the FOL semantics,
the DLP interpretation provided by the system may not be correct.

The following Lemma is a direct consequence of the construction of Norm(),
KBDLP

i and φLP and Lloyd-Topor transformations (Lloyd, 1987):

Lemma 5.2.1 (LP Transformation) ∀
∧
{φLP(Norm(φ))| φ ∈ KBDLP

i } can be trans-
formed into a LP i rule set.

5.2.5. Terminological Cycles

We have seen in Section 2.4 on page 31 that terminological cycles greatly increase
the expressive power of Description Logics and their presence takes most logics
into EXPTIME completeness. As we discussed in Section 2.4.2.1 on page 36, in case
of cyclic TBoxes no unique models for a knowledge base necessarily exist. In this
case, modern DL systems consider all possible interpretations by assigning descrip-
tive semantics to TBoxes. The question therefore arises, whether the evaluation
which we can expect in Logic Programming systems yields the same semantics.

Unfortunately, the general answer is no, since logic databases usually compute the
Herbrand interpretation of some knowledge base by fixpoint iteration until the
least fixpoint is reached.

Must the general answer, however, be given in our case ? Fortunately, the answer
is no again for all DLP languages. This is due to the fact, that we have only very
simple core languages available to state terminological cycles. Therefore, in these
languages only one case of cycles studied in the literature (Nebel, 1991) appears.
The following example demonstrates this case, which is called component circular
classes.
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Example 5.2.2 In the following class equivalence axioms, circular definitions of MAN and
MALE are made:

MAN ≡ HUMAN uMALE

MALE ≡ HUMAN uMAN

φLP would translate these axioms into the following set of LP rules:

MAN(x):- HUMAN(x),MALE(x).
MALE(x):- HUMAN(x),MAN(x).

MALE(x):- MAN(x).
MAN(x):- MALE(x).

HUMAN(x):- MAN(x).
HUMAN(x):- MALE(x).

We can easily see from the rule translation that MAN and MALE are actually equivalent
since their extensions will always be equivalent in the logic program.

From the example, we can directly derive the syntactic criteria for component cir-
cularity, which are spelled out in the following definition:

Definition 5.2.2 (Component Usage + Circularity) An atomic class Ai directly uses
an atomic class Ai+1, if Ai is the left-hand side of a class equivalence axiom and Ai+1

appears on the right-hand side of that axiom. Uses is the transitive close of the directly uses
relation. A class A is component-circular iff A uses itself as a component.

Under descriptive semantics, a set of component-circular classes behaves as if an
unique, fresh atomic class is used in the definition of all classes in the component
circle. Moreover, the following theorem shows that we can transform the TBox into
such a form without changing “relevant parts” of the models, viz. turn the TBox
into an acyclic, definitorial TBox by removing all component cycles.

Let A,R be the set of classes and properties in a DLP TBox T and let I|X denote
the restriction of an interpretation to a certain set X ⊆ A ∪R.

(Nebel, 1991)[pp.18-19] proofs the following theorem:

Theorem 5.2.1 (Component-cycle removal) For every TBox T over A and R exists a
TBox T ′ over A′ and R, where A ⊆ A′, such that for every admissible model I of T there
exists an admissible model I′ of T ′ and vice versa, with I|A∪R = I′|A∪R and T ′ does not
contain a component cycle.

Theorem 5.2.1 shows that our intuition that was spelled out in Example 5.2.2 was
correct. Obviously, the extensions of all atomic concepts in a set of mutually
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component-circular classes have to be identical. Moreover, the extensions of these
atomic classes have to obey the restrictions defined in the non-component-circular
parts of all class definitions that participate in the component-circularity.

We can therefore summarize that component-circular classes do not add anything
to the expressiveness since they can be eliminated without affecting the rest of the
TBox. This elimination makes the TBox acyclic. In this case, however, the least-
fixpoint semantics applied in logic databases agrees with the descriptive semantics,
as both agree on the base interpretation taken for acyclic TBoxes (cf. Section 2.4.2.1
on page 36).

Restriction Circular Classes In L3 additionally another case of cycles can ap-
pear, which (Nebel, 1991) called restriction circular classes. A prototypical example
for restriction circularity is the following definition C ≡ ∃R.C. Again, however,
we do not really have a problem, since L3 is monotone, i.e. no negation can occur
in circles. The reader may note that we do not use negation-as-failure in our pro-
grams, which are non-monotonic. Any occurrence of negation in the logic program
is translated to integrity constraints, which are monotonic in their FOL translation.
If an integrity constraint is violated, the whole program has no model, i.e. every-
thing follows from the ontology.

In the case of monotonicity, the Knaster-Tarski theorem guarantees that ev-
ery monotone fixpoint function has a least and greatest fixpoint. Following
Lemma 2.3.1 on page 22 the descriptive semantics of OWL therefore agrees with
the Herbrand model, which is obtained for the logic program through least fixpoint
iteration (cf. Proposition 2.3.2 on 22), i.e. the entailment of ground facts under least
fixpoint semantics matches the entailment under descriptive semantics.

5.3. Expressivity

This section compares the expressivity of the Li languages with the different pro-
posals for ontology languages, i.e. RDFS, OWL Lite and OWL DL. The asymmetry
of the different Li make these languages rather unusual by Description Logic stan-
dards, and the inability to represent universal property restrictions also leads to the
situation that the languages have to depart from the usual Description Logic nam-
ing scheme. In consequence, we cannot simply compare the languages by naming
the symbols for class constructors, which are provided by the language. Moreover,
it is clear from the definition of the Li languages that the languages are less expres-
sive than any variant of OWL.
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Therefore two main questions arise. Firstly, how expressive are the individual lan-
guages in comparison to other modeling languages we know, i.e. frame-based
languages and RDFS? Secondly, how severe is the restricted expressivity of Li in
practise, i.e. how big is the percentage of currently available ontologies that can be
expressed using Li?

5.3.1. Expressivity in Theory

5.3.1.1. L0

It is easy to see that even L0 includes RDF Schema,1 since all RDFS classes are L0

classes and T DLP
0 includes all axioms needed to capture both class and property

hierarchies and global domain and range restrictions such as available in RDFS.

T DLP
0 additionally captures the part of OWL DL that corresponds to a simple frame

language, i.e. axioms that all define a primitive hierarchy of classes, where each
class is defined as a frame. A frame specifies the set of subsuming classes and a set
of slot constraints, which can be stated by an T DLP

0 axiom of the form A v uiCi,
where each Ci is a LR

0 class. In particular, frames can be associated with static
attributes through the ∃R.{o} constructor. Additionally, T DLP

0 allows to express
most of the OWL DL property characteristics such as property inverse and sym-
metric and transitive properties. LR

0 further allows to state value restrictions to
specify necessary conditions for class membership. LL

o allows to state existential
restrictions to specify sufficient conditions for class membership. Both restrictions
can alternatively be understood as primitives that allow to state local domain and
range constraints for properties (cf. Table 5.4)

Class Definition Axioms DLP Translation
Class (A localdomain (P D) ∃P.A v D

localrange (P R) A v ∀P.R
)

Table 5.4.: Additional DLP Convenience Primitives

The local range constraint is especially useful for a conversion of legacy object data
models (Volz et al., 2002b) such as the ODMG object database models (Cattell et al.,
2000) or the UML meta-modeling language (Object Management Group, 2003) for

1Under the practical assumption that all constraints stated in the definition of OWL DL (cf. Defini-
tion 3.4.4 on page 62) are applied with the appropriate adaptations to the RDFS vocabulary. This
assumption is met by most if not all currently available RDFS vocabularies.
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bootstrapping Semantic Web ontologies. Table 5.5 shows the translation of an Ob-
ject Definition Language (ODL) class specification2 to DLP axioms.

ODMG ODL Definition:

class Composer extends Person
( extent musicians)
{

relationship set<Composition> composes
inverse Composition::isComposedBy;

attribute Instrument plays;
}

DLP Axioms :

class(Composer partial Person
localrange(composes Composition)
localrange(plays Instrument)

)
ObjectProperty(composes inverseOf(isComposedBy))

Table 5.5.: Translation of ODMG ODL Class Specification to DLP Axioms

5.3.1.2. L1

The main contribution of L1 is equality of individuals on the ABox side and the
singleton set constructor, which allows to introduce nominals into the terminology
on the TBox side. LR

1 allows to specify maximum cardinality restrictions with value
1. Therefore all OWL Lite property characteristics can be represented. Functional
properties allow uniqueness conditions to be captured, which is particularly useful
to entail the equality of objects that use the same objects as values of a property. In
a sense, they thereby capture the uniqueness aspect of primary keys in relational
databases.

ADLP
1 additionally allows to instantiate individual equivalence axioms. The eval-

uation in chapter 8 will show that this small increase of expressivity comes at the

2The extends keyword allows to specify subsumption in ODL. The reader may note that the
extent keyword has a different role and specifies the physical table, in which all objects of a
class should be stored.
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high price of having to handle the equivalence theory, which severely affects per-
formance.

5.3.1.3. L2

LR
2 allows to define basic constraints on classes, and allows to make a given knowl-

edge base inconsistent. It is the first language where classes are not necessarily
satisfiable due to the constraints that have been formulated in inclusion axioms.

5.3.1.4. L3

L3 greatly increases the expressive power by allowing existential property restric-
tions on the right-hand side of inclusion axioms. L3 thereby allows to state neces-
sary conditions on the existence of objects. This enables the modeling of incomplete
information, allowing a distinction to be made between objects for whom all rela-
tions to other objects are known and objects that are only incompletely specified.

5.3.1.5. DLP vs. OWL

The asymmetry of the DLP language primitives, viz. the fact that most DL class
constructors can only be used on the right-hand side of inclusion axioms, makes
DLP formally a much less expressive ontology language than OWL Lite, which
corresponds to SHIF(D) and theoretically (but not syntactically) allows to use all
DLP language constructors (except for ≥nR) on both sides of inclusion axioms
and in class equivalence axioms. The next section will show, however, that most
OWL ontologies only use the language primitives provided by DLP. This is mainly
due to the fact that most OWL classes are primitive classes and defined through
inclusion axioms, i.e. the expressiveness of the right-hand side of inclusion axioms
is central in practical usage, while atomic class names are the most frequently used
class constructor on the left-hand side of inclusion axioms.

5.3.2. Expressivity in Practise

In order to assess the expressivity of the Li languages in practise, we have to con-
sider currently available ontologies. We restrict our attention to the ontology li-
brary provided by the DAML project, which contained references to 281 ontologies
in DAML+OIL, RDFS, DAML-ONT, OIL and OWL (44) format.

Interestingly, many of the ontologies in the library turn out to be just conversions
of ontologies, which were initially created in some other (mostly less expressive)
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DLP Variant Completely µ # Axioms σ # Axioms Min. # Axioms
L0 77% 93% 0,0239 25%
L1 79% 95% 0,0151 25%
L2 82% 97% 0,0076 50%
L3 87% 99% 0,0011 75%

Table 5.6.: DAML.ORG Ontologies in DLP

representation language. For example, the famous wine ontology is with us since
’Classic’ times (for more than 15 years !). Viz. the ’bootstrapping’ motivation given
in Section 1.2 on page 7 appears to be justified.

185 ontologies are specified in DAML+OIL and we attempted to convert them into
OWL with the OilEd editor. Unfortunately, only 82 ontologies could be correctly
translated into OWL. Due to some other errors (the most prominent being that on-
tologies could not be downloaded at the specified location (34) or did not validate
as OWL DL (23)), only 112 ontologies could be evaluated in the end.

Our evaluation considers the percentage of all axioms in individual ontologies that
can be expressed using Li, where class equivalence axioms C ≡ D are converted to
two inverse inclusion axioms C v D and D v C.

Table 5.6 summarizes the assessment of the OWL ontology library. The individ-
ual results can be found in appendix C on page 245. The most important result
of the evaluation is that the expressivity of L0 suffices to express 77% of all on-
tologies in the library completely. While L1, which is able to express functional
properties, provides little improvements to this number. Since L2 is able to catch
OWL DisjointClass axioms, an additional number of ontologies can be expressed.
L3, which can express incomplete information using existential restrictions in the
head, catches another 5% of the assessed ontologies.

If we consider the expressivity of DLP from the perspective of number of axioms
that can be expressed, DLP languages are able to capture the large majority of all
axioms in an ontology, where L0 misses in average 7% of all expressed information,
whereas L3 only misses 1% of the expressed axioms. The reader may note that the
standard deviation (σ) is very low, i.e. the individual ontologies typically do not
diverge very much from the average case. The minimum number of axioms, viz.
the maximum deviation observed, can be accounted to one single ontology3, which
contained 16 inclusion axioms, 4 of which were only expressible in OWL DL. The
results of the evaluation are very promising and show that DLP is fitted well for
the Web ontologies available today. This shows that DLP is useful in practise and
should be sufficient for most Semantic Web applications.

3http://orlando.drc.com/daml/Ontology/TaskListUHTLScenario/current/ .
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5.4. Reasoning Problems

As discussed in the introduction of Chapter 4 on page 79, one of the primary goals
of this part is to enable some fragment of DL inferencing to be performed by LP
engines. In this section we will discuss how the kinds of inferences which are
typically of interest in DL, can be translated to query answering in LP. Although
our emphasis will naturally reside on performing DL inferencing, via our trans-
lation φLP , using a LP system, the reverse mapping could be used to provide a
restricted (Horrocks & Tessaris, 2002) form of LP inferencing using a DL reasoning
engine.

On the one hand, DL reasoners typically support the various reasoning tasks that
are described in Section 2.4.3 on page 38. We call QDL the query language which
allows to invoke these reasoning tasks. On the other hand, LP engines typically
support the two queries described in Section 2.3.4 on page 27. We call QLP the
query language defined by these two kinds of LP queries.

In the following we will use the established notation. P and Q refer to properties,
a and b denote individuals and C and D refer to LL|R

i class definitions.

5.4.1. Reducing DL Queries to LP Queries

We will now discuss how we can reduce QDL queries stated on KBDLP
i knowl-

edge bases to QLP queries on the LPi programs LP , which are created by apply-
ing LP = φLP(Norm(KBDLP

i )) and the necessary a-posteriori transformations (cf.
Section 5.2.3 on page 122).

5.4.2. Class-related ABox Problems

We can easily see that we can only ask class-individual membership queries using
class definitions available inLL

i . We can recall thatLL
i are classes which may appear

on the left-hand side of class inclusion axioms and can therefore be translated in the
body of LP rules. Therefore, they can appear in the openQLP atom queries, which
are, as mentioned above, essentially goal clauses. This has serious consequences
with respect to the expressiveness of the query language. For example, we can not
ask queries for membership in the following classes:

• negated classes, e.g. who is not a woman?

• value restricted classes, e.g. who is an offspring of a musician dynasty
(∀hasParent+.Musician) ?
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• max. cardinality restricted classes, e.g. who plays at most one thing (≤ 1 plays) ?

This might appear to be a serious restriction. However, in practise, this is not the
case. Firstly, the answers to such queries in DL systems are often unintuitive,4 since
the open-world assumption is applied in Description Logics.

Example 5.4.1 (Open-world semantics) Consider the following single ABox assertion

HASCHILD(JOHANN-SEBASTIAN,WILHELM-FRIEDEMANN)

from Figure 2.5 on page 35. In a database and Logic Programming, where
the closed-world assumption is applied, this assertion is a representation of
the fact that JOHANN-SEBASTIAN has indeed only one (known) child, namely
WILHELM-FRIEDEMANN. In DL, however, it only asserts that WILHELM-FRIEDEMANN

is a child of JOHANN-SEBASTIAN.

Hence, JOHANN-SEBASTIAN could always have more children.5 If we would ask for those
individuals in the ABox who have at most one child, JOHANN-SEBASTIAN would not be
among the given answers, since the assertion ≤ 1 HASCHILD(JOHANN-SEBASTIAN) has
not been made in the ABox.

Secondly, the ABox querying capabilities of Description Logics are very limited
when compared to Turing complete languages like SQL and Prolog. All QDL in-
stance retrieval problems, given that the class C whose extension is to be retrieved
is an LL

i -class, can nevertheless be reduced to QLP queries.

If C is a complex LL
i class description, we will reduce the QDL query into several

QLP queries. The reader may note that we could similarly invent a new atomic
class name Q, use C and Q in a new DL inclusion axiom C v Q and ask one single
QDL query for the atomic class Q.

However, we do not make this simplistic translation, since the translation involves
a manipulation of the TBox and, consequently, a manipulation of the rules in LP .
The behavior of LP systems in this case is not clear. Some systems simply disallow a
(programmatic) change in the rules of (running) logic programs. Others allow such
a change but require a recompilation of the program (e.g. CORAL (Ramakrishnan
et al., 1994)), which is clearly more expensive than asking several QLP queries.

Remark 5.4.1 The reader may also note that our reduction of t is only complete for the
DLP fragments, since it is impossible to instantiate disjunctions in individual assertions
and t is not available on the right-hand side of inclusion axioms.

4At least to non-logicians.
5In fact, Bach had twenty children, seven with his first wife and cousin Maria Barbara and thirteen

children with his second wife Anna Magdalena.
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5.4.2.1. Instance checking

QDL instance checking refers to the problem of determining whether an individual
a is an instance of C. We translate this query to QLP ground atom queries in a
recursive fashion. If:

• C is a class name: The QDL query C(a) is directly translated into the QLP
ground atom query :- C(a). The QDL query is answered positively (nega-
tively), if the QLP query has a positive (negative) answer.

• C = C1 u . . . u Cn: The initial QDL query is translated to n QDL queries
Ci(a), which must all be answered positively to obtain a positive answer on
the initial query. Otherwise, a negative answer is given for the initial query.

• C = C1t. . .tCn: The initialQDL query is translated to nQDL queriesCi(a).
At least one of these QDL queries must be answered positively to obtain a
positive answer for the initial QDL query. We can process the multiple QDL
queries sequentially and stop processing these queries as soon as we found
one positive answer.

• C = {o1, . . . , on}: The initial QDL query is directly translated into multiple
QLP ground queries

:- o1 = a.
. . .

:- on = a.

At least one of these QLP queries must be answered positively to obtain a
positive answer for the initial QDL query. We can process the multiple QLP
queries sequentially and stop processing these queries as soon as we found
one positive answer.

• C = ∃R.D: The initial ground QDL query is translated into an open QLP
query

:- R(a, y1), D(y1).

We can give a positive answer if we find substitutions obtained for the vari-
able y1.

5.4.2.2. Instance Retrieval

The QDL instance retrieval problem asks for all individuals that are members of a
class C. This query is reduced to multiple open QLP atom queries. This reduction
is performed using the φLP translation of C and an answer variable xwhich will be
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used as a container for all individuals that constitute the answer of theQDL query.
We obtain a FOL formula

φ = φL
LP(C, x)

and translate φ into disjunctive normal form (DNF)

φ ≡
∨
i

Ki

Each disjunct Ki then forms a QLP query, by considering Ki as the body of a LP
goal clause

:- Ki.

The answer of the initial QDL query is the union of all substitutions obtained for
the variable x in each individual QDL query Ki.

The construction of the DNF can be achieved using a repeated (recursive) applica-
tion of one of the laws of distribution:

F ∨ (G ∧H)⇒ (F ∧G) ∨ (F ∧H)

The simplicity of this solution can be accounted to the fact that all φ are simple
formulae with the following two properties. Firstly, φ is a quantifier free formula,
due to the fact that all terms produced by φL

LP are expected to be part of the body
of a LP rule6. Secondly, the φL

LP translation rules, which are the only relevant rules
for a LL

i expression likeC, only produce (nested) conjunctions and disjunctions, i.e.
we only have to deal with positive literals.

These two characteristics allow us to use a "propositional" algorithm for the con-
struction of a DNF form, i.e. all literals in φ are treated like predicates in propo-
sitional logic and restrict our attention to recursive application of the distribution
law mentioned above.

Eventually we “multiply” ∨ out as often as necessary, i.e. push all ∧ inwards. Ob-
viously this multiplication is linearly bounded in the number of ∧ occurring in the
formula.

Example 5.4.2 Consider the following open QDL class-individual membership query:

Q = (∃R.A u (B t C)) (5.1)

The translation into a FOL formula provided by φL
LP(Q, x) results in

R(x, y) ∧ (A(y) ∧ (B(y) ∨ C(y))) (5.2)
6They are thereby implicitly quantified.
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which can be transformed in two steps into DNF

R(x, y) ∧ ((A(y) ∧B(y)) ∨ (A(y) ∧ C(y))) (5.3)
(R(x, y) ∧A(y) ∧B(y)) ∨ (R(x, y) ∧A(y) ∧ C(y)) (5.4)

We then issue two QLP queries

:- R(x, y), A(y), B(y). (5.5)
:- R(x, y), A(y), C(y). (5.6)

The answer is then given by union of the substitutions for the variable x in the answer of
the two queries.

We could additionally make use of the laws of absorption to simplify the formula
further and avoid redundant conjuncts. However, in practise, only few redundan-
cies appear, since queries are usually not very complex terms.

5.4.2.3. Dual retrieval problem

The dualQDL retrieval problem asks for all classes that a given individual a instan-
tiates. Apparently this amounts to issuing n×mQDL instance checking problems,
where n is the number of classes in T DLP

i and m the number of individuals in
ADLP

i .

Obviously, we can do better than that, taking into consideration equivalence classes
of individuals, where it is sufficient to test one representative and taking the class
hierarchy into consideration. If we know, for example, that C v D and can show
that a is a member of C, we can automatically deduce that amust also be a member
of D.

These optimizations are similar to the optimizations taken for classification, which
are described in more detail in the subsequent Section 5.4.4.3 on page 136.

5.4.3. Property-related ABox Problems

5.4.3.1. Ground property fillers

The case of determining ground property fillers is trivial as all properties are
atomic, i.e. the ground QDL query P (a, b) has a positive (negative) answer iff the
QLP query

:- P (a, b).

has a positive (negative) answer.
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5.4.3.2. Open property fillers

The case of open property fillers is similar to ground property fillers. The QDL
query for all pairs (a, b) that are members of P is effected by translation into the
open QLP query

:- P (x, y).

and returning the pairs of substitutions obtained for the variables x and y in the
QDL query.

5.4.4. TBox Problems

The main reasoning problem for DLP, which does not feature full negation, is class
subsumption. For Li-classes, QDL class subsumption queries can be reduced to
QLP only by assertions. This is due to the fact that Logic Programs, unlike De-
scription Logics, typically cannot reason over the conceptualization, viz. the rules
of the program, itself. They can only manipulate the extensions of given predicates
via the deduction process that is controlled by the evaluation of the program.

We can however add new assertions to the extension of some predicate and observe
what happens with the new assertion, i.e. whether it ”suddenly“ appears in the
extension of some other predicate. If this is the case, the extension of the other
predicate must necessarily be a superset of the predicate to which we made the
assertion initially. This conclusion only holds, since we do not have negation-as-
failure in the rules generated by φLP , i.e. we have only ”positive“ flows of elements
in the Herbrand universe.

5.4.4.1. Subsumption between two classes

We make use of the aforementioned observation. To test whether C is a subclass of
D, we construct a prototypical instance a of C and check whether KBDLP

i ∪ {C(a)}
entailsD(a). The reader may note that amust be a new constant that did not appear
in KBDLP

i before. After the check, C(a) has to be removed from KBDLP
i .

The assertion approach has the obvious consequence that, in the case of complex
class definitions, we can only detect whether a LL

i class subsumes a LR
i class. This

is due to the fact that we can only formulate assertions using LR
i classes and can

only ask class-membership queries for LL
i classes.

If C or D is a (complex) class description, we have to compile new rules. As men-
tioned before, the resulting change of the rule set in the logic program might make
this operation very expensive in logic databases. We can therefore conjecture, that
DL systems will outperform LP systems with respect to the subsumption problem.
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5.4.4.2. Equivalence of two classes

To test whether C ≡ D, we have to check whether KBDLP
i ∪ {C(a), D(b)} entails

D(a) and C(b). The reader may note that a and b must both be new constants that
did not appear in KBDLP

i before. After the check, the assertions C(a) and D(b)
have to be removed from KBDLP

i .

5.4.4.3. Classification

Complete information about the class hierarchy can be obtained by computing the
partial ordering of classes in T DLP

i based on the subsumption relationship. This
complete information is also required to answer queries about the position of a
given class C in the hierarchy, viz. queries for all or only the most-specific (named)
superclasses of C in T DLP

i and for all or only the most-general (named) subclasses
of C in T DLP

i .

Obviously, the classification of n classes in a TBox is at most O(n2), i.e. of quadratic
complexity in the number of classes, since it requires n × (n − 1) subsumption
checks. We can, however, minimize this number further by taking the structure
of classes into account and controlling the order in which classes are added to the
hierarchy.

For our purpose we can reuse a plethora of optimizations (e.g. (Baader et al., 1994;
Levinson, 1992; Lipkis, 1982; MacGregor, 1988; MacGregor, 1991)) devised in the
implementations of Description Logic reasoners. Most optimizations are based on
traversal of the class hierarchy and minimize the number of tests that are required
in order to add a new class.

For example, (Lipkis, 1982) describes an optimization for classification in the very
first KL-ONE implementation. His optimization is essentially a simple traversal
method whose idea is to compute the superclasses of a class by searching down
the hierarchy from the top node and the subclasses of a class by searching up the
hierarchy from the bottom node.

Top search The top search takes advantage of the transitivity of the subsump-
tion relation when a class A is classified by propagating failed classification results
down the hierarchy. Hence, it deduces while avoiding the subsumption test itself,
that if A is not subsumed by B, then it cannot be subsumed by any other class that
is subsumed by B.
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Bottom search Bottom search uses a similar technique and only tests whether B
is a subclass of A if A is already known to subsume all classes that are subclasses of
B. The bottom search is also limited by information from the top search.

Told subsumption Other enhancements to the classification can be made by
”avoiding subsumption tests by exploiting relations which are obvious when look-
ing at the syntactic structure“ (Baader et al., 1994)[sec. 5 p. 24] For example, if the
KB contains the inclusion axiom A v C, then C is said to be a told superclass of A.
Similarly, if C is a conjunctive class, all conjuncts of C will be superclasses of A. We
can conjecture that told subsumption will be very efficient for the DLP languages,
since our translation only yields inclusion axioms.

Apparently, it is easy to compile the list of told superclasses while reading in class
definitions and storing this information in auxiliary, built-in system predicates for
later usage. Eventually, we also need such auxiliary predicates to manage markers
for the traversal method of (Lipkis, 1982) and can use told information to preset
these markers.

Effect of optimizations The evaluation of (Baader et al., 1994) shows that the de-
scribed optimizations safe an average of 80 % in the number of subsumption calls
on the evaluated knowledge bases. In fact, their implementation of the optimiza-
tions were able to speed up the classification task of the KRIS system by an order of
3 magnitudes. We therefore consider the point for optimization taken and do not
evaluate classification further in Chapter 8 on page 193.

5.4.4.4. Class Satisfiability Queries

As mentioned before, only LR
i with i ≥ 2 is expressive enough to make a given set

of classes unsatisfiable. In order to check whether a class is satisfiable, we have to
use assertions again.

Class satisfiability We can simply rely on the fact that the integrity constraints
defined in the LP engine will disallow us to assert any information to an unsatisfi-
able class. If we try to assert a new individual a to be a member of class C and the
system responds with an integrity constraint violation, we obviously detected that
C can not be satisfied.

If C is a complex class definition, we have to compile new rules for C. Since we
try to assert a new instance, C must be a LR

i class. After the satisfiability check, we
have to revoke the compiled rules and the made assertion (if it succeeded).
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Apparently, satisfiability checking will be a very expensive operation in LP sys-
tems, since the change of the program typically results in recompilation of the pro-
gram and optimizations based on the structure of the program are usually carried
out.

Knowledge base satisfiability We can check whether the whole TBox T DLP
i is

satisfiable by asking whether > is satisfiable. Apparently, this amounts to an indi-
vidual equivalence assertion a = a for some new individual a that has not previ-
ously been an element in KBDLP

i .

Disjointness of classes The disjointness of classes can be detected by an attempt
to make two assertions to classes using the same individual. If only one of the two
assertion succeeds, we can deduce that the classes are disjoint. If both assertions
succeed, the classes are not disjoint in all possible knowledge bases. If no assertion
succeeds, both classes are unsatisfiable, i.e. equivalent to each other and ⊥.

The reader may note that disjointness in DL does not denote that the extension of
classes are disjoint in the particular knowledge base at hand. In Logic Program-
ming this ”other“ form of disjointness can easily be computed, i.e. we can not find
variable substitutions for x in the following rule :- C(x), D(x)..

5.4.4.5. Property Subsumption and Equivalence

Similarly to our approach to class subsumption, we could detect property sub-
sumption by assertions.

InKBDLP
0 knowledge bases we all properties are atomic and property subsumption

is only an asserted partial order on properties, we could detect property subsump-
tion from the asserted definitions under the condition that we store the definition
itself. This is possible since we can neither make the knowledge base unsatisfiable
nor have interactions of equality with the property hierarchy, e.g. via functional
properties.

Meta-Reasoning We can store the assertions about property subsumption using
a dedicated predicate ≤ and axiomatize this predicate ≤ to capture the axioms of
partial orders, viz. reflexivity, antisymmetry and transitivity. For convenience, we
write the predicate infix as previously done for equivalence.

(x ≤ x):- . reflexivity (5.7)
(x = y):- (x ≤ y), (y ≤ x). antisymmetry (5.8)
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(x ≤ y):- (x = y). (5.9)
(y ≤ x):- (x = y). (5.10)

(x ≤ z):- (x ≤ y), (y ≤ z). transitivity (5.11)

A simulation of the QDL query for subsumption between the properties P and
Q can then use a ground QLP query :- (p ≤ q).. The reader may note that ≤
is an auxiliary system predicate which is only used for answering QDL property
subsumption and equivalence queries. ≤ is not a binary predicate that is defined
through T DLP

i , rather the extension of ≤ is defined through T DLP
i .

Property Equivalence Likewise to class equivalence, the QDL query for the
equivalence of properties can be reduced to two inverse QDL queries on the sub-
sumption of the two properties.

5.4.4.6. Property Characteristics

We can ask more structural queries about properties, which are not typical DL rea-
soning problems, but in style of property subsumption. Again, we could think of
two approaches which are based on either testing on new, hypothetical individuals
or on predicates storing meta-data. We will see, however, that the meta-approach
does not work for all cases, e.g. domains and ranges.

Domain and Range We can easily retrieve the set of asserted domain and range
classes of a property using the meta-approach. However, due to the fact that these
classes might have subclasses, we are not able to retrieve all possible (inherited) do-
mains and ranges. To retrieve these classes, we need to have a complete classifica-
tion of all classes available in the TBox and look up the classes which are subsumed
by the asserted domains and ranges.

Alternatively, the assertion approach would proceed asserting a new pair (a, b) of
new, previously unused individuals to be an instance of a property P and query all
n LL

i classes in the TBox whether a (b) appear in the extension of that class. If so,
the respective class is the domain (range) of P . Apparently, we have to undo the
property filler assertion P (a, b) after the completion of the answer.

Inverse and Symmetric Querying properties for their asserted inverse proper-
ties naturally amends itself to the meta-data approach, since only the simple in-
ference that inverse itself is symmetric has to be made to capture all inverses of a
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property. The symmetry can easily be captured by the rule:

inverse(y, x):- inverse(x, y). symmetry (5.12)
inverse(x, z):- (x ≤ y), inverse(y, z). inheritance (5.13)

AQDL query for the inverses of a propertyP would then be answered by returning
the set of substitutions for the variable x in the open QLP query :- inverse(P, x).

Similarly, a QDL query for whether a given property P is symmetric would be
answered by the closed QLP query :- inverse(P, P ).

Transitivity Answering the QDL query for the transitivity of a property with the
assertion approach requires three new, previously unused individuals which are
asserted for two (connected) pairs of property fillers P (a, b) and P (b, c). We then
have to issue a ground QLP atom query on whether R ∪ {P (a, b), P (b, c)} entails
P (a, c). After the query, obviously, we have to revoke the assertions after answering
the QLP query.

The meta-data approach requires the simple axiomatization that transitivity also
holds for inverse properties.

isTransitive(x):- inverse(x, y), isTransitive(y). (5.14)

5.4.5. Descriptive Information

As we have seen in the previous section, the representation of information that
describes the structure of the knowledge base itself, can be used for some simple
inferences. This meta-information, which we call descriptive information, is also nec-
essary for the classification task where we need information about which classes
and properties have been declared in the ontology.

Descriptive information is not only useful for system internal purposes such as
characterized above, but also from a user perspective. Users are required to know
the TBox in order to query the ABox in a sensible manner. Therefore they need
to have access to information about the definitions of classes and properties. This
would also allow to represent additional ”non-logical“ information similar to An-
notationProperties in OWL (McGuinness & van Harmelen, 2003), which can help
users in understanding class and property definitions made in a knowledge base
KBDLP

i .

We have several alternatives for the representation of descriptive information. For
example, one can utilize the fact that the specifications in KBDLP

i itself are made
using a syntactic subset of the primitives available in OWL. We can therefore rely
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on the RDF representation of OWL and simply store the statements of the RDF
graph in a dedicated ternary predicate, e.g. statement. Alternatively, we can use
the EBNF described in Appendix A on page 233 and derive a relational storage
structure of the grammar. Similarly, we could directly use the EBNF and store the
nested structure in LP systems that allow for nested data structures, i.e. Prolog and
many deductive databases such as Coral (Ramakrishnan et al., 1994).

It is important to note that we only represent this descriptive information for tasks
that do not require sophisticated logical reasoning but simple database-like lookup
of information. We do not control the reasoning itself via an axiomatization of
descriptive information such as done in (Zou, 2001; Roo, 2002; Fikes & McGuiness,
2001; Weithöner et al., 2003).

We can however devise other auxiliary predicates that allow to cache inferred infor-
mation, e.g. deduced subsumption relationships, which hold as long as the TBox
itself is not altered. Since updates on the TBox require a recompilation of the whole
logic program anyways, the classification and subsumption information holds for
the life time of the program. To summarize, descriptive information has the same
role as descriptive information in normal databases.7

5.5. Complexity

To determine the complexity of the Li languages, we can reuse the properties of
the translation function φLP and make use of the complexity results known for
different variants of Logic Programming, which were mentioned in Section 2.3.5
on page 27.

5.5.1. Datalog-variants of DLP

5.5.1.1. ABox reasoning problems

Sections 5.4.2 and 5.4.3 have shown how a QDL ABox reasoning problem can be
translated into multiple QLP queries. For answering QLP queries, we can recall
from Section 2.3.5 on page 27 that (Vardi, 1982; Immerman, 1986) showed that the
data complexity, i.e. the complexity of answeringQLP queries of Datalog is P hard.
We will make this bound more crisp for DLP. As a first step we characterize what
polynomial means for arbitrary Logic Programs LP . (Vardi, 1982)[Thm. 5, pp. 5-6]
proves the following theorem:

7In Oracle, most databases employ a special reserved table, e.g. syscat.tables , to store informa-
tion about user defined tables.
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Theorem 5.5.1 (Vardi-Immerman) The data complexity of any Datalog LP and input
database D is bounded by

O(nk+1)

where k is the maximum number of variables in rules of LP and n is the size of the exten-
sional database D.

Corollary 5.5.1 The data complexity of DLP knowledge bases KBDLP
i≤2 is then bounded by

O(|ADLP
i≤2 |)4

Proof: Clearly, the size of the extensional database D is equivalent to n =
|ADLP

i≤2 |, i.e the number of property fillers, individual assertions and individual
(in)equivalences, since we can assume, without loss of generality, that all assertions
are made on atomic classes (cf. Section 4.5.1.2 on page 94) and atomic properties.
The size of the input database is therefore equivalent to the size of the number of
axioms in KBDLP

i≤2 .

Every LP created by φLP has at most 3 variables k in its rules. In fact, the bound
k = 3 arises from the translation of transitive properties. Since we apply struc-
tural transformation (Plaisted & Greenbaum, 1986), i.e. assign a new name for each
instantiation of a Li constructor in a (complex) class description, we only have to
look at the individual Li constructors. The definition of φLP then immediately
shows that only the translation of ∃R.C,∀R.C and ≥nR lead to k = 2 variables.
The boolean constructors u,t,¬ only require k = 1 variable. ≤ 1R, however, re-
quires k = 3 variables. Similarly, the transitivity of the equality theory requires
k = 3 variables. For DLP, we can therefore deduce that we can rewrite every pro-
gram into a form such that k equals 3. Substituting k and n into the upper bound
of Theorem 5.5.1 then shows O(|ADLP

i≤2 |)4.

2

5.5.1.2. TBox Reasoning Problems

The complexity of solving TBox reasoning problems is harder to assess, since the
answering of QDL queries requires manipulation of the logic program by assert-
ing and retracting facts or even rules. In this case, program complexity is a more
precise measure, which is EXPTIME in the case of Datalog. This result is addition-
ally backed up by Bonner in (Bonner, 1992), who shows that Datalog augmented
with an operator for modifying the logic program (called substitution) has EXP-
TIME complexity.
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5.5.2. Prolog-variant of DLP

We can recall that L3 knowledge bases are compiled into Prolog programs. Pro-
log itself is undecidable, since it can express all recursively enumerable predicates.
Hence, we can observe that the upper-bound for L3 is not given by its translation
into Prolog but rather by a translation into well-known Description Logics. Since
L3 allows (restricted) use of language features in SHINO, we can conjecture that
L3 has at most the same complexity as SHINO, i.e. NEXPTIME. Even if we limit
recursion and implement blocking (Buchheit et al., 1993) for the generated skolem
functions, the blocking algorithm can still generate paths of exponential length be-
fore the actual blocking occurs. Obviously, we do not meet our goal of tractability
anymore.

5.5.3. LP Translation

The recursive definition of φLP (cf. Tables 5.3 and 5.2 on pages 122 and 120) shows
that the φLP translation into extended LP rules is linear in the depth of the class
descriptions occurring in each axiom, i.e. the upper bound of the translation is

O((l + r)×m)

where m is the number of axioms in KBDLP
i and l (r) is the maximum depth of the

class description on the left (right) hand side of any inclusion axiom in T DLP
i .

5.6. Conclusion

This chapter presented the DLP family of Description Logics. We introduced the
syntax and constructors of each DLP variant and effected the semantics of these
languages by a translation into various types of Logic Programs.

We compared the expressiveness of the languages with respect to the Web ontology
languages presented in Chapter 3 on page 43 and showed from a practical perspec-
tive, that almost all parts of currently available Web ontologies can be expressed
using the language.

We then showed how the typical DL reasoning problems can be reduced to oper-
ations on the logic program. In particular, we could identify that typical DL TBox
reasoning tasks are expensive to handle, since their reduction involves updates on
the logic program. On the other hand, we could also show that DL ABox reasoning
tasks can be easily reduced to (multiple) LP queries.
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Our analysis of the complexity of the DLP languages showed that their implemen-
tation in Datalog variants yields a polynomial of the fourth degree as an upper
bound for the complexity of ABox reasoning tasks. We have to revoke our assump-
tion, however, that the complexity of TBox reasoning problems is computationally
simpler than their counter part in DLs, since we could only show an EXPTIME up-
per bound.

Moreover, we can conjecture from the possibility of non-termination when practi-
cally evaluatingL3 in LP, that the language will not meet our initial goal of tractabil-
ity due to the possibility of having to traverse paths of exponential length even
when the blocking technique is applied.

Chapter 7 on page 173 will present our prototypical implementation, which can
reuse both existing DL reasoners and existing LP engines for solving DLP reasoning
problems. We then compare the performance of both embedded systems for the
reasoning tasks available with the DLP languages in Chapter 8 on page 193. The
evaluation is performed on synthetical knowledge bases, whose synthesis is based
on a statistical analysis of the collection of Web ontologies, which we have met in
this chapter.

The next chapter, however, will study how we can decrease the cost of reasoning
with DLP further by materializing the implicit data that is derived by the DLP
axioms.
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“Information ist nichts Festes und Fertiges,
sondern der Neuigkeitswert,
den wir aus Reizen ziehen. ”

Georg Franck
Ökonomie der Aufmerksamkeit

This chapter extends (Volz et al., 2003f; Volz et al., 2003g) and presents a technique
to incrementally maintain the materialization of Datalog programs. Materializa-
tion consists in precomputing and storing a set of implicit entailments, such that
frequent and/or crucial queries to the reasoner can be solved more efficiently. The
central problem that arises with materialization is the maintenance of a material-
ization when explicit axioms change, viz. the process of propagating changes in
explicit axioms to the stored implicit entailments.

We can distinguish two types of changes in Description Logic Programs. Changes
to the TBox will typically manifest themselves in changes to the rules of the com-
piled logic program, whereas changes to ABox assertions will typically lead to
changes in facts. The incremental maintenance of the latter type of changes has
been studied extensively in the deductive database context and we apply the tech-
nique proposed in (Staudt & Jarke, 1996) for our purpose. The former type of
changes has, however, not been tackled before in the deductive database context
and we extend the approach of (Staudt & Jarke, 1996) to deal with changes in rules.
Our approach is not limited to Description Logic Programs but can be generally ap-
plied to arbitrary Datalog programs. We therefore briefly characterize at the end of
this chapter how our approach could be applied to RDF rule languages presented
in Section 3.5.2 on page 72.

The chapter is organized as follows: Section 6.1 introduces and motivates mate-
rialization for Semantic Web applications and discusses related work. Section 6.2
on page 149 presents the underlying principles which are applied to achieve incre-
mental maintenance of a materialization. Section 6.3 on page 152 recapitulates the
incremental maintenance algorithm presented in (Staudt & Jarke, 1996) and shows
how this algorithm can be used to deal with changes in the ABox. Section 6.4 on
page 159 extends this algorithm to deal with changing rules as they result from
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changes in the TBox. Section 6.5 on page 165 summarizes our contribution and
discusses further uses. In particular, Section 6.5.3 on page 167 sketches how the
developed techniques can be applied in implementations of RDF rule languages.

6.1. Introduction

Germane to the idea of the Semantic Web are the capabilities to assert facts and to
derive new facts from the asserted facts using the semantics specified by an on-
tology. Both current building blocks of the Semantic Web, RDF (Hayes, 2003) and
OWL (McGuinness & van Harmelen, 2003), define how to assert facts and specify
how new facts should be derived from stated facts.

6.1.1. Motivation

The derivation of information from asserted information is usually achieved at the
time clients issue queries to inference engines. Situations where the query rate is
high or the procedure to derive information is time consuming and complex lead
to bad performance. Materialization can be used to increase the performance at
query time and by making implicit information explicit. This avoids to recompute
derived information for every query.

Materialization has been applied successfully in many applications where reading
access to data is predominant. For example, data warehouses usually apply mate-
rialization techniques to make online analytical processing possible. Similarly, most
Web portals maintain cached web pages to offer fast access to dynamically gener-
ated web pages.

We conjecture that reading access to ontologies is predominant in the Semantic
Web and other ontology-based applications, hence materialization seems to be a
promising technique for fast query processing.

Materialization is particularly promising for the currently predominant ap-
proach of aggregating information that is distributed into a central knowledge
base (Decker et al., 1999; Heflin et al., 1999; Studer et al., 2002; Maedche et al.,
2003). For example, the OntoWeb1 Semantic portal (Spyns et al., 2002) employs
a syndicator (cf. Figure 6.1), which regularly visits resources specified by commu-
nity members and transfers the detected updates into a central knowledge base
in a batch process, i.e. between updates the knowledge base remains unchanged
for longer periods of time. The OntoWeb portal, however, answers queries from the

1http://www.ontoweb.org/ .
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Figure 6.1.: OntoWeb Architecture

knowledge base whenever visitors browse the portal content. This is due to the fact
that most queries are hard-coded into the definition of dynamic Web pages, which
are generated for every request. In applications such as OntoWeb, materialization
turns out to be a sine qua non.2

Central to materialization approaches is the issue of maintaining a materialization
when changes occur. This issue can be handled by simply recomputing the whole
materialization. However, as the computation of the materialization is often com-
plex and time consuming, it is desirable to apply more efficient techniques in prac-
tise, i.e. to incrementally maintain a materialization.

6.1.2. Related Work

We can find related work in two areas: Firstly, incremental maintenance of mate-
rialized views in deductive databases. Secondly, truth maintenance systems in the

2Even though in OntoWeb, due to the unavailability of the solution developed in this chapter, the
problem was approached by caching the Web pages through a proxy server.
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Artificial Intelligence context.

Incremental Maintenance of Materialized Views Several algorithms have been
devised for the incremental maintenance of materialized views in deductive
databases. All of these approaches do not consider changes in the set of rules and
differ in the techniques used to cope with changes in facts.

In order to cope with changing facts, (Apt & Pugin, 1987; Kuchenhoff, 1991) effi-
ciently compute the Herbrand model of a stratified database after a database up-
date. The proposed solution of (Apt & Pugin, 1987) uses sets of positive and nega-
tive dependencies that are maintained for all derived facts. This leads to low space
efficiency and high cost for maintaining the dependencies. (Kuchenhoff, 1991) de-
rives rules (so-called meta-programs) to compute the difference between consecu-
tive database states for a stratified Datalog program. Some of the generated rules
are not safe, making it impossible to implement the rules in Datalog engines. Ad-
ditionally, duplicate derivations are not discarded in the algorithm.

(Gupta et al., 1993) presents the Delete and Re-Derive (DRed) algorithm, which is a
procedural approach to view maintenance in Datalog with stratified negation. We
will follow their principal approach for the computation of changes, in fact their
procedural algorithm has been altered to a declarative algorithm (Staudt & Jarke,
1996) which we will extend.

The Propagation Filtration algorithm of (Harrison & Dietrich, 1992) is similar to the
DRed algorithm, except that changes are propagated on a ’predicate by predicate’
basis. Hence, it computes changes in one intensional predicate due to changes in
one extensional predicate, and loops over all derived and extensional predicates to
complete the maintenance procedure. In each step of the loop, the delete, re-derive
and insert steps are executed. The algorithm ends up fragmenting computation
and rederiving changed and deleted facts over and over again, i.e. it is less efficient
than the DRed algorithm.

Truth Maintenance Systems (TMS) Truth maintenance 3 is an area of AI con-
cerned with revising sets of beliefs and maintaining the truth in a reasoning system
when new information alters existing information. A representation of beliefs and
their dependencies is used to achieve the retraction of beliefs and to identify con-
tradictions. For example, justification-based TMS (Doyle, 1981) uses a graph data
structure where nodes are augmented with two fields indicating their belief status
and supporting justification. When the belief status is changed, dependencies are
propagated through the graph.

3also called belief revision or reason maintenance.
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Making TMSs more efficient was a cottage industry in the late 1980s, with most of
the attention focused on the Assumption-based TMS (ATMS) (de Kleer, 1986). The
primary advantage of the ATMS is its ability to rapidly switch among many differ-
ent contexts, which allows a simpler propagation of fact withdrawals, but comes at
the cost of an exponential node-label updating process when facts are added. The
main disadvantage of TMS is that the set of justifications (and nodes) grows mono-
tonically as it is not allowed to retract a justification, but only disable information.
The fact that the set of assumptions is always in flux introduces most of the com-
plexity in the TMS algorithms. More recent work (e.g. (Nayak & Williams, 1998))
primarily tried to reduce the cost for incremental updates. However, the underly-
ing principle of labelling does not change. To the best of our knowledge, there is no
TMS, where the aggregation of all historic information is avoided, viz. facts are per-
manently removed from the system. Additionally the primary technique deployed
in TMS (backtracking) does not fit well with the bottom-up computation that is usu-
ally applied in deductive databases. Recently, (Broekstra & Kampman, 2003) pre-
sented an adapted TMS algorithm for the incremental maintenance of RDF Schema
entailments and uses the TMS labelling to track deductive dependencies between
statements. This approach, however, is tailored to the RDF Schema language.

6.2. Maintenance Principles

This section discusses how the two main kinds of updates that have been men-
tioned in the introduction of the chapter, viz. updates to facts and rules, effect
the materialization of an example knowledge base. Based on this discussion, we
identify the main assumptions that underly the approaches for incremental main-
tenance presented in the subsequent sections.

As an example, we use the subset of the knowledge base presented in Table 2.5
on page 35 that is concerned with genealogical relationships between the different
Bach family members. The relevant subset of the ABox is presented in Figure 6.2.

6.2.1. Updates to Facts

Since we expect that the historic data about the Bach family members in our knowl-
edge base is unlikely to change, we choose to materialize the closure of the transi-
tive ancestorOf property to speed up query processing. Figure 6.2 depicts an ex-
cerpt of the family tree of the Bach family, where the left-hand side of Figure 6.2
depicts the asserted property fillers. The right-hand side of the Figure depicts the
transitive closure of the ancestorOf graph.
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Figure 6.2.: Bach Family Tree Excerpt

Deletions Now assume that we have to revoke an asserted property filler, since
a historian finds out that Johann Sebastian was not the father of Wilhelm Friedemann.
Clearly, this has consequences to our materialization. For example, Johann Ambro-
sius is no longer an ancestor of Wilhelm Friedemann. However, Johannes is still an
ancestor of Wilhelm Friedemann, since not only Johann Sebastian but also his cousin
and first wife Maria Barbara are descendants of Johannes.

If we maintain the materialization of the graph depicted in Figure 6.2 ourselves,
a natural and straightforward approach could be to proceed in two steps. We first
mark all links leading from the Wilhelm Friedemann node to those nodes in the graph
that possibly interact with the deleted link, viz. are also connected with Johann Se-
bastian. As a second step, we check whether the mark is correct by reconsidering
whether the respective link could be generated on some other way through com-
bining the links supported by the updated source graph. If a mark is determined to
be correct, we can delete the appropriate link in our source graph. This two staged
principle for deletion is common to most approaches for the incremental mainte-
nance of materializations and is applied by the approach presented in Section 6.3.

Insertions Now assume that we assert that Johann Sebastian is the ancestor of
another Johann Christian. Clearly, we can manually derive in the example graph that
Johann Christian must be linked with those nodes that can possibly interact with the
new link, viz. are also connected with Johann Sebastian in the updated source graph.
All new links discovered in this way have to be added to the materialization.
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6.2.2. Updates to Rules

A typical source of updates in Web ontologies is the change of TBox axioms, since
ontologies have to evolve with their applications and react to changing application
requirements (Maedche et al., 2002b; Maedche et al., 2003). Similarly, the advent of
a rule layer in the Semantic Web will lead to changing rules. In the case of DLP,
both situations, changing TBox axioms and changing rules, are actually equivalent
since they manifest themselves as changes to the logic program LP that is created
through the φLP translation.

Axiom DL DLP
T0 ANCESTOROF v INDYNASTY INDYNASTY(x, y) :- ANCESTOROF(x, y)
T1 ANCESTOROF+ v ANCESTOROF ANCESTOROF(x, y) :- ANCESTOROF(x, z),

ANCESTOROF(z, y).

Table 6.1.: Example Knowledge Base

Let’s assume that our TBox states that the transitive ancestorOf property is a
specialization of the inDynasty property (which is not necessarily transitive), i.e.
T = {T0, T1} (cf. Table 6.1). Let’s additionally assume that our ABox only contains
property fillers for ANCESTOROF, e.g. the tuples {(h, jc1), (j, h), (j, c) . . .}, where
each constant is the abbreviation for the name of an individual in the Bach family
tree (cf. Figure 6.2). Clearly, the extension of both ANCESTOROF and INDYNASTY

are equivalent in this particular knowledge base, since INDYNASTY has no own
property fillers.

Manipulating the TBox T by deleting axiom T0 leads to the situation that the ex-
tension of INDYNASTY is empty, since the derivations supported by the respective
axiom are no longer supported.

Now assume that we add a new axiom T2 to the old T , i.e. T = T ∪{T2}, that states
that the property INDYNASTY is symmetric:

Axiom DL DLP

T2 INDYNASTY− v INDYNASTY INDYNASTY(x, y):- INDYNASTY(y, x).

Apparently, the new extension of INDYNASTY will now contain the tuple (jc1, c)
(among others), which is derived by the combination of the existing axioms and
the new axiom.

Unlike the change of facts, we do not only have an interaction of particular (inserted
or deleted) facts with existing facts, but also the interaction of (inserted or deleted)
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rules with all other rules. In particular, we can observe that we need to consider all
rules defining a predicate to determine the extension of the predicate.

The approach to maintenance presented in Section 6.4 will therefore recompute
the extensions of all predicates, which are redefined by being the head of changed
rules. We will, however, reuse the mechanisms of propagating the resulting fact
changes to other predicates (and possibly back to the predicate in case of cycles)
from the maintenance procedure for facts.

6.2.3. Differentiating Between Asserted and Entailed Information

The fundamental requirement for our approach to maintenance is the ability to dis-
tinguish entailed information from asserted information. This ability is required
in order to propagate changes. The requirement also commonly arises in many
ontology-based applications (Bechhofer et al., 2001), which often need to differenti-
ate between asserted information and information that has been derived by making
use of TBox axioms, e.g. when users attempt to change entailed information (Bech-
hofer et al., 2003b).

To achieve this differentiation, the φLP translation has to be adapted such that
all TBox axioms are translated into rules between purely intensional predicates
Cidb, Pidb. ABox assertions, however, are stored in dedicated extensional predicates
Cedb, Pedb. The connection between the intentional and the extensional database is
made using simple rules that derive the initial (asserted) extension of the inten-
sional predicates.

Cidb(x):- Cedb(x).
Pidb(x, y):- Pedb(x, y).

This storage architecture additionally allows - in principle - to connect the proper-
ties and classes of the ontology with arbitrary other predicates in the logic program.
For example, most LP engines allow to populate predicates with queries issued to
external databases. We could, hence, populate the ABox with data from relational
databases which provides a simple form of data integration.

6.3. Maintaining Changing Facts

This section presents the maintenance of a materialization when facts change, viz.
new tuples are added or removed from the extension of a predicate.
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6.3.1. Approach

We reuse the declarative variant (Staudt & Jarke, 1996) of the delete and re-derive
(DRed) algorithm proposed in (Gupta et al., 1993). DRed takes the three steps illus-
trated in Section 6.2.1 to incrementally maintain the materialization of a intensional
database predicate:

1. Overestimation of deletion: Overestimates deletions by computing all direct
consequences of a deletion.

2. Rederivation: Prunes those estimated deletions for which alternative deriva-
tions (via some other facts in the program) exist.

3. Insertion: Adds the new derivations that are consequences of insertions to
extensional predicates.

The declarative version4 of DRed maintains the materialization of a given predicate
by means of a maintenance program. The maintenance program is rewritten from
the original program using several rewriting patterns. The goal of the rewriting is
the provision of a pair of maintenance predicates P+ and P− for every materialized
predicate P , such that the extensions of P+ and P− contain the changes that are
needed to maintain P after the maintenance program is evaluated on a given set of
extensional insertions P Ins and deletions PDel.

The maintenance process is carried out as follows: First, we setup maintenance,
i.e. the maintenance program is created for a given source program and the initial
materialization of intensional predicates is computed.

Whenever extensional changes occur, the actual maintenance is carried out. In this
step, we first put insertions (deletions) to an extensional predicate Pedb into the ex-
tension of the predicate P Ins

edb (PDel
edb ). We then evaluate the maintenance program.

For every intensional predicate Pidb, the required incremental changes, viz. inser-
tions and deletions, can be found in the extension of P+

idb and P−idb. We use these
changes to update the materialization of the intensional predicate P and update
Pedb with the explicit changes P Ins

edb and PDel
edb , while the extensions of the later pred-

icates are deleted.
4 The benefit of reusing the declarative version of DRed with respect to the original (procedural)

version is that it allows us to reuse generic logic databases for the evaluation of the maintenance
program. This also motivates why we did not use the optimized version provided in (Staudt
& Jarke, 1996), since the optimization requires logic databases to evaluate the maintenance pro-
gram using the supplementary magic set technique, which is not used in all logic databases (e.g.
XSB (Sagonas et al., 1994)).
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6.3.2. Maintenance Rewritings

The maintenance of an intensional predicate P ∈ Pidb is achieved via seven main-
tenance predicates :

1. PDel computes so-called deletion candidates, which are the aforementioned
overestimation of facts that ought to be deleted from the materialization. For
extensional predicates P ∈ Pedb, PDel contains explicitly what should be re-
moved from the materialization.

2. P Ins contains the facts that ought to be inserted into the materialization. For
extensional predicates P ∈ Pedb, P Ins contains the explicit insertions that
were asserted by the user.

3. PRed stores those facts that are marked for deletion but have alternative
derivations.

4. PNew describes the new state of the materialization after updates.

5. P+ computes the net insertions required to maintain the materialization.

6. P− computes the net deletions required to maintain the materializaion.

7. P itself contains the (old) materialization.

New Materialization PNew captures the new materialization of an intensional
database predicate P , which contains all old data that has not been deleted (N1).
Additionally, it contains re-derived data (N2) and inserted data (N3):

(N1) PNew:- P,¬∗PDel.
(N2) PNew:- PRed.
(N3) PNew:- P Ins.

For every extensional database predicate P , we instantiate the rules (N1 and N3) to
define an auxiliary predicate PNew, which is used in the rewritings for insertions
and re-derivation of other (intensional) predicates.

Differentials The following differentials P+ and P− compute positive and nega-
tive deltas, i.e. the changes that are necessary to incrementally maintain the stored
materialization of an intensional predicate P :

P+:- P Ins,¬∗P.
P−:- PDel,¬∗P Ins,¬∗PRed.
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Deletion Candidates The deletion candidates PDel are constituted by all possible
combinations between deleted facts of a given body predicate and the remaining
body predicates. Therefore, n deletion rules are created for every rule with n con-
juncts in the body:

(Di): PDel:- R1, . . . , Ri−1, R
Del
i , Ri+1, . . . , Rn.

IfRi is an extensional predicate, RDel
i contains those facts that are explicitly deleted

from Ri. Otherwise, RDel
i contains the aforementioned overestimation.

Re-derivations The re-derivations PRed are computed by joining the new states
of all body predicates with the deletion candidates:

(R): PRed:- PDel, RNew
1 , . . . , RNew

n .

Insertions Insertions P Ins are calculated by ordinary semi-naive rewriting, i.e.
by constructing rules (Ii) that join the insertions into a body predicate with the
new materializations of all other body predicates:

(Ii): P Ins :- RNew
1 , . . . , RNew

i−1 , R
Ins
i , RNew

i+1 , . . . , R
New
n .

IfRi is an extensional predicate,RIns
i contains those facts that are explicitly inserted

into Ri.

A maintenance program is generated from a program LP through the application
of generator functions. The rewriting generator functions are presented in Table 6.2
and make use of two auxiliary functions. The function head : LP → Pidb maps a
rule to its rule head. Conversely, the function rules : Pidb → R maps rule heads to
a set of rules R, such that:

∀P ∈ Pidb : rules(P ) = {R ∈ R|head(R) = P}

For example, the function θ : R→MR rewrites a rule R ∈ LP into a set of mainte-
nance rules MR by instantiating rewriting patterns for deletion θDel, insertion θIns

and rederivation θRed. By definition, θ maps every rule with n body literals into
2 ∗ n+ 1 maintenance rules.

Definition 6.3.1 (Maintenance Program) A maintenance program LPM of a logic pro-
gram LP over a signature Σ = (C,F,P, V, a), where P = Pidb ∪Pedb is a set of mainte-
nance rules such that:
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Generator Parameter Rewriting Result
Predicate

θidb P ∈ Pidb θNew
idb (P ) ∪ θIns

idb (P ) ∪ θDel
idb (P ) ∪ θRed

idb (P )
θNew
idb P ∈ Pidb {θNew

1 (P )} ∪ {θNew
2 (P )} ∪ {θNew

3 (P )}
θNew
edb P ∈ Pedb {θNew

1 (P )} ∪ {θNew
3 (P )}

θNew
1 P ∈ P PNew:- P,¬∗PDel.
θNew
2 P ∈ Pidb PNew:- PRed.
θNew
3 P ∈ P PNew:- P Ins.
θ+
idb P ∈ Pidb P+:- P Ins,¬∗P.
θ−idb P ∈ Pidb P−:- PDel,¬∗P Ins,¬∗PRed.
θIns
idb P ∈ Pidb {θIns(r)|∀r ∈ rules(P )}
θDel
idb P ∈ Pidb {θDel(r)|∀r ∈ rules(P )}
θRed
idb P ∈ Pidb {θRed(r)|∀r ∈ rules(P )}

Rule
θ H:- B1, . . . , Bn. {θRed} ∪ θDel ∪ θIns

θRed H:- B1, . . . , Bn. HRed:- HDel, BNew
1 , . . . , BNew

n .
θDel H:- B1, . . . , Bn. {HDel:- B1, . . . , Bi−1, B

Del
i , Bi+1, . . . , Bn.}

θIns H:- B1, . . . , Bn. {HIns:- BNew
1 , . . . , BNew

i−1 , B
Ins
i , BNew

i+1 , . . . , B
New
n .}

Table 6.2.: Rewriting Functions (derived from (Staudt & Jarke, 1996))

1. ∀P ∈ Pidb : θidb(P ) ∈ LPM

2. ∀P ∈ Pedb : θNew
edb (P ) ∈ LPM

It is important to note that the rewritten rules do not only contribute to the compu-
tation of the differentials P+ and P−. The evaluation of the maintenance program
also computes the set of implicit insertions and deletions that have to be propa-
gated to the materialization of the predicate and to other predicates, which depend
on the predicate through some rules.

Example 6.3.1 (Maintenance Rewritings) Let us return to the Bach family tree exam-
ple established in Section 6.2.1 and consider all edges between the different individuals
depicted in Figure 6.2 on page 150 as fillers of the transitive property ANCESTOROF that
was presented in the example knowledge base of Table 2.5 on page 35.

The following logic program LP is constituted by the φLP translation of the axiom that
states the transitivity of the ANCESTOROF property. The second rule implements the dif-
ferentiation between asserted and entailed information, that was described in Section 6.2.3:
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(R1) ANCESTOROF(x, z):- ANCESTOROF(x, y), ANCESTOROF(y, z).
(R2) ANCESTOROF(x, y):- ANCESTOROFedb(x, y).

In the following we will use the abbreviation A for ANCESTOROF.

Since LP includes only one intensional (extensional) predicate A(Aedb), the generation of
the maintenance program LPM only involves to apply θidb to A and θNew

edb to Aedb:

θNew
edb (Aedb) = {ANew

edb (x, y):- Aedb(x, y),¬∗ADel
edb (x, y). (θNew

1 (Aedb))
ANew

edb (x, y):- AIns
edb (x, y).} (θNew

3 (Aedb))
θidb(A) = {ADel(x, y):- ADel

edb (x, y). (θDel(R2))
ARed(x, y):- ADel(x, y), ANew

edb (x, y). (θRed(R2))
AIns(x, y):- AIns

edb (x, y). (θIns(R2))
ANew(x, y):- A(x, y),¬∗ADel(x, y). (θNew

1 (A))
ANew(x, y):- ARed(x, y). (θNew

2 (A))
ANew(x, y):- AIns(x, y). (θNew

3 (A))
ADel(x, z):- ADel(x, y), A(y, z). (θDel(R1))
ADel(x, z):- A(x, y), ADel(y, z). (θDel(R1))
ARed(x, z):- ADel(x, z), ANew(x, y), ANew(y, z). (θRed(R1))
AIns(x, z):- AIns(x, y), ANew(y, z). (θIns(R1))
AIns(x, z):- ANew(x, y), AIns(y, z).} (θIns(R1))

LPM = θ(A) ∪ θ(Aedb)

The invocation of the θNew
edb generator on Aedb initiates the invocation of the (θNew

1 (Aedb))
and (θNew

3 (Aedb)) generators and collects their results. Similarly, the invocation of the θidb

generator on A leads to the invocation of rules on A to retrieve the rules R1, R2 and the
invocation of θNew

1 , . . . , θIns(R1).

6.3.2.1. DLP Maintenance Programs

If we consider the application of θ to the φLP translation ofKBDLP
0 , we can observe

from the structure of the rules that are generated by φLP that the rewriting of each
DL inclusion axiom creates the following number of maintenance rules:

|θ(φLP(C v D))| = 3
|θ(φLP(C1 u . . . u Cn v D))| = 2 ∗ n+ 1
|θ(φLP(C v D1 u . . . uDn))| = n ∗ |θ(φLP(C v Di))|
|θ(φLP(D1 t . . . tDn v E))| = n ∗ |θ(φLP(Di v E))|
|θ(φLP(C v ∀R.D))| = |θ(φLP(∃R.C v D))| = 5

DL property transitivity is translated to five maintenance rules by applying θ to
φLP . All other DL property axioms are translated to three maintenance rules by
applying θ to φLP . θ is applied to all atomic classes and properties in KBDLP

0 as
well as the auxiliary classes that are created by the structural transformation which
is carried out during the preprocessing step.
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6.3.2.2. RDF(S) Maintenance Programs

Since the 12 static Datalog rules for the single predicate-based axiomatization of
RDF(S) (cf. Table 3.1 on page 59) contain 19 body predicates, the application of θ
leads to the generation of 60 rules, namely 19 insertion rules, 19 deletion rules, 12
re-derivation rules, 5 maintenance rules for tNew, t+ and t−, as well as 5 further
rules to differentiate between entailments and assertions.

6.3.3. Evaluating Maintenance Programs

(Staudt & Jarke, 1995) show that the evaluation of the maintenance rules is a sound
and complete procedure for computing the differentials between two database
states when extensional update operations occur.

During the evaluation it is necessary to access the old state of a predicate. Bottom-
up approaches to evaluation therefore require that all intensional relations involved
in the computation are completely materialized, viz. the initial rules defining the
predicates are not considered during the evaluation of the maintenance rules.

The maintenance rules for capturing the new database state contain negated predi-
cates to express the algebraic set difference operation. Hence, even though the orig-
inal rules are pure Datalog (without negation), a program with negation is gener-
ated. The rewriting transformation keeps the property of stratifiability, since newly
introduced predicates do not occur in cycles with other negations. Hence, it is guar-
anteed that predicates can be partitioned into strata such that no two predicates in
one stratum depend negatively on each other, i.e. predicates only occur negatively
in rules that define predicates of a higher stratum. The evaluation can then proceed
as usual stratum-by-stratum starting with the extensional predicates themselves.

Example 6.3.2 (Evaluating Maintenance Programs) The direct links between mem-
bers of the Bach family in Figure 6.2 on page 150 constitute the extension of Aedb, where
we abbreviate the names of each individual by the first letters of their forenames:

Aedb = {(j, h), (j, c), (h, jc1), (jc1, jm), (jm,mb), (mb,wf), (js, wf), (ja, js), (c, ja)}

Using the maintenance rewriting the materialization of A changes to ANew as follows, if
AIns = (js, jc2) is inserted and ADel = (js, wf) is deleted:

158



6.4. Maintaining Changing Rules

AIns
edb = {(jc, jc2)}

ADel
edb = {(js, wf)}

ANew
edb = Aedb ∪AIns

edb \ADel
edb

AIns = {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)}
ADel = {(js, wf), (ja, wf), (c, wf), (j, wf)}
ARed = {(j, wf)}
ANew = (A \ADel ∪AIns ∪ARed)

= A ∪ {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)} \ {(js, wf), (ja, wf), (c, wf)}
A− = {(js, wf), (ja, wf), (c, wf)}
A+ = {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)}

Since all maintenance rules of a given predicate have to be evaluated, an ax-
iomatization of RDF(S) based on a single ternary predicate leads to complete re-
computation in case of updates. We sketch an optimization for this case in Sec-
tion 6.5.3 on page 167 which should result in more efficient evaluation for the single
predicate axiomatization.

6.4. Maintaining Changing Rules

This section presents the maintenance of a materialization if the definition of rules
changes, viz. rules that define a predicate are added or removed in the source
program. We introduce two simple extensions to the rewriting-based approach
presented in the previous section. Firstly, the materialization of predicates has to
be maintained in the case of changes. Secondly, the maintenance programs have
to be maintained such that additional rewritings are introduced for new rules and
irrelevant rewritings are removed for deleted rules.

6.4.1. Approach

We illustrated in Section 6.2.2 on page 151 that every change in the rule set might
cause changes in the extension of an intensional predicate P , with the consequence
that the materialization of intensional predicates has to be updated. However, un-
like in the case of changing extensions, both auxiliary predicates which capture the
differences to update the materialization of some predicate P ∈ Pidb, i.e. P+ and
P− have empty extensions since no actual facts change.

Obviously, we can categorize the intensional predicates that are affected by a
change in rules into two sets: (I) predicates that are directly affected, i.e. occur
in the head of changed rules and (II) predicates that are indirectly affected, i.e. by
depending on directly affected predicates through the rules in the program.
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Our solution uses the existing maintenance rewriting for facts to propagate up-
dates to the indirectly affected predicates. To achieve this, the maintenance com-
putation for directly affected predicates is integrated into the maintenance program
by redefining the auxiliary predicates that are used to propagate changes between
predicates, i.e. PNew, P Ins and PDel.

6.4.2. Maintenance Rewriting

Let δ+(δ−) be the set of rules which are inserted (deleted) from the logic pro-
gram LP . The reader may recall from the previous section that the function
head : LP → Pidb maps a rule to its rule head, and the function rules : Pidb → LP
maps rule heads to rules.

Definition 6.4.1 (Directly affected predicate) An intensional predicate p ∈ Pidb is a
directly affected predicate, if p ∈ {head(r)|r ∈ δ+ ∪ δ−}.

Generator Parameter Rewriting Result
Predicate

ϑ P ∈ Pidb {ϑIns
idb (P )} ∪ {ϑDel

idb (P )} ∪ {ϑNew
idb (P )}

ϑIns
idb P ∈ Pidb P Ins:- PNew.
ϑDel

idb P ∈ Pidb PDel:- P.
ϑNew

idb P ∈ Pidb {ϑNew(r)|∀r ∈ rules(P )}
Rule

ϑNew H:- B1, . . . , Bn. HNew:- BNew
1 , . . . , BNew

n .

Table 6.3.: Rewriting Functions

For every directly affected predicate P , the existing rules defining PNew in the
maintenance program LPM are deleted. Then, new rules axiomatize PNew using
the (new) rule set that defines P in the updated original program. These rules are
slightly adapted, such that references to any predicate P are altered to PNew, by
instantiating the following rewriting pattern for all rules R ∈ rules(P ):

PNew:- RNew
1 , . . . , RNew

n .

The rewrite pattern simply states that the new state of the predicate P follows di-
rectly from the combination of the new states of the predicates Ri in the body of of
all rules defining P in the changed source program.
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All maintenance rules for calculating the insertions and deletions to P have to be
removed from the maintenance program and are replaced by the following two
static rules.
P Ins:- PNew.
PDel:- P.

The role of P Ins, PDel, PNew is exactly the same as in the rewriting for facts, i.e.
they propagate changes to dependent predicates. While P Ins propagates the new
state of a predicate as an insertion to all dependent predicates, PDel propagates
the old state of a predicate as a deletion to all dependent predicates. Figure 6.3
shows how the information flow in the maintenance program changes with respect
to the rewriting of a rule H(x):- B(x). from the maintenance rewriting for fact
changes (a) to the maintenance for rule changes (b). The arrows to (from) nodes
depict that the respective predicate possibly uses (is used by) some other predicate
in the maintenance program.

Figure 6.3.: Information Flow in Maintenance Programs: (a) Maintenance for Facts;
(b) Maintenance for Rules

Table 6.3 defines new rewriting generator functions ϑ that implement the adapted
rewriting that has been discussed above.

6.4.3. Evaluating Maintenance Programs

The evaluation of maintenance programs is now carried out in three steps:

• Update the maintenance rewriting LPM of LP to incorporate the set of rules
that are added (δ+) or removed (δ−).

• Evaluate the maintenance program LPM and incrementally maintain all ma-
terialized predicates.
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• Maintain the maintenance rewriting LPM by changing rewritings back to the
rewriting for facts.

Step 1 Step 1 is implemented by Algorithm 6.1 on page 163. This algorithm has
three functions. Firstly, it replaces all maintenance rewritings for directly affected
predicates with the new maintenance rewritings. Secondly, it alters the source pro-
gram LP such that the set of updated rules is incorporated into LP . Thirdly, it
maintains auxiliary rewriting rules, viz. generates those rules for previously un-
known intensional predicates and removes those rules if an intensional predicate
no longer occurs in the source program.

Example 6.4.1 (Maintenance Rewritings for New Rule) Let us return to the mainte-
nance program LPM established in Example 6.3.1 on page 156 and consider that rule R3

is inserted into LP = {R1, R2}, i.e. the new LP consists of the following rules after the
application of Algorithm 6.1 on page 163:

(R1) ANCESTOROF(x, z):- ANCESTOROF(x, y), ANCESTOROF(y, z).
(R2) ANCESTOROF(x, z):- ANCESTOROFedb(x, y).
(R3) INDYNASTY(x, y):- ANCESTOROF(x, y).

Since δ+ = R3 and δ− = ∅, the algorithm does not remove any rewriting rules from the
maintenance program LPM in this example, since none of the previously existing inten-
sional axioms is directly affected. We have, however, to add the new maintenance rules for
the directly affected predicate INDYNASTY, which we will abbreviate as I in the following.
The algorithm augments LPM with the rules generated by the following calls to rewriting
generators (in this order):

θRed(R3) = IRed(x, y):- IDel(x, y), ANCESTOROFNew(x, y).
θ+
idb(I) = I+(x, y):- IIns(x, y),¬∗I(x, y).
θ−idb(I) = I−(x, y):- IDel(x, y),¬∗IIns(x, y),¬∗IRed(x, y).
ϑNew(I) = INew(x, y):- ANCESTOROFNew(x, y).
ϑIns(I) = IIns(x, y):- INew(x, y).
ϑDel(I) = IDel(x, y):- I(x, y).

The new state of I is now directly derived from the new state of A, which is calculated as
part of the maintenance program. Hence, we can obtain the first materialization I just by
evaluating the maintenance program.

Step 2 Step 2 evaluates the maintenance program as presented in Section 6.3.3.
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Require:
δ+ Set of inserted rules
δ− Set of deleted rules
LPM Maintenance program

Ensure:
Updated maintenance program LPM

removeMR = ∅ // Collects maintenance rules to be removed
addMR = ∅ // Collects maintenance rules to be added
affectedPred = ∅ // Collects all affected predicates
// Add new rewriting rules for added rules

for all r ∈ (δ+ \ δ−) do
addMR = θRed(r)∪ addMR
p = head( r )
affectedPred = p ∪ affectedPred
// First rule defining a predicate ?

if p 6∈ {head(r) | r ∈ LP} then
addMR = θ+

idb(p) ∪ θ
−
idb∪ addMR // Need new auxiliary predicates

end if
LP = LP ∪ r

end for
// Add new rewriting rules for deleted rules

for all r ∈ (δ− \ δ+) do
p = head( r )
affectedPred = p ∪ affectedPred
// Last rule defining a predicate ?
if rules(p) \ {r} = ∅ then

removeMR = θ+
idb(p) ∪ θ

−
idb ∪ θ

Red
idb (p)∪ removeMR

end if
LP = LP \ r

end for
// Replace rewriting rules for affected predicates

for all p ∈ affectedPred do
addMR = ϑNew

idb (p) ∪ ϑIns
idb (p) ∪ ϑDel

idb (p)∪ addMR
removeMR = θN

idb(p) ∪ θIns
idb (p) ∪ θDel

idb (p)∪ removeMR
end for
LPM = (LPM ∪ addMR )\ removeMR

Algorithm 6.1: Updating Rules (Pre-Evaluation Algorithm)
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Require:
δ+ Set of inserted rules
δ− Set of deleted rules
LP Original logic program
LPM Maintenance program

Ensure:
Updated logic program LP
Updated maintenance program LPM

removeMR = ∅
addMR = ∅
affectedPred = ∅
for all r ∈ (δ+ \ δ−) do

affectedPred = head(r) ∪ affectedPred
end for
for all r ∈ (δ− \ δ+) do
p = head( r )
if rules(p) 6= ∅ then

affectedPred = p ∪ affectedPred
end if

end for
for all p ∈ affectedPred do

removeMR = ϑNew
idb (p) ∪ ϑIns

idb (p) ∪ ϑDel
idb (p)∪ removeMR

addMR = θNew
idb (p) ∪ θIns

idb (p) ∪ θDel
idb (p)∪ addMR

end for
LPM = LPM ∪ addMR \ removeMR

Algorithm 6.2: Updating Rules (Post-Evaluation Algorithm)
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Step 3 Step 3 is implemented by Algorithm 6.2 on page 164. It essentially only
undoes our special maintenance rewriting, i.e. it replaces the maintenance rewrit-
ings that have been generated by Algorithm 6.1 for directly affected predicates with
the normal maintenance rewritings for facts.

Example 6.4.2 (Maintenance Rewritings for New Rule) Algorithm 6.2 would re-
move the following maintenance rules from the maintenance program LPM :

ϑNew(I) = INew(x, y):- ANCESTOROFNew(x, y).
ϑIns(I) = IIns(x, y):- INew(x, y).
ϑDel(I) = IDel(x, y):- I(x, y).

In parallel, the maintenance program would be extended with the rewritings generated by
the rewriting generators that create the maintenance rewriting for facts (θNew

idb (I), θIns
idb (I)

and θDel
idb (I)).

Since all maintenance rules for dealing with changes in rules are removed by Al-
gorithm 6.2, we obtain the same maintenance program as if we would have com-
pletely regenerated the maintenance program for facts from the changed source
program.

6.5. Conclusion

6.5.1. Contribution

We presented a technique for the incremental maintenance of materialized Datalog
programs. Our technique can therefore be applied for those ontology languages,
which can be axiomatized in Datalog, i.e. RDF Schema and Li≤2

5 as well as the
Datalog-fragments of Semantic Web rule languages.

We contributed a novel solution to the challenge of updating a materialization in-
crementally when the rules of a Datalog program change, which has, to our best
knowledge, not been addressed in the deductive database context6.

In order to cope with changing rules, we applied a declarative, rewriting-based
algorithm for the incremental maintenance of views (Staudt & Jarke, 1996) and in-
troduced two novel techniques: Firstly, we extended the rewriting to deal with

5We cannot maintain function symbols other than constants, therefore our approach can not be used
for L3.

6(Gupta et al., 1995) address the maintenance of views after redefinition for the relational data
model.
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changing rules. Secondly, we introduced two algorithms for the maintenance of
the rewritten rules when the underlying source rules change.

Our solution has been completely implemented and evaluated. Section 7.5 on
page 187 will report on our prototypical implementation. Section 8.6 on page 219
will present the results of our empirical analysis of the costs of incremental main-
tenance, which shows the feasibility of our solution.

The techniques proposed in this chapter are not specific to any ontology language,
but can generally be used for the incremental maintenance of materialized Datalog
programs. Due to this generic solution, future developments, e.g. for the rule layer
of the Semantic Web, are likely to benefit from our technique as well.

Materialization is certainly not a panacea to all tractability problems. For example,
one drawback is that it trades off required inferencing time against storage space
and access time. In spite of this restriction, which remains to be assessed by more
practical experience and cost models that are derived from those experiences, we
conjecture that materialization as explained in this chapter will help to progress the
Semantic Web and to build the large Semantic Web engines of tomorrow.

6.5.2. Further Uses

We can reuse the incremental maintenance of a materialization developed in this
chapter, for several other purposes:

• Integrity Constraint Checking: Incremental maintenance can also be used as a
fundamental technique in an implementation of integrity constraints on Se-
mantic Web data, i.e. we can incrementally check the validity of a constraint
by maintaining an empty view.

• Continuous Queries: (Liu et al., 1999) The auxiliary maintenance predicates
P+ and P− can be used as a basis for implementing continuous queries or
publish/subscribe systems, which are used to monitor a flow of data. This
monitoring can use the extensions of P+ and P− as a basis for notification
messages that are sent to the subscribers.

• Interoperability with systems of limited inferencing capabilities: We can use ma-
terialization to explicate data for clients that cannot entail information on
their own. In particular, we can store materializations in relational databases
which are agnostic about the semantics of the data but may be used for fast
query answering.
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Notation 3 { ?x :inDynasty ?y. }
log:implies

{ ?y :inDynasty ?x. }.
Datalog T (x, inDynasty , y):- T (y, inDynasty , x).
Triple FORALL model @rules(model) {

FORALL X,Y X[inDynasty->Y] <-
Y[inDynasty->X]@model.}

Datalog T (model , x, inDynasty , y):- T (model , y, inDynasty , x).

Table 6.4.: Datalog Translation of RDF Rule Languages

6.5.3. Materializing RDF Rules

We conclude this chapter, with a brief sketch of how the developed approach for
incremental maintenance of Datalog programs can be applied in RDF rule engines.

6.5.3.1. Materializing RDF rule languages

An alternative to using L0 TBox axioms to state that INDYNASTY is a symmet-
ric property, is the usage of either one of the RDF-based rule languages (cf. Sec-
tion 3.5.2 on page 72), e.g. Triple or Notation 3.

The reader may recall that our incremental maintenance technique is not specific
to DLP but generally works for Datalog programs. Hence, we can use it for any
RDF rule base, that can be translated into Datalog programs (cf. Table 6.4 for an
exemplary translation).

If an RDF rule system internally uses one single predicate within the rules, how-
ever, our technique for incrementally maintaining the materialization in case of
changes is useless. The evaluation of the maintenance program then corresponds
to a total recomputation, since all rules defining this predicate have to be evaluated.

In order to use our approach to materialization, more optimized data structures to
represent an RDF graph have to be chosen, such that the part of the knowledge
base which takes part in the evaluation can be limited.

6.5.3.2. Selection-based Optimization

We will briefly sketch a possible optimization, which we called selection-based op-
timization (Volz et al., 2003g). The optimization is based on the idea to split the
extension of the RDF graph according to split points, which are given by constants
that occur at a certain argument position of a predicate. Useful split points can be
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derived from the vocabulary of an ontology or an ontology language such as RDF
Schema. In case of arbitrary graph data, a useful split point can be frequently oc-
curring constants, which can be easily determined using counting. The choice of a
good split point, however, clearly depends on the application of the RDF rule base.

We can transform a Datalog program into an equivalent program that incorporates
split points, if all references to a predicate P (in queries, facts and rules) where a
split point occurs are replaced by appropriate split predicates.

In the following, we will assume that a split point is constituted by a constant c
that is used as the i-th argument in the predicate P . To generate split predicates,
we then split the extension of a predicate Pedb into several edb predicates of the
form P ci

edb(V ar1, V ar2, . . . , V ari−1, c, V ari+1, V arn) to store tuples based on equal
constant values c in their i-th component.

Hence, instead of using a single extensional predicate Pedb for representing direct
RDF assertions, the extensional database is split into several P ci

edb. Again, we can
differentiate between asserted and derived information by introducing intensional
predicates (views) for each component of the extension (i.e. rules of the form
P ci :- P ci

edb).The complete predicate P can still be represented by means of an in-
tensional predicate, which is axiomatized by a collection of rules that unify the
individual split predicates: P :- P ci .

Example 6.5.1 Returning to the triple based axiomatization (cf. Table 6.4 on page 167) of
the N3 example, we can transform the program by introducing a split point T inDynasty2 for
the INDYNASTY constant (when used as second argument in the ternary predicate T ):

• We use two extensional predicates: TRest
edb , T inDynasty2

edb to store the extension in two
disjoint sets.

• We capture the intensional predicates and integrate the splits into a complete exten-
sion of T and rewrite the example such that split predicates are used instead of the
full predicate:

TRest(X,Y, Z) :- TRest
edb (X,Y, Z).

T inDynasty2(X,Y, Z) :- T inDynasty2

edb (X,Y, Z).
T (X,Y, Z) :- TRest(X,Y, Z).
T (X,Y, Z) :- T inDynasty2(X,Y, Z).
T inDynasty2(X, inDynasty, Y ) :- T inDynasty2(Y, inDynasty, X).
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Any other rule that is inserted into the RDF rule base can be transformed into a set of rules,
which use the available split predicates.

However, the maintenance of a materialized predicate T inDynasty2 can now be car-
ried out by ignoring all non-relevant rules for T . Hence, the whole extension of T
can be updated via the insert and delete maintenance rules that were presented in
the previous sections, i.e. without using the complete database.
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7. Implementation

“ Wir behalten von unseren Studien
am Ende doch nur das,

was wir praktisch anwenden. ”
Johann-Wolfgang von Goethe

This chapter describes the prototypical implementation of DLP. The DLP proto-
type is a part of the KAON project (Bozsak et al., 2002), which is a joint effort of
the knowledge management groups at AIFB and FZI and provides a general in-
frastructure for building ontology-based applications. The DLP implementation
makes use of the OWL API (Bechhofer et al., 2003b), which is a Java-based API for
accessing and manipulating OWL ontologies and is developed as part of the Won-
derWeb project1. Both KAON and the OWL API will be briefly described in this
chapter.

The chapter is organized as follows. Section 7.1 motivates the need for an infras-
tructure for ontology-based applications. Section 7.2 on page 175 briefly introduces
the KAON framework and discusses some components which are relevant for the
DLP prototype. Section 7.3 on page 178 introduces the OWL API, which provides
an API for accessing and manipulating OWL ontologies. Section 7.4 on page 180
presents the prototypical implementation of DLP and details the individual steps
that have to be performed to obtain a logic program for a DL knowledge base. Sec-
tion 7.5 on page 187 characterizes the implementation of materialization within the
KAON datalog engine. Section 7.6 on page 188 discusses related work before we
conclude in Section 7.7 on page 190 with a short summary of our contribution.

7.1. Introduction

Ontologies are increasingly being applied in complex applications, e.g. for Knowl-
edge Management, E-Commerce, eLearning or information integration. In such

1Cf. http://wonderweb.semanticweb.org/ , the project is funded as a shared-cost RTD under
the European Commission Information Society Technologies (IST) programme (IST-2001-33052)
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applications, ontologies serve various needs like storage or exchange of data corre-
sponding to an ontology, ontology-based reasoning or ontology-based navigation.
Building a complex ontology-based system usually encompasses several compo-
nents, which can mostly be reused individually across the particular application at
hand.

We therefore architectured the KAON tool suite as a family of reusable compo-
nents for ontology-based applications. The fundamental idea of KAON is to avoid
redundant implementation work by reuse of available components. The lifecycle of
a KAON component, such as the DLP prototype, typically begins with a prototyp-
ical implementation of a particular research idea. This prototype is then validated
through its usage in applications and other prototypes. The initial implementa-
tion is then improved and enhanced over time. The extension and improvement
is usually done by several persons making it often difficult to attribute a particular
component to an individual person. KAON is therefore the combined outcome of
the efforts of many members of the knowledge management groups at AIFB and
FZI.

The main focus of KAON has been to improve ontology management and rea-
soning by features standardized and widely adopted in the database commu-
nity. Therefore our primary focus is not to provide a highly-expressive ontol-
ogy model. KAON rather focuses to provide database features such as scalabil-
ity, concurrency, persistence and transactions for enterprise-scale ontology-based
applications. Some of these features are currently unique when compared with
other efforts on ontology-based infrastructures. For example, KAON not only sup-
ports persistent storage of ontologies but also allows concurrent write access to
ontologies by allowing transactional updates. The most important requirement for
KAON is to ensure that the performance of accessing ontology-based data is suffi-
cient for realistic applications. We therefore follow a conservative and incremental
strategy with respect to the reasoning required to support an ontology language.
We departed from a simple ontology language that largely rectified the semantics
of RDF Schema (Bozsak et al., 2002). We then considered a more expressive lan-
guage in (Motik et al., 2002a), which provided property characteristics. Currently,
we can support the DLP family of languages presented in this thesis. Each of the
languages have been accompanied with software components that allow to access
and manipulate ontologies in the respective languages. The API for DLP allows to
access and manipulate the whole OWL DL language (Bechhofer et al., 2003b) and
has been developed2 jointly with the University of Manchester in context of the
WonderWeb project.

2Outside of KAON as an open-source software project on its own.
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Figure 7.1.: KAON Architecture

7.2. KAON

This section gives a brief introduction to the Karlsruhe Ontology and Semantic Web
Tool Suite (KAON). KAON provides the structural environment for the develop-
ment of the DLP prototype and contributes several components used within the
DLP prototype. We will present those parts of the KAON architecture that are rel-
evant to DLP.

KAON builds on experiences from previous developments and projects dealing
with semantics-based applications in the areas of E-Commerce, Knowledge Man-
agement and Web Portals. KAON is an open-source software project that is im-
plemented in Java. KAON provides a family of specialized tools for engineering,
discovery, management and presentation of ontologies and metadata.

The KAON architecture is depicted in Figure 7.1 and consists of three layers, i.e.
the client layer, the middleware layer and the external services layer.
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7.2.1. Client Applications

We can distinguish several client applications:

• OntoMat (Handschuh & Staab, 2002)- desktop application framework for an-
notation tools.

• OIModeler - desktop application framework for ontology editors.

• KAON PORTAL - Web portal framework for constructing ontology-based
Web portals.

Client applications may either connect to or directly embed components residing
in the middleware layer. This may be the OWL API component, which provides
programmatic access to OWL ontologies and knowledge bases, or the RDF API
to access RDF data sets. The main functionality of client applications is devoted to
their specific purpose, e.g. authoring ontology-based annotations or HTML render-
ing of ontologies. All clients require, however, common functionality such as the
representation of views and controllers for models realized by the ontology APIs.

7.2.2. Middleware Layer

The primary role of the middleware layer is to provide an abstraction for ontol-
ogy and data access. The middleware layer is implemented through the KAON
SERVER (Volz et al., 2003c), which is a generic application server that allows to
manage the components needed for ontology-based applications. KAON SERVER
also allows the composition of components with functionality provided by exter-
nal services such as reasoning engines. The composition is provided by a dedicated
component management module which supports the dynamic instantiation and lo-
calization of appropriate components and delegates requests to components.

The functionality required for a particular application can also be provided by ex-
ternal services, thus it is possible to delegate requests to those services. The inter-
ested reader may refer to (Motik et al., 2002c) for more details.

Data access is realized by three programmatic APIs:

• OWL API - offering access to ontologies and knowledge bases in the OWL
ontology language.

• KAON API - offering access to ontologies and knowledge bases in the KAON
ontology language.
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• RDF API - offering access to RDF data.

All three APIs provide interfaces for the programmatic access to ontologies and
instances independent of their physical storage. Access to a particular physical
store is provided by implementations of the interface. All APIs have one reference
implementation, which allows to access data stored in files (or in URLs on the Web).
The KAON API and the RDF API have alternative implementations, which allow
to access data hosted by dedicated servers such as the RDF SERVER and the KAON
ENGINEERING SERVER. The KAON and OWL APIs can ensure the consistency
of the ontology and adhere to the formal semantics of the respective language. The
APIs also support the composition of distributed ontologies by means of inclusion.
Some implementations of the KAON API additionally support concurrent access
and transactional processing.

The RDF API provides programmatic access to RDF models. It features proprietary
means for modularization, a fast and efficient RDF parser and serializer as well as
transactional access.

The KAON Datalog engine is a main-memory based logic database, which imple-
ments the Magic Set technique for optimized reasoning. It is used to provide rea-
soning services for the KAON API and can be used to provide reasoning services
for the OWL API via the DLP prototype described in Section 7.4.

7.2.3. External Services Layer

This layer has several roles. Firstly, it offers access to physical data stores such
as databases, file systems or the network. Secondly, it groups separate, external
software entities such as reasoning engines. These services are accessed through
connectors, which are managed by the KAON SERVER.

KAON SERVER currently allows to connect to DL engines, which support the
DIG (Bechhofer et al., 1999) interface and several rule-based inference engines such
as OntoBroker (Decker et al., 1999) and XSB (Sagonas et al., 1994).

KAON itself provides two external services, namely an RDF SERVER, which is able
to store RDF data and allows concurrent, transactional access to RDF data, and an
ENGINEERING SERVER, which is able to store KAON ontologies and allows con-
current and transactional access to KAON ontologies. The latter uses an optimized
database schema to increase performance in settings where an abstraction from
RDF can be made, e.g. in ontology engineering scenarios.

Both services are intended to handle database content and may be used transpar-
ently through the KAON and RDF API. Non-RDF data sources may be accessed
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using other implementations of the KAON or OWL API, for example to provide a
connection to ABoxes that are stored in relational databases.

Future versions of the KAON Tool Suite may provide further components. The in-
terested reader is therefore invited to visit the KAON Web site3 to check for current
updates.

7.3. OWL API

This section briefly characterizes the OWL API (Bechhofer et al., 2003b), which is
used within the DLP prototype to read OWL and DLP ontologies. The OWL API
presents a highly reusable component for the construction of different ontology-
based applications such as editors, annotation tools or query agents. Besides en-
abling them to "talk the same language", it ensures that they share underlying as-
sumptions about the way that information is presented and represented. Thus a
cornerstone to the successful implementation and delivery of the Semantic Web,
namely the interoperability of applications, is achieved.

7.3.1. Aspects of Functionality

Since different classes of ontology-based applications require different aspects of
functionality, the OWL API covers several aspects beyond the representation of
OWL data through its implementation. To avoid a single monolithic API, the API
is split into several packages, which support the following functionality:

• Serializing: Producing a concrete syntactic form of OWL (for example as RDF
statements or using the OWL abstract syntax) from some internal data struc-
ture or representation;

• Modelling: Providing data structures that can represent/encode OWL docu-
ments. This representation basically introduces an interface for every OWL
construct and appropriate generalizations. These generalizatons facilitate ac-
cess to OWL information, e.g. users can ask for all restrictions independent
of the particular variant of restriction;

• Parsing: Taking a concrete representation of an OWL document (e.g. an RDF-
XML serialization of an OWL document) and building some internal repre-
sentation that corresponds to that document;

3 http://kaon.semanticweb.org/ .
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• Manipulating: Providing representation along with mechanisms for manipu-
lation of OWL ontologies and knowledge bases;

• Inferencing: Providing a representation that allows to access entailed informa-
tion and to check the consistency of the knowledge base by means of external
reasoners4.

Particular applications that make use of the API are not expected to require all
packages. For example, a format/syntax translator acts as a client of the API and
requires the ability to parse, to represent the results of the parsing in some way and
then to serialize. A simple ontology editor would also require manipulation capa-
bilities to allow construction and editing of ontologies (i.e. definitions of classes,
properties and so on). A simple editor, however, may not need any functionality
relating to semantics or inference, e.g. the facility for checking the consistency of
class definitions or whether subsumption relationships can be inferred. Alterna-
tively, an application that simply deploys an ontology to client applications may
not require any functionality that supports serialization, manipulation of the on-
tology, but needs support to access the ontology model and its entailments. For
example, a reasoner would support inference, but need not be concerned with is-
sues relating to serialization and parsing.

7.3.2. Modelling

As we have seen in Section 3.4 on page 60, the OWL syntax allows to define classes
using both a definitional style, i.e. the use of class definitions, and through axioms,
i.e. the use of class inclusion axioms and class equivalence axioms. From a semanti-
cal perspective, both ways of defining an ontology are equivalent. Both definitions,
however, convey slightly different ways of modelling the world in terms of how
the creator of the ontology thinks that things fit together. The OWL API therefore
not only ensures that we capture the correct semantics of the ontology, but also the
semiotics (Euzenat, 2000). While the API faithfully represents each alternative used
for definitions, it also allows to normalize all definitions into their corresponding
axioms. This functionality is especially useful for reasoners, which are mainly con-
cerned with the axiomatic view. For example, the DLP prototype only translates
axioms into LP rules.

The API separates asserted from inferred data such as proposed in Section 6.2.3
on page 152. This separation is not only important for the purpose of materializa-
tion but generally important for ontology editors such as OilEd (Bechhofer et al.,

4Via the DIG interface.
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2001). Clearly, we could simply add inferred information to the asserted informa-
tion, since this does not change the underlying semantics of the ontology (as they
are already inferred, we are simply adding redundant information). However, the
experience with OilEd (Bechhofer et al., 2001) shows that this leads to confusion,
in particular when users want to further edit the amended ontology, i.e. want to
delete inferred information (that keeps reappearing since it can be inferred).

7.3.3. Inferencing

The OWL API itself does not provide any OWL inference capabilities, but rather
reuses external inference engines for that purpose. The OWL specification, how-
ever, includes a detailed description of the semantics of the language, defines what
entailment precisely means with respect to OWL ontologies and provides formal
descriptions of properties such as consistency.

The implementation therefore provides a standard interface that establishes ab-
stract methods which allow to access entailed information and to check the consis-
tency of the ontology. These abstract methods can then be implemented by query-
ing OWL reasoners. The definition of a standard interface ensures that particular
applications can exchange reasoners at their leisure, since multiple reasoners con-
form to the same interface.

Of course, providing abstract method signatures does not go all the way to adver-
tising the functionality of an implementation – there is no guarantee that a compo-
nent implementing the inference interface necessarily implements the semantics
correctly. However, signatures go some way towards providing an expectation of
the operations that are being supported. Collections of test data (such as the OWL
Test Cases (Carroll & De Roo, 2003)) can allow systematic testing and a level of
confidence as to whether the implementation is, in fact, performing correctly.

7.4. DLP Prototype

This section describes the DLP prototype which is currently nothing more than a
simple compiler from DL knowledge bases to corresponding logic programs. This
section details the different steps that are carried out as part of the compilation.

7.4.1. Prototype Architecture

We implemented the DLP prototype as a simple compiler which accepts a given
OWL knowledge base and generates the corresponding logic program.

180



7.4. DLP Prototype

Figure 7.2.: DLP Prototype

Within the DLP prototype we use several (external) components. The RDF API
delivered by the KAON project (Bozsak et al., 2002) is used for parsing RDF data.
The OWL API (Bechhofer et al., 2003b) is used for parsing OWL and representing
OWL.

On top of the compiler, we also provide three methods to answer simple QDL
queries for the checking subsumption between two classes, allow to retrieve the
individuals that instantiate a certain class and property fillers. The evaluation pre-
sented in Section 8.4 will compare the response time of such queries between logic
databases and Racer (Haarslev & Moller, 2001), the only publicly available DL rea-
soning engine which supports ABoxes.

The DLP prototype can currently access the following two logic databases for an-
swering the above mentioned QDL queries:
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• XSB (Sagonas et al., 1994) is a Prolog engine that employs tabled resolu-
tion (Swift & Warren, 1994).

• KAON Datalog is an emerging (disjunctive) Datalog engine developed as part
of the KAON project (Bozsak et al., 2002).

7.4.2. Compilation

The compilation departs from a given DLP knowledge base which is stored in
OWL/RDF documents. The parsing and validation of OWL/RDF is provided by
the OWL API (Bechhofer et al., 2003b) which then models the knowledge base
through objects.

We then compile the logic program through the following sequence of processing
steps:

1. All class and property definitions are normalized to the corresponding DL
axioms.

2. All class descriptions are normalized and simplified using the rewriting algo-
rithm described in Figure 4.2 on page 85.

3. All class axioms are normalized using the rewritings presented in Sec-
tion 4.3.2 on page 86.

4. All axioms are transformed into a new set of axioms using the structural
transformation which decomposes all nested class descriptions.

5. We then check, whether every axiom is a DLP axiom. If this is not the case,
the respective axiom is not translated5.

6. All DLP axioms are translated into LP rules using the variant of the φLP trans-
lation described in the subsequent Section 7.4.3.

7. The resulting logic program is adapted to the LP variant supported by the
target engine (cf. Section 7.4.4 on page 185).

The resulting logic program can then be saved in the format of the LP engines listed
above.

5Users are informed of the untranslated axioms
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7.4.3. Translation and Transformation

The translation function φLP as defined in Table 5.3 on page 122 outputs extended
LP rules which can only be used in LP engines after an a-posteriori transformation.

As we could see in Section 5.2.3 on page 122, four basic types of transformations are
needed which are constituted by conjunction in the head, implication in the head,
disjunction in the body and negation in the head of extended LP rules. In these
cases, we can obtain plain LP rules by the Lloyd-Topor transformations (Lloyd,
1987). These transformations create several plain LP rules out of one extended
rule. We can however observe, that the individual constituents of extended rules
are still present and were simply relocated to some other place in the new rules.

The new translation function ϕLP (cf. Table 7.1 on page 184) carries the individual
constituents of rules through the translation process. If a disjunction occurs in the
body, the translation function simply creates two rules with equivalent heads. If an
implication occurs in the head of the rule, the body of the implication is moved to
the body of the rule. If a conjunction occurs in the head of the rule, two new rules
with the same body are created.

The system has to remember the context in which ϕLP is applied. This context is
represented by two new variables which carry rule fragments that are designated
to become part of the head (H) and the body (B) of the rule once the translation is
finished. Consider for example an LP rule where C t D occurs in the body of the
rule, viz. the rule has the formH:- (CtD), B., whereH is the head of the rule and
B is an arbitrary body fragment. Our new translation function ϕL

LP((C tD), x) will
replicate H and B into two rules (cf. Table 7.1 on page 184), which have the same
head H and both contain the fragment B in their bodies. However, one rule will
contain the translation ϕL

LP(C, x) in the body, whereas the other rule will contain
the translation ϕL

LP(D,x).

This means that the translation process is no longer carried out recursively but in-
crementally. Every inclusion axiom in the DL knowledge base is pushed on a stack.
Every translation step pops one axiom from the stack and expands one single class
description of the axiom. Partially expanded axioms are pushed back on the stack,
while completely expanded axioms are appended to the LP program. The transla-
tion process stops when the stack is empty. The following example illustrates the
translation:

Example 7.4.1 Consider the following inclusion axiom:

A tB v C uD

The axiom is translated into LP rules as follows. Since no normalization and simplification
is possible, only structural transformation is applied and results in the following set of DL
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LP0 = Datalog

ϕLP(C ≡ D) −→
{
ϕLP(C v D)
ϕLP(D v C)

ϕLP(C v D) −→ ϕR
LP(D,x):- ϕL

LP(C, x).

ϕR
LP(A, x):- B. −→ A(x):- B.

ϕR
LP(∃R.{i}, x):- B. −→ R(x, i):- B.

ϕR
LP(C uD,x):- B. −→

{
ϕR
LP(C, x):- B.

ϕR
LP(D,x):- B.

ϕR
LP(∀R.C, x):- B. −→ ϕR

LP(C, yi):- R(x, yi), B.
H:- ϕL

LP(∃R.{i}, x), B. −→ H:- R(x, i), B.
H:- ϕL

LP(A, x), B. −→ H:- A(x), B.
H:- ϕL

LP((∃R.C), x), B. −→ H:- R(x, yi), C(yi), B.
H:- ϕL

LP((C uD), x), B. −→ H:- ϕL
LP(C, x), ϕL

LP(C, x), B.

H:- ϕL
LP((C tD), x), B. −→

{
H:- ϕL

LP(C, x), B.
H:- ϕL

LP(D,x), B.

LP1 = Datalog(=)
ϕR
LP(≤ 1R, x):- B. −→ y1 = y2:- R(x, y1), R(x, y2), B.

ϕR
LP({i}, x):- B. −→ (x = i):- B.

H:- ϕL
LP({i1, . . . , in}, x), B. −→

 H:- B, (x = i1).
. . .
H:- B, (x = in).

H:- ϕL
LP(>, x), B. −→ H:- (x = x), B.

ϕR
LP(>, x):- B. −→ (x = x):- B.

LP2 = Datalog(=,IC)
ϕR
LP((¬A), x):- B. −→ :- B,A(x).

ϕR
LP(⊥, x):- B. −→ :- B, (x = x).

LP3 = Prolog(=,IC)

H:- ϕR
LP(∃R.C, x), B. −→

{
C(fi(x):- B.
R(x, fi(x):- B.

ϕR
LP(≥nR, x):- B. −→

{
{fi(x) 6= fj(x):- B.|1 ≤ i < j ≤ n}∪
{R(x, fi(x)):- B.|1 ≤ i ≤ n}

Table 7.1.: Translation with Integrated Transformation
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axioms:
A tB v E
F v C uD
E v F

The application of ϕLP then proceeds as follows:

LPProgram Stack

∅ ϕR
LP(E, x):- ϕL

LP(A tB, x).
ϕR
LP(C uD,x):- ϕL

LP(F, x).
ϕR
LP(F, x):- ϕL

LP(E, x).
F (x):- E(x). ϕR

LP(E, x):- ϕL
LP(A tB, x).

ϕR
LP(C uD,x):- ϕL

LP(F, x).
F (x):- E(x). ϕR

LP(E, x):- ϕL
LP(A tB, x).

C(x):- ϕL
LP(F, x).

D(x):- ϕL
LP(F, x).

F (x):- E(x). ϕR
LP(E, x):- ϕL

LP(A tB, x).
D(x):- F (x). C(x):- ϕL

LP(F, x).
F (x):- E(x). ϕR

LP(E, x):- ϕL
LP(A tB, x).

D(x):- F (x).
C(x):- F (x).
F (x):- E(x). ϕR

LP(E, x):- ϕL
LP(A, x).

D(x):- F (x). ϕR
LP(E, x):- ϕL

LP(B, x).
C(x):- F (x).
F (x):- E(x). ϕR

LP(E, x):- ϕL
LP(A, x).

D(x):- F (x).
C(x):- F (x).
E(x):- B(x).
F (x):- E(x). ∅
D(x):- F (x).
C(x):- F (x).
E(x):- B(x).
E(x):- A(x).

7.4.4. Variants of Logic Databases

Most logic databases vary in their support for particular primitives. This section
shows how equality, inequality and integrity constraints can be simulated with the
core Datalog language. We can resort to these simulations, if a given logic database
does not (fully) provide those given primitives.
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7.4.4.1. Equality

Since equality has almost the same universality like logical connectives and quan-
tifiers, most LP engines provide a built-in equality predicate which we can use in
our translation. Sometimes, however, the equality predicate is missing or its use is
restricted. For example, XSB does not allow6 to assign equality in the head of rules.

In these cases we have to provide a dedicated predicate that plays the role of equal-
ity. We further have to provide a correct axiomatization of the predicate using the
equivalence theory of Definition 2.3.13 on page 24.

The substitutivity component of equivalence requires that all intentional predicates
are described by further rules which incorporate the presence of equality:

C(X):- C(Y ), X = Y.
P (X,Y ):- P (X,Z), (Y = Z).
P (Z, Y ):- P (X,Y ), (X = Z).

If the LP engine at hand disallows unsafe rules, we have to drop the (unsafe) reflex-
ivity rule from the equivalence theory. We can, however, still capture the reflexivity.
One possible alternative is to capture the Herbrand universe explicitly in a predi-
cate HU(x) and derive the reflexivity of equality from this predicate via the rule

x = x:- HU(x).

Alternatively we can add explicit assertion c = c for every constant in the logic
program.

7.4.4.2. Inequality

If the underlying LP engine does not provide a built-in inequality predicate, we
can simulate inequality by introducing a dedicated inequality predicate which has
to be axiomatized correctly. This involves to state that inequality is symmetric,
antireflexive and that no two constants may be equivalent and inequivalent at the
same time:

Y 6= X:- X 6= Y.
:- (X 6= Y ), (X = Y ).

The later rule requires integrity constraints and captures (through its combination
with the reflexivity of equivalence) the anti-reflexivity of inequivalence.

6Usage of equality in the head leads to a re-definition of the built-in predicate.
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7.4.4.3. Integrity constraints

Integrity constraints can be simulated by introducing a dedicated predicate IC
which is used as the head of every integrity constraint. If the knowledge base is
inconsistent, i.e. unsatisfiable in the DL sense, the extension of IC is non-empty.
We can therefore check for the emptiness of the extension of IC to ensure that the
knowledge base is satisfiable.

7.5. Materialization

Incremental maintenance of materializations, as presented in Chapter 6 on
page 145, is implemented in the KAON Datalog engine. In case of the material-
ization of a predicate all changes to facts relevant for the predicate and the rule set
defining a predicate are monitored.

The maintenance process is carried out as follows. When a program is designated
for materialization, all maintenance rules are generated, the maintenance program
itself is evaluated and the extension of all predicates P designated for material-
ization is stored explicitly. The maintenance program is then used for evaluation
instead of the original program which is kept as auxiliary information to track
changes to rules. All rules of the original program which define non-materialized
predicates are added to the maintenance program.

Updates to facts are then handled in a transactional manner. All individual changes
are put into the appropriate pIns

edb and pDel
edb predicates. Committing the transaction

automatically triggers the evaluation of the maintenance rules. After this evalu-
ation, the extensions of all materialized predicates P are updated by adding the
extension of PPlus

idb and removing the extension of PMinus
idb . Similarly, the extension

of all extensional predicates Pedb is updated by adding P Ins and removing PDel.
As a last step, the extension of P Ins and all other auxiliary predicates are cleared
for a new evaluation.

Changes in rules are carried out in the three phase process described in Section 6.4
on page 159: First, the new maintenance rules of rule change are generated. Then,
the maintenance program is evaluated and the extensions of materialized predi-
cates are updated as described for the change of facts. As the last step, the mainte-
nance rules for rule change are replaced with maintenance rules for fact changes.
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7.6. Related Work

We can find related work in two areas. Firstly, several projects besides KAON at-
tempt to provide general infrastructures for ontology-based applications. Secondly,
several APIs for predecessors of OWL have been proposed and are related to the
OWL API. The reader may note that a survey of general ontology-based tools such
as editors and reasoners are beyond the scope of this section7.

7.6.1. Infrastructures for ontology-based applications

RDFSuite RDFSuite (Alexaki et al., 2001) is a suite of tools for RDF manage-
ment. The RDFSuite includes a validating parser for RDF, a RDF Schema specific
database (RSSDB) and the RDF Query Language (RQL) – a functional query lan-
guage for querying RDF repositories. RDFSuite departs from the official RDF se-
mantics and disallows cycles and multiple inheritance in the RDF subsumption
hierarchies. RQL queries are rewritten into a set of SQL99 queries, which are ex-
ecuted by the underlying database, which is used for physical storage and query
execution.

Sesame Sesame (Broekstra et al., 2002) is an architecture for storing and querying
RDF data. It consists of an RDF parser, RQL query module and an administration
module for managing RDF models. Sesame fully supports the RDF Schema on-
tology language. Sesame implements the entailments sanctioned by RDFS at the
time data is uploaded to the server and can incrementally maintain this data using
a TMS-based approach. Sesame can, however, only store OWL and query ground
RDF data. The Sesame system has been successfully deployed as a functional com-
ponent for RDF support in the KAON SERVER.

Jena Jena (McBride, 2001) is a Java framework for building Semantic Web appli-
cations. The latest version of Jena provides a programmatic environment for RDF,
RDFS and OWL, including a rule-based inference engine. Jena grew out of work
in the HP Labs Semantic Web Programme. The Jena framework includes an RDF
API and an OWL API. Jena takes an RDF-centric view, which treats RDF triples as
the core of RDF(S) and OWL. Therefore, the Jena OWL API is implemented as a
wrapper around the RDF API. Similar to our approach, the Jena APIs recently al-
low several implementations, which may provide in-memory and persistent stor-
age. Ground RDF data can be queried using the RDF data query language (RDQL)

7Cf. (Gómez-Pérez, 2002) for an overview representing the state of the art in 2002.
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query language. The inference subsystem is designed to allow a range of inference
engines to be used for the purposes of Jena. The connection with the engines is
made on the RDF triple level, viz. reasoning with OWL is achieved via an axioma-
tization of the OWL vocabulary using a single triple predicate. Jena includes a set of
predefined reasoners, whose expressivity ranges from reasoning with the transitiv-
ity of class and property hierarchies to a generic rule-based reasoner. The later sup-
ports user defined rules and employs a hybrid execution strategy, which combines
forward chaining based on the RETE algorithm (Forgy, 1982) with tabled backward
chaining (Swift & Warren, 1994). Reasoning for RDFS and OWL is achieved by in-
stantiating the generic rule based reasoner with a predefined set of rules. While we
share the goal of Jena to provide a general framework for building Semantic Web
applications, we do not take the RDF-centric view and consider RDF purely as an
exchange syntax. Our implementation of the ontology API completely abstracts
from RDF. Similarly, and detailed in the previous part, our strategy of rule-based
reasoning with OWL, provides a precise characterization of the incompleteness.

4Suite Server 4Suite Server (4SS)8 is a platform for XML and RDF processing.
Among the provided tools is a RDF data repository. Access to this repository is
supported through a dedicated API and a query and inference language called
Versa. 4SS provides the data infrastructure of a full database management sys-
tem, including transactions and concurrency support, access control and a variety
of management tools. Versa, however, only provides a specialized language for
addressing and querying an RDF model. It allows traversal of arcs, processing of
node contents and general expression evaluation, but is not aware of RDF or OWL
Semantics.

7.6.2. Ontology and Knowledge Base APIs

There is a long tradition for providing programmatic access to knowledge based
systems. However, most of the previous work has been centered around proto-
cols, such as Open Knowledge Base Connectivity (OKBC) (Chaudhri et al., 1998)
and Generic Frame Protocol (GFP) (Chaudhri et al., 1997), which are application
programming interfaces for accessing knowledge bases stored in knowledge repre-
sentation systems. Such protocol-centric approaches automatically assume a client-
server architecture for application development. However, our approach is rather
component-based since our intention is to develop a reusable component for de-
veloping OWL-based applications, in style of DOM for XML-based applications.

8http://www.fourthought.com/4SuiteServer/ .
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Besides the new version of Jena (McBride, 2001), no APIs for the OWL language
exist yet.

DAML+OIL interfaces There have been a number of initiatives to provide appli-
cation interfaces aimed at precursors of OWL such as DAML+OIL (Horrocks et al.,
2001). Jena (McBride, 2001) supplies a DAML+OIL interface that provides conve-
nience wrappers around their RDF interface in order to increase the efficiency of
manipulating the DAML+OIL fragments embedded in a particular RDF file. Natu-
rally, this approach gives a rather syntax-centric view of DAML+OIL. Additionally,
the implementation is bound to a particular RDF implementation. The DAML API
by AT&T government solutions is an additional interface to DAML ontologies. It
defines a structural interface for the manipulation of and access to DAML ontolo-
gies. It is not bound to a particular syntactic representation such as RDF.

Ontology Editors OilEd (Bechhofer et al., 2001) provided a collection of data
structures representing DAML+OIL ontologies. The OilEd data structures suffer
in a number of ways. The primary drawback is that the functionality is supplied
as implementation classes rather than interfaces, which binds the client to a particu-
lar implementation of the model. In addition, support for tracking and recording
changes is minimal. Other ontology editors such as OntoEdit (Sure et al., 2002)
and Protege (Noy et al., 2000) also expose their internal APIs to offer access to the
underlying data structures but experience similar problems since their design is
heavily influenced by the purpose of the editors.

7.7. Conclusion

We have presented the prototypical implementation of the DLP compiler. The com-
piler makes use of the OWL API to access OWL knowledge bases and is part of the
Karlsruhe Ontology and Semantic Web Tool Suite (KAON), which enables KAON
to provide DLP ABox reasoning with the KAON Datalog engine.

The DLP compiler itself is still prototypical and was mainly used to validate the
ideas underlying DLP and to evaluate the performance of DLP with respect to
ABox reasoning. The outcome of this evaluation is presented in the next chapter.
The incremental maintenance of a materialization has been implemented as part of
the KAON Datalog engine and can now be used in all ontology-based applications
that make use of this KAON component.

KAON itself has become one of the currently leading infrastructures for Semantic
Web applications and is successfully used around the world in several public and
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industrial research projects. Similarly, the OWL API was well-received by the re-
search community and Semantic Web startup companies and has been repeatedly
among the top 1000 downloads in the Sourceforge open source project repository.
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“Was in der Antike das Schicksal bewirkte,
leistet heute die Statistik.

Sie vernichtet Helden und Schurken.”
Rainer Kohlmayer in (Kohlmayer, 2000)

This chapter analyses the performance of reasoning with DLP knowledge bases.
Our analysis consists of four parts:

1. We elicit how typical knowledge bases using Web ontology languages look
like. This is achieved through a statistical analysis (Tempich & Volz, 2003)
of DAML+OIL ontologies in the DAML.ORG ontology library, which is the
largest collection of Web ontologies available today.

2. We compare the performance of solving three standardQDL reasoning prob-
lems between the current tableaux-based generation of DL reasoners and cur-
rently available logic databases. We use simple synthetic L0 knowledge bases
to establish a base line comparison.

3. We study the effect of handling knowledge bases which make use of more
expressive DLP languages. In particular, we analyze the effect of handling an
equality theory and the effect of handling skolem functions on acyclic TBoxes.

4. We analyze the effect of materializing knowledge bases on the performance
of solving instance retrieval problems. To this extent, we measure the time
needed to setup a materialization and to carry out incremental maintenance
in case of changes to facts.

The organization of the chapter follows these four parts: Section 8.1 introduces our
approach to performance analysis and discusses how it is related to previous ap-
proaches. Section 8.2 on page 196 presents the systems participating in the perfor-
mance analysis and describes our testing methodology. Section 8.3 on page 198
summarizes our analysis of the DAML.ORG ontology library (Tempich & Volz,
2003), which motivates the structure of the synthetic knowledge bases used for the
subsequent performance analyses. Section 8.4 on page 206 summarizes the results
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of the comparative analysis establishing a baseline for the performance relations
between tableaux-based DL reasoners, such as Racer, and logic databases, such as
XSB. Section 8.5 on page 213 summarizes the results of our analysis of instance
retrieval performance on knowledge bases which make use of the more expres-
sive DLP language variants. Section 8.6 on page 219 presents the results of our
evaluation of the costs related with the incremental maintenance of materialized
knowledge bases. Section 8.7 concludes this chapter on page 222 with a summary
of our analyses.

8.1. Introduction

Our methodology to analysis might appear to be overly complex at first sight. The
organization into several parts, however, allows to factorize the complexity of the
analysis and avoids to measure the combination of several influences on perfor-
mance at the same time. Our strategy therefore allows to identify and measure the
different individual influences on the performance which we can observe.

For example, the comparative analysis presented in Section 8.4 on page 206 clearly
identifies the relation between the performance of tableaux-based DL reasoners
with logic databases. The comparison is achieved by observing the performance
of several different reasoning problems with respect to simple knowledge bases.

The results established in this analysis allow us to generalize the behavior of sys-
tems for individual reasoning problems when a knowledge base becomes more
complicated. We can then focus on those interesting aspects of individual reason-
ing problems, where a change of performance behavior would be relevant.

Our analysis of the ontology library might appear to be unrelated to the perfor-
mance analyses themselves. However, an earlier performance analysis (Heinsohn
et al., 1994) suggests that the structure of the knowledge base severely affects the
runtime performance of DL reasoners. For example, (Heinsohn et al., 1994) report
that the runtime of the Loom system (MacGregor, 1991) grows faster than linearly
with the number of properties in the TBox. The analysis of the ontology library
is therefore carried out in the attempt to identify the average characterization of
knowledge bases.

The average characterizations are then used as structural indicators for the forma-
tion of synthetic knowledge bases. The individual performance analyses then use
these synthetic knowledge bases to measure the time required to solve particular
QDL reasoning problems.

The usage of synthetic knowledge bases has several benefits: Firstly, knowledge
bases can be scaled in size while maintaining the same structural properties. Sec-
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ondly, analyses can be carried out in a controlled and repeated manner, which is the
most important requirement for any scientific experiment. Thirdly, the homoge-
neous structure facilitates the empirical assessment of the correctness of provided
answers.

Naturally, a performance analysis can be performed using a real knowledge base
that is used on a particular reasoner. For example, (Horrocks, 1997) uses the
GALEN knowledge base to assess the performance of the FaCT (Horrocks, 1998)
reasoner. However, real knowledge bases, in particular Web ontologies, evolve
and it is often impossible to apply them repeatedly. Similarly, as our analysis of
the library will show, individual ontologies rarely correspond to the average case.
Therefore the results of an analysis based on real knowledge bases are hardly rep-
resentative and the generalization of the results is problematic.

The reader may note that our approach to analysis is also substantially differ-
ent from the largest previous performance analyses carried out in the Description
Logic community (Horrocks & Patel-Schneider, 1998). This previous approach was
mainly focused on testing the performance of satisfiability checking and used a se-
quence of problems with (exponentially) increasing difficulty (Balsiger & Heuerd-
ing, 1998; Heuerding & Schwendimann, 1996; Horrocks & Patel-Schneider, 1998).
While such problem definitions are effective for testing reasoners and individual
algorithms, they are hardly representative and it is

"... questionable whether performance for worst case examples gives us
the right idea of how systems will behave in applications." (Heinsohn
et al., 1994).

Limitations Due to the absence of available ABoxes used in conjunction with ex-
pressive ontologies in the ontology library, our approach to synthetic data genera-
tion for ABoxes is deemed to be subjective and speculative about a possible ABox
structure. We make the implicit assumption that properties are used similarly to
assoctiations and attributes of classes in object-oriented systems. This behaviour
can be observed on the few large ABoxes that are currently available1. Our anal-
ysis does not encompass datatype properties, datatype property restrictions and
instances of those properties.

1In particular, TAP http://tap.semanticweb.org/ and AKTive Space http://www.
aktors.org/ .
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8.2. Analyis Environment

This section presents the systems participating in the performance analyses, the
host environment used in carrying out the analyses and our testing methodology.

8.2.1. Selection of Systems

The selection of systems used for our analysis is motivated by the following criteria:

1. Active Maintenance

2. Free and public availability

3. State of the art

4. Feature support

To support the comparative analysis, we chose systems from the logic database
category and the DL reasoner category.

Logic Databases Our choice fell on the KAON Datalog engine and the XSB sys-
tem (Sagonas et al., 1994). Other logic databases such as Coral (Ramakrishnan et al.,
1994) are no longer actively maintained. Systems like Ontobroker (Decker et al.,
1999) were available to the author, but are not freely available to the public due to
their commercial status. Therefore, the results of a performance analysis could not
be repeated by third parties.

DL Reasoners Our choice fell on the Racer system (Haarslev & Moller, 2001),
which is the only DL engine that uses state of the art (tableaux) reasoning al-
gorithms and features support for ABox reasoning. We therefore did not regard
Loom (MacGregor, 1991), another publicly available DL reasoner, which uses (in-
complete) structural subsumption algorithms. NeoClassic (Patel-Schneider et al.,
1991) also uses structural algorithms and appears not to be actively maintained.

8.2.2. System Descriptions

8.2.2.1. KAON Datalog

We used a fresh compilation of the Java-based KAON Datalog engine as it could
be obtained from KAON CVS 2 on December 14th, 2003. The KAON Datalog en-

2http://sourceforge.net/projects/KAON/ .
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gine allows to use multiple extensional databases with the same program. This
feature was used for the QDL subsumption test, where we simply created a new
extensional database that only contained the prototypical instance required for the
test and used in conjunction with the program. Since the extensional database did
not contain any other instances, we expect limited binding passing possibilities
and carried out the subsumption test without applying the Magic Set transforma-
tion. For instance retrieval, however, the Magic Set transformation was applied for
query answering. The KAON Datalog engine does not provide a built-in support
for equality and integrity constraints. We therefore apply the necessary simulations
reported in Section 7.4.4 on page 185. In the following, we will refer to the KAON
Datalog engine as KAON.

8.2.2.2. XSB

We used the XSB Windows executable (Version 2.6) as obtainable from the XSB
Web site. The communication between XSB and the DLP prototype was carried out
by embedding XSB into the Java process using the Java Win32Process infrastruc-
ture. A new XSB process was created for every test. For the DLP translation of
knowledge bases into XSB programs, we used dynamic XSB programs. Dynamic
programs contain dynamic predicates which can be changed at runtime (by assert-
ing/retracting rules or facts). The ability to assert and retract facts is required for
the QDL subsumption problem. XSB programs are typically not dynamic. In this
case, XSB can only load a given file and issue queries on the extensions of predicates
in the program but not manipulate the program and its extensions during runtime.
The use of static programs allows XSB to apply optimizations, which would lead to
different response times than the ones measured by us. All predicates were tabled.
Since XSB does not provide integrity constraints and the built-in equality predi-
cate of XSB can not be used3, we apply the simulations reported in Section 7.4.4 on
page 185.

8.2.2.3. Racer

The version of Racer used in the analysis is the stand-alone Windows Racer server
(Version 1.7.12) as obtained from the Racer web site. The communication of Racer
was carried out using the TCP/IP protocol. The Racer server was started locally
and TCP/IP communication did not involve any network latencies, since the com-
puter was not connected to any computer network during the analysis. The same

3Since XSB understands the usage of a built-in predicate in the head of rules as a redefinition of
predicates, i.e. loses the predefined axiomatization of the predicate.
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Racer server was reused across all tests of an analysis. Before every test, all avail-
able knowledge bases in the server were unloaded. In order to facilitate the con-
struction of internal optimizations, the initial loading of a knowledge base was
augmented with a test on the consistency of the TBox and the ABox before sub-
sumption and instance / property filler retrieval problems were stated. The reader
may note that the support of Racer for ABoxes is incomplete. For example, Racer
does not incorporate an equality theory and can therefore not identify individuals
as members of a class, if they are equivalent to instances of the class.

8.2.2.4. Host Environment

The analysis was carried out on a IBM T30 Laptop, equipped with a Pentium IV
Mobile processor running at 2 GhZ and 512 MB main memory under the Windows
XP Professional operating system. Windows XP internally used a 1 GB page file for
virtual memory. The tests itself were written in Java and executed using the Java
JDK 1.4.1_01.

8.2.3. Testing Methodology

Every test was carried out 5 times on all three systems. All systems were using the
same (synthetically generated) knowledge base across the five tests. However, dif-
ferent classes and properties were selected for every repetition of a test. The results
stated here represent the average between all 5 invocations of a test. Each test is
given a time frame of 30 minutes (1800000 ms) and was aborted if the respective
system was unable to solve the problem in time.

Our primary metric is response time, i.e. the time (in milliseconds) that is needed
to solve the reasoning problem. This means that we ignore the utilization of system
resources, which could be another interesting measure for performance. However,
we assume that most Web ontology reasoners are going to be servers, for which
it is nowadays cheap to buy the necessary memory and CPU to ensure that these
factors are not the bottleneck for performance.

8.3. Ontology Library Analysis

We provided the first statistical analysis of the DAML.org library of ontologies4 in
(Tempich & Volz, 2003). Our choice to analyze this collection of ontologies is moti-
vated by its sheer size. It is currently the largest collection of available ontologies.

4Available at http://www.daml.org/ontologies .
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Secondary reasons for our choice are that we are not related with the authors of
the ontologies in any form5. Additionally, most ontologies are created by different
people with diverse technical backgrounds (ranging from students to researchers).
In this sense, the user group can be understood as being representative for the cur-
rent state of the Semantic Web and the ontologies are mostly not created by expert
logicians.

We present a brief summary of our analysis (Tempich & Volz, 2003) in the following.
The individual results of the analysis can be found in Appendix D on page 253. We
focus on the aspects that are relevant for the synthesis of knowledge bases used
in the performance analyses. Further aspects, e.g. the application of clustering to
categorize the individual ontologies, are discussed in (Tempich & Volz, 2003).

8.3.1. Library Content

The analysis was carried out prior to the analysis of the ontologies presented in Sec-
tion 5.3.2 on page 128. At time of the analysis (July 2003), the DAML.ORG library
contained 280 ontologies. Since only very few OWL ontologies were available at
the time and the correctness of converters from DAML+OIL to OWL format could
not be verified empirically, we decided to analyze ontologies in the DAML+OIL
format, which roughly correspond to OWL DL.

Unfortunately, 50% of the ontologies contained fundamental errors6 and could not
be processed. In order to avoid a manipulation of the ontologies, we did not make
any attempt to fix these problems. Therefore, we could only parse 140 ontolo-
gies. The correctness of RDF is, however, not the only relevant property that an
ontology must meet in order to be processable. For example, it has to use the
DAML+OIL/OWL vocabulary correctly. Due to further errors like the usage of
wrong vocabulary, another 45 of the parse-able RDF documents could not be pro-
cessed as DAML+OIL ontologies. This suggests that we need further heuristics to
make use of these ontologies in reasoners, i.e. deriving the correct vocabulary for
the DAML+OIL language. We did not make use of those heuristics to have an ex-
act representation of the definitions made in ontologies. In consequence, only 95
ontologies could be used for our analysis.

This has serious statistical consequences on the representativeness of the results of
the analysis. Due to the small size of the collection, we have to understand the
averages established here as rough indicators instead as "hard" scientific facts. The
later can only be established on a larger collection of ontologies. The methodology

5Viz. the selection is not based with the aim to facilitate a particular outcome of the analysis.
6Ranging from syntactic XML and RDF errors to HTTP errors indicating that the given ontology

cannot be found.
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lain out here may provide future help to reassess our results when the number of
Web ontologies grows.

The analysis itself is based on the structural properties of asserted information,
hence no reasoning was performed. This has various consequences, e.g. (due to
the semantics of Description Logics) every class description actually has at least
one entailed superclass, namely >. Since we measured the asserted super-classes
only, it is possible that class descriptions have no super-classes.

The analysis was carried out using a simple Java class that counted the elements of
ontologies. The correctness of the numbers additionally depends on the correctness
of the DAML+OIL library of Jena Version 1.6.1 which was used to represent the
ontologies programmatically.

Constructor Av. Std. Dev. Median Min. Max. C.O.V.7

Class Descriptions 175,2 1016,39 19 1 9795 5,8
- Named Classes 166,89 1018,21 5 1 9795 6,1
- Restrictions 19,13 44,52 7 0 327 2,33
– Universal Restrictions 13,29 37,7 4 0 327 2,84
– Existential Restrictions 1,97 15,33 0 0 146 7,79
– Number Restrictions 8,96 33,95 1 0 326 3,79
— Number Restr. (Lite) 8,86 33,93 1 0 326 3,83
- Enumeration 0,33 1,72 0 0 16 5,26
- Boolean Constructors 1,45 8,62 0 0 78 5,94

Table 8.1.: Average Usage of Class Constructors Across Ontologies

8.3.2. Average Characterizations

8.3.2.1. Absolute Numbers

The first part of our analysis was concerned with simply counting the usage of cer-
tain class constructors, in order to estimate probabilities that measure the usage
frequency of each constructor. Table 8.1 summarizes the average usage of the indi-
vidual class constructors in the ontologies. One important aspect of the summary
given in Table 8.1 is that the standard deviation is very high and that the median
and the average are often very different. These facts show that the particular on-
tologies vary tremendously in their usage of individual class constructors, i.e. the
distributions are highly skewed. In such cases, the median is usually considered to

7The coefficient of variation (C.O.V.) measures the relative dispersion and is defined as Std. Dev.
Average .
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be a statistically more representative characterization of the average case than the
average itself.

As we can see, atomic named classes and various types of restrictions are the pre-
dominant form of class descriptions. Even though the average of classes is higher
than the average of restrictions, an ontology typically contains more restrictions
than atomic class names (as indicated by the median).

One interesting aspect for our context is that only two ontologies actually used
number restrictions that could not be expressed in L1. Additionally we can see that
enumerations are rarely used, even considering the hasValue property restriction.
Boolean constructors are also used rarely: only ten percent of the ontologies used
negation, intersection or union as class constructors.

Property Absolute Numbers
Average Std. Dev. Median Min. Max. C.O.V.

Properties 28,41 43,47 13 0 269 1,53
Untyped 7,51 23,34 0 0 176 3,11
Datatype 12,57 23,15 4 0 145 1,84
Object 8,34 31,26 2 0 269 3,75
Transitive 0,22 0,66 0 0 3 2,96
Functional 0,56 2,21 0 0 14 3,95
InverseFunctional 0,02 0,14 0 0 1 6,86
Inverse 0,59 3,62 0 0 34 6,14
Domain 0,25 0,39 0 0 1,23 1,59
Range 0,26 0,41 0 0 1,22 1,57

Table 8.2.: Average Usage of Property Definitions

Table 8.2 presents the absolute counts of property assertions. Since we were deal-
ing with DAML+OIL, properties do not necessarily have to be typed. The predom-
inant form of properties were datatype properties. We can also see from Table 8.2
that only few property characteristics are specified. In particular, inverse function-
ality was used rarely. Interestingly, only every fourth property has asserted global
domain and ranges specifications.

8.3.2.2. Relative Numbers

The second part of our analysis is concerned with the ratio of different primitives
in ontologies. The variability of these ratios is smaller than the average counts (cf.
Table 8.3) since we aggregated relativized numbers.
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Ratios Average Std Dev Median Min Max C.O.V.
Prim. Class /Constructor 50% 0,34 39% 6% 100% 0,67

Obj. Prop. / Prop. 24% 0,27 16% 0% 100% 1,12
Dat. Prop. / Prop . 52% 0,38 67% 0% 100% 0,72

Trans. Prop. / Obj. Prop. 3% 0,08 0 0 0,4 3,13
Obj. Prop./ Prim. Class 0,61 0,83 0,50 - 5,57 1,35
Dat. Prop./ Prim. Class 2,25 3,33 1,00 - 15,75 1,48

Prop. / Prim. Class 3,54 3,89 2,00 - 21,00 1,10
Ex. Rest. / Rest. 1% 0,08 0% 0% 65% 5,79

Univ. Rest. / Rest. 48% 0,44 52% 0% 100% 0,91
Card. Rest./ Rest. 34% 0,38 20% 0% 100% 1,11

Rest./Primitive 2,32 2,70 1,50 - 16,00 1,17
Asserted Ind. / Primitive 0,60 4,18 - - 40,50 6,97

Table 8.3.: Ratio between Selected Language Primitives (Across all Ontologies)

One aspect that can be observed is that the ratio between properties and named
classes is very low, since the median of properties per class is two. The reader may
recall that DAML+OIL allows for untyped properties, for which the specification of
being datatype or object property is missing. We will therefore assume that half of
the properties are actually object properties. As a result of this assumption, we will
use one object property per named class as the representative case in the synthetic
ontologies.

The low average of properties per class description can be interpreted as being
one of the major differences between typical TBoxes and object database schemas,
where this ratio would be higher. Interestingly, datatype properties are the pre-
dominant type of properties. It is important to note that some of the ontologies,
particularly those with high numbers of classes, do not contain any properties at
all. Only some 3% of the defined object properties were declared transitive. We will
therefore ignore property transitivity in the generated synthetic knowledge bases.

Among the restrictions, universal restrictions are predominant, i.e. almost half of
all restrictions are universal restrictions. Typically, a primitive class is defined using
2,32 restrictions (median 1,5).

8.3.3. Distributions in Class Definitions

The third part of analysis is concerned with determining frequency distributions of
the constructors contained in class axioms. Since most of the constructors do not
occur in significant number, we concentrated on two distributions:
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Super-Classes per Class Description

Restrictions per Class Description

Figure 8.1.: Distributions in Class Descriptions
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• Number of assigned named super-classes per class definition;

• Number of restrictions used in the definition of class definitions.

8.3.3.1. Named Super-Classes and Restrictions

The Figure 8.1 depicts the frequency distribution of super classes and restrictions
per class description. In these figures, the actual number of super-classes (restric-
tions) constitutes the x-axis of the graph.8 The y-axis, which is drawn at logarithmic
scale, represents the percentage of classes in an ontology for which the respective
number of super-classes (restrictions) can be observed. Every such observation
in the individual ontologies is depicted by a data point. Additionally, the figure
shows three lines. These lines depict the observed average and maximum percent-
age across all ontologies as well as an approximation of the average percentage via
a standard distribution.

It is important to recall in these figures that our analysis was performed on the syn-
tactic declarations. Therefore, we do not consider that we can infer for every class
that it has at least one subclass (⊥) and one superclass (>). We actually found on-
tologies that were slightly inconsistent in this respect. Several ontologies redeclared
the symbol for >, i.e. DAML:THING, in another namespace (usually the namespace
of the ontology). Similarly, > was sometimes explicitly assigned as super-class.
These situations were, however, not treated separately in the analysis, since we
intended not to manipulate the ontologies.

8.3.3.2. Approximating Distributions

In order to simulate the distributions, we need to approximate the observed dis-
tributions with a standard distribution. Our empirical tests soon led to the choice
of Power Law distributions, which appear to fit the observed averages very well.
Power Law distributions can be observed in many real-life situations, such as link-
age between web sites or human urban habitation. Power Law distributions sug-
gest in our setting that there is a big percentage of classes that have only few super-
classes (restrictions) and a small percentage of class descriptions that have many
super-classes (restrictions). The Power Law distribution is defined as follows:

P (r) = c ∗ r−a

8 The last value (14) aggregates all greater numbers, hence the percentage of classes that feature a
greater number of elements is also aggregated.
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P(r) measures the size of event r, where r is the rank in descending order on size a
of the distribution and c is a scaling constant.

In order to determine the parameters c and a, we fitted the distribution to the
observed average numbers by performing a linear regression of log(P (r)) on
log(r) where the parameters log(c) is the slope and a is the intercept of the curve
log(P (r)) = log(c) + a ∗ log(r).

Using the linear regression, we can determine9 the scaling parameter c = 0.2 and
a = 1.7 for the super-class distribution and c = 0.2 and a = 2.0 for the restriction
distribution. The χ2 test shows for both approximations that they are good hy-
potheses for the observed average distributions. Similarly, the standard deviation
of observed values from the approximation only differs 7% (30%) in the case of re-
strictions (super-classes) from the deviation of observed values with the observed
average.

8.3.4. Discussion

Our analysis shows that individual ontologies vary tremendously not only in size
but also in their average use of ontological constructors. This variation leads to
high standard deviations and makes it difficult to identify the average case. Never-
theless, the analysis helps to assess previous approaches for synthetic generation of
knowledge bases. While (Elhaik et al., 1998) develop a very sophisticated approach
for the generation of knowledge bases, the approach appears to be too complicated
in practise. This is due to the fact that it requires distributions for the occurrence of
class constructors at certain depths in class descriptions. These distributions can,
due to the small number of available ontologies and their high variance, not be real-
istically provided. Similarly, the analysis shows that the more simplistic approach
of (Heinsohn et al., 1994), which assume that 80% of the classes are primitive and
each class definition contains one or two super-classes, zero, one or two value re-
strictions and zero, one or two number restrictions, is no longer valid. The analysis
of the distribution of super-classes clearly shows, that the Power Law distribution
fits the actual distributions for super-classes and restrictions much better.

In the following, we do not instantiate the Power Law distributions to simplify our
empirical analysis of the correctness of the obtained answers. The knowledge base
generation therefore follows (in style) (Heinsohn et al., 1994), with the addition that
the number of subclasses and restrictions per named class are adapted to reflect the
outcome of our analysis.

9For the purpose of presentation, we round the actual numbers to the 1/10 digit.
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8.4. Comparative Performance Analysis

This section presents the first set of results of our analysis of the performance of
DLP.

8.4.1. Goals and Assumptions

The aim of the comparative performance analysis is, as mentioned above, to com-
pare the basic performance of the two logic databases and the Racer Description
Logic reasoner with respect to the time needed to solve the following three basic
QDL reasoning problems:

1. Retrieval of class instances for a random class;

2. Retrieval of property fillers for a random property;

3. Class subsumption between two random classes.

Symbol Variant Tax. Depth No. Classes
TS Small 3 40
TM Medium 5 364
TL Large 7 3280

Table 8.4.: TBox Variants

8.4.2. Knowledge Bases

The QDL reasoning problems were stated against various synthetically generated
knowledge bases (KB). The TBox of each KB is varied in its taxonomic depth (cf.
Table 8.4 above). Each TBox was constituted by a symmetric taxonomy of primitive
classes, i.e. only contained inclusion axioms. Each (non-leaf) class has exactly three
subclasses. The ABox of each KB is generated by varying the number of individuals
per class (cf. Table 8.5 below).

We consider the statement that the performance of DL systems is dependent on the
number of properties present in the TBox (Heinsohn et al., 1994) and considered
three different variants of generated properties and property fillers in the KB (cf.

10We do not assert members of >.
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Symbol Variant No. Individuals / Class10

IS Small 3
IM Medium 9
IL Large 15

Table 8.5.: ABox Variants

Table 8.6). The first variant (P0) of TBoxes did not contain any properties. This vari-
ant approximates the taxonomies of thesauri such as WordNet or UNSPC, which
currently constitute a large portion of Web ontologies that are in use. Our goal with
this test is to see how the very basic task of taking the taxonomy into account when
retrieving the extension of a class, is improved. The taxonomy is constituted by a
symmetric tree of classes.

The second variant (P1) of TBoxes contains exactly one object property per class11

and fills this property for every third individual (connecting the individual to the
previously generated individual). The third variant (PF) of TBoxes contained ex-
actly 200 object properties and instantiated a single one of these properties (with
uniform distribution) on every individual.

Symbol Variant No. Properties No. Prop. Fillers / Class
P0 No Properties 0 0
P1 One Prop. / Class No. Classes 1/3
PF Fixed No. of Prop. 200 No. of Individuals

Table 8.6.: Property Variants

We generated a total number of 27 knowledge bases by instantiating all possible
parameter combinations (cf. Table 8.7 for the number of classes, properties and
property fillers in every KB).12

11The reader may recall that DAML+OIL allows for untyped properties, for which the specification
of being datatype or object property is missing. We will therefore assume that half of the observed
properties are actually object properties. Due to the observed dispersion.

12Since each of three above mentioned reasoning problems were instantiated on every knowledge
base, 81 different tests were carried out. Every test was repeated 5 times, leading to 405 individual
tests. The time out of 30 minutes per test suggests a maximum running time of slightly more than
one week.

13Since we do not assert members of > the number of individuals in the knowledge base are calcu-
lated by (# Classes - 1 ) * # Individuals/Class.
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Variant Classes Individuals13 Properties Prop. Fillers
P0 TS IS 40 117 0 0
P0 TS IM 40 351 0 0
P0 TS IL 40 585 0 0
P0 TM IS 364 1089 0 0
P0 TM IM 364 3267 0 0
P0 TM IL 364 5445 0 0
P0 TL IS 3280 9837 0 0
P0 TL IM 3280 29511 0 0
P0 TL IL 3280 49185 0 0
PF TS IS 40 117 200 117
PF TS IM 40 351 200 351
PF TS IL 40 585 200 585
PF TM IS 364 1089 200 1089
PF TM IM 364 3267 200 3267
PF TM IL 364 5445 200 5445
PF TL IS 3280 9837 200 9837
PF TL IM 3280 29511 200 29511
PF TL IL 3280 49185 200 49185
P1 TS IS 40 117 40 40
P1 TS IM 40 351 40 120
P1 TS IL 40 585 40 200
P1 TM IS 364 1089 364 364
P1 TM IM 364 3267 364 1092
P1 TM IL 364 5445 364 1820
P1 TL IS 3280 9837 3280 3280
P1 TL IM 3280 29511 3280 9840
P1 TL IL 3280 49185 3280 16400

Table 8.7.: Input Knowledge Base Size

Figure 8.2.: Instance Retrieval on PO KBs

8.4.3. Results

The individual results of the tests can be found in Appendix B.1.1 on page 237.
As before, we will summarize the results here and pick interesting data for the
purposes of this presentation.
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8.4.3.1. Instance Retrieval

P0 Knowledge Bases We first consider the results of the instance retrieval tests
on the P0 family of knowledge bases, which did not contain any properties. Fig-
ure 8.2 describes the results of these tests, where the average response time for
each query is drawn on a logarithmic scale. The worst average response time by all
systems was given for the largest knowledge base (TL IL).

KAON shows the best performance for instance retrieval across all knowledge
bases. The worst average response time of KAON was 0,5 seconds. XSB was in
average 2,65 times slower than KAON, while its’ worst response time was 2 sec-
onds (4 times slower than KAON). The reader may note that, if instance retrieval
was the only query to be answered by XSB, the use of compiled XSB programs
empirically shows similar performance of XSB in comparison to KAON. The per-
formance of both systems shows close to linear growth with respect to the number
of instances.

Figure 8.3.: Ratio of Response Time to Number of Individuals

The performance of Racer was highly dependent on the number of individuals and
grows exponentially with the number of individuals (cf. Figure 8.3). The response
time was still acceptable for P0 knowledge bases. Even on the largest P0 knowl-
edge base, which included almost 50000 individuals, Racer was able to solve the
reasoning problem within 5 minutes.
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P1 Knowledge Bases The presence of properties and property fillers did almost
not affect the performance of the two logic databases. However, the exponential
effect on the performance of Racer gained tremendous momentum (cf. line P1 in
Figure 8.3), leading to the situation that Racer was unable to answer any instance
retrieval problem posed on the largest P1 knowledge base within the given time
frame of 30 minutes per test.

PF Knowledge Bases In order to investigate whether the increased time needed
by Racer is due to the presence of properties in the TBox such as suggested by
(Heinsohn et al., 1994), we investigated whether a fixed (and small) number of 200
properties would make a difference. However, we discovered that the number of
properties actually does not matter. Surprisingly, the strongest influence on the
performance of Racer with respect to instance retrieval appears to be the number
of property fillers. In fact, Racer was not able to solve an instance retrieval problem
within the given time frame of 30 minutes14 when more than 10000 property fillers
were present. The performance of XSB and KAON, on the other hand, was not
noticeably affected by the presence of a large number of property fillers.

Summary We can summarize that logic databases outperform the current version
of Racer by order of several magnitudes. The exponential dependency of Racer to
the size of the knowledge base prevents its practical use for instance retrieval on
large knowledge bases in particular when property fillers are present.

Logic databases, however, expose satisfactory performance. None of the queries
took KAON (XSB) more than 1 second (4.5 seconds) to answer. The analysis there-
fore suggests that logic databases show sufficient performance for real-life knowl-
edge bases, which are similar in size to the evaluated synthetic knowledge bases.

8.4.3.2. Property Filler Retrieval

The retrieval of property fillers from our knowledge base corresponds to a simple
lookup of explicit assertions, since no entailments such as sanctioned by a property
hierarchy are necessary.

Figure 8.415 summarizes the results of the individual property filler tests. Clearly,
the retrieval of explicit information in logic databases is trivial. Due to this fact, we

14In order to test whether Racer was slightly slower than 30 minutes, we did not stop one test. The
test was running for 8 hours before it was eventually aborted. Similarly, the otherwise moderate
memory consumption of Racer was not present anymore.

15The different knowledge bases are sorted by the number of property fillers.
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Figure 8.4.: Response Time for Property Retrieval Tests

were sometimes unable to measure the response time of XSB. In average, KAON
(XSB) was able to solve the posed property retrieval problems in 13 (146) ms.

Interestingly, Racer performs even worse for the retrieval of property fillers than for
instance retrieval. Racer was typically unable to solve all property filler problems
in the given time limit, when more than 1000 property fillers were present. If more
than 200 property fillers were present, we could only measure response times above
1 minute.

The results for property fillers underline our conclusion for instance retrieval. Ap-
parently, Racer is only of limited use, even for the smallest knowledge bases evalu-
ated here.

8.4.3.3. Class Subsumption

The results of the class subsumption tests are summarized in Table 8.8. As expected,
the two decades of research in DL systems, which was almost entirely focused to
optimize this type of reasoning problem, show their effect. Class subsumption
problems are the stronghold of Racer. On average, Racer solves the posed sub-
sumption problems within 30 ms16.

The largest TBoxes considered in our analysis are primitive and of minuscule size

16The median response time, however, is 0 ms.
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KB KAON (ms) Racer (ms) XSB (ms)
P0 TS IS 22 2 0
PF TS IS 38,2 0 180,2
P1 TS IS 22,2 16 62
P0 TS IM 14 2 20
PF TS IM 52 0 220,4
P1 TS IM 22 0 0
P0 TS IL 18 0 0
PF TS IL 50 0 200
P1 TS IL 22 2 240,6
P0 TM IS 98 4 300,2
PF TM IS 118,4 4 120,2
P1 TM IS 146,2 6 0
P0 TM IM 90,2 2 0
PF TM IM 110,2 0 60
P1 TM IM 122 0 0
P0 TM IL 74 2 0
PF TM IL 88 114,2 200,4
P1 TM IL 146,4 4 200,6
P0 TL IS 767,2 2 0
PF TL IS 729 6 280,6
P1 TL IS 1466,2 0 0
P0 TL IM 638,8 6 0
PF TL IM 691 6,2 300,6
P1 TL IM 1704,4 86,2 262,6
P0 TL IL 707 296,4 24
PF TL IL 570,8 10 280,2
P1 TL IL 1347,8 292,4 200,2

Table 8.8.: Response Time to Class Subsumption Problems

compared to other knowledge bases where Racer has been reported (Haarslev &
Moeller, 2001) to solve classification-related problems in a satisfactory manner.

The logic databases, however, also performed well in our analysis. Notably, KAON
(XSB) was in average 11,4 (3,7) times slower than Racer. XSB outperformed KAON
and took at most 0,3 seconds to answer the posed subsumption problem. Similarly,
KAON needed at most 1,7 seconds to answer a class subsumption problem. Inter-
estingly, both worst case response times were not observed on the largest knowl-
edge bases. Table 8.8 additionally suggests that the response time of KAON de-
pends on the size of the knowledge base. This conjecture cannot be repeated for
XSB whose performance variations appear to be random.

The results for logic databases should, however, not be understood as an indication
that logic databases are well-suited as DL classifiers. The asymmetry of DLP with
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respect to class subsumption described in Section 5.4.4.1 on page 135, i.e. we can
only ask whether a LL

i class subsumes a LR
i class, cannot be overcome.

8.4.4. Discussion

Our results show that the performance of Racer in all ABox-related problems is
significantly worse than the performance of logic databases. This emphasizes the
contribution of this thesis, which enables ABox reasoning for almost all present
Web ontologies in practise.

The bad performance of Racer is mainly due to the fact that the tableau reasoning
procedure employed within Racer provides a proof or a refutation for one class-
instance pair (Haarslev & Moeller, 2000), whereas the SLG-WAM resolution em-
ployed in XSB or Magic Sets work with sets of instances.

Further, one may observe that the performance of Racer deteriorates with the pres-
ence of property instances. The reason for the bad performance of Racer clearly fol-
lows from the current implementation in Racer17, which translates property filler
retrieval on a property R to consistency checking of an ABox A18. This procedure
requires |# Individuals in A|2 ABox consistency checks. Therefore, Racer has to per-
form more than 2, 4 ∗ 109 ABox consistency checks for the largest knowledge base
(TL IL).

What also has become clear from this analysis, is that logic databases can be practi-
cally used for DL subsumption tests, if the users are interested whether a LL

i class
subsumes aLR

i class. Generally, however, we conjecture that a dual reasoning strat-
egy employing logic databases and DL classifiers in parallel is needed to fully cover
all aspects of Web ontology reasoning.

8.5. Expressivity Performance Analysis

This section presents the second part of analysis of DLP reasoning performance.
We rely on the insights obtained in the comparative analysis and concentrate on
the effects of handling the more expressive language constructs such as found in
Li>0 on the instance retrieval problem.

17Personal communication with an author of the Racer system.
18 For all pairs (i, j) of individuals in an ABox A, (i, j) is a filler of the property R if the ABox
A ∪ {∀R.X(i), (¬X)(j)} is inconsistent.
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8.5.1. Goals and Assumptions

8.5.1.1. Goals

We particularly study the effect of incorporating an equality theory into the logic
program as needed for handling the constructs ofL1. Similarly, we study the effects
of evaluating logic programs with skolem functions as needed for L3.

8.5.1.2. Assumptions

We do not analyze the effects of handling L2 class constructors, since the instantia-
tion of these constructors are transformed into integrity constraints, which have to
be checked after every update to the knowledge base and initially when the KB is
loaded. They therefore do not affect the performance of instance retrieval, which is
the focus of this section. Moreover, both ⊥ and the class complement constructor
¬C were only used very rarely in the library.

Since the added class constructors do not concern property hierarchies, the analysis
does not measure the performance of retrieving property fillers, where the impact
of equality and skolem functions should be similar to instance retrieval.

The superior performance of Racer with respect to subsumption has already been
shown. Hence, we do not measure the performance of classification. This is also
due to the fact that we can only slightly reduce the above mentioned asymmetry
between LR and LL in L3 by the existential restriction constructor.

8.5.1.3. A-priori Considerations

For the purpose of this analysis, we had to alter the analysis environment (cf. Sec-
tion 8.2 on page 196) slightly. Firstly, we did not consider Racer, since Racer does
not support the equality of individuals. Secondly, we generated static XSB pro-
grams since the analysis of dynamic XSB programs generally led to a time out on
all tests. The reader may note that the necessity of this change suggests that XSB
can no longer be used to solve the class subsumption problem for Li≥1 knowledge
bases, since the simulation would then require to generate and analyse the logic
program for every subsumption test. However, since the previous analysis sug-
gests to use DL reasoners for subsumption testing, we decided to generate static
XSB programs to obtain at least some results.

The fact that KAON was able to answer (some) instance retrieval queries in time
suggests that the binding passing strategy of Magic Sets is particularly important
for equality. This can be accounted to the fact that, due to the axiom of reflexivity,
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Figure 8.5.: KB structure

every element of the Herbrand universe occurs in at least one implicit equality
assertion. Magic Sets allow to choose the subset of equality assertions which are
relevant for the query.

We can also conjecture that a pure top-down evaluation such as the plain SLDNF-
resolution which is applied in many Prolog systems will not be successful for the
analysis of languages containing equality, since the axioms of symmetry and tran-
sitivity will lead to infinite recursion. Tabling strategies such as applied in XSB
generally make sense as well, since they avoid unnecessary re-derivations.

8.5.2. Knowledge Bases with Equality

We analyze the performance of L1 knowledge bases by extending the P0 TBox vari-
ant of the symmetric class tree used in the previous analysis. The extension simu-
lates the median observation in the ontology library and introduces two restrictions
for every non-leaf, non-root and named class of the symmetric class tree. We intro-
duce one restriction for the root class of the tree and for every named leaf class.
Thereby 4/3 object property restrictions are created per class19, which is half of the
average number of restrictions per class observed in the analysis of the DAML.ORG
ontologies (cf. the second last row of Table 8.3 on page 202). We use half of the aver-
age, since it is closer to the median observation and the average of the DAML.ORG
ontologies also contained datatype property restrictions.
19This is the limes for arbitrary depths of the symmetric class tree. For depth 3 we only have 1,3

object property restrictions per class.

215



8. Performance Analysis

8.5.2.1. Knowledge Bases

Figure 8.5 depicts the extended TBox structure. The first restriction introduced on
named classes is a value restriction, which restricts the value of a property to the
first direct subclass. The other restriction is a number restriction. We generate the
two kinds of number restrictions that can be represented in LR

1 , i.e. ≥ 0P 20 and
≤ 1P . ≤ 1P is a superclass of the first and third subclass of a class, while ≥ 0P is a
superclass of the second subclass of a class. We voluntarily and explicitly set a focus
on the≤ 1P restriction, which appears twice as many times as all other restrictions,
since it is the restriction that allows us to deduce the equality of individuals. The
size of the TBox depends on the depth of the symmetric class tree d ≥ 1. The TBox
contains the following number of class descriptions:

Constructor Number
A

∑d
i=0 3i

∀P.C
∑(d−1)

i=0 3i

≤ 1P
∑d

i=1
2∗3i

3 = 2 ∗
∑(d−1)

i=0 3i

≥ 0P
∑d

i=1
3i

3 =
∑(d−1)

i=0 3i

We considered three variants of TBox sizes (TS,TM,TL) introduced in the previous
analysis. The resulting TBox size and the number of contained descriptions is sum-
marized in Table 8.9.

Named Absolute Number Relative to Named
Depth Classes ∀P.C ≤ 1P ≥ 0P ∀P.C ≤ 1P ≥ 0P Sum

TS 40 13 13 26 0,33 0,65 0,33 92
TM 364 121 121 242 0,33 0,66 0,33 848
TL 3280 1093 1093 2186 0,33 0,67 0,33 7652

Table 8.9.: Size and Content of Equality TBox

We did not vary the strategy for ABox generation, i.e. the three variants of ABox
sizes (IS,IM,IL) introduce individuals for every named class. In particular, we did
not explicitly assert individual equality. Our approach is rather to entail the equal-
ity of individuals. This is achieved by the presence of more than one property filler
on properties which are mentioned in ≤ 1P descriptions and the algebraic axioms
of equality.

20The reader may recall that ≥ 0 P ≡ >.
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Figure 8.6.: Response Time of KAON with Equality

8.5.2.2. Results

The results of our analysis are discouraging. The introduction of equality severely
deteriorates the performance of both logic databases. Figure 8.6 and Table 8.10
show that the introduction of equality slows down KAON on the order of two
magnitudes on small TBoxes and three magnitudes on medium TBoxes, when
compared to the performance of KAON on corresponding L0 knowledge bases21.
In particular, KAON did not respond within the given 30 minute time frame on
knowledge bases that were larger than the (TM-IM) variant.

KB L0 (ms) L1 (ms) L3 (ms) Indiv.
TS IS 10 1051,6 1155,6 117
TS IM 10 1974,2 1930,8 351
TS IL 10 3442,6 2704 585
TM IS 50 48483,8 45946 3267
TM IM 58 554425,4 542764,4 5445

Table 8.10.: Response time of KAON with Equality

As mentioned before, XSB could not handle any dynamic programs resulting from
the translation of any KB that contains equality. After switching to static programs,
we could also observe the exponential blow-up of response time with XSB. How-
ever, with XSB the blow-up was even bigger than observed with KAON. Therefore,
21The corresponding L0 KB is an instantiation of the P0 TBox variant.
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XSB could only provide timely answers for the (TS IS) and (TS IM) knowledge
bases. The number of individuals severely affected the performance of XSB, as can
be shown from the following table. In practise, the use of static programs instead
of dynamic programs therefore only helps for the smallest knowledge base.

Absolute (ms) Rel to KAON.
KB L1 L3 L1 L3

TS IS 1045,6 1007,4 0,99 0,87
TS IM 203148,2 202633,2 102,9 104,95

8.5.3. Knowledge Bases with Skolem Functions

Figure 8.6 and Table 8.10 dispatch the good news that the introduction of exis-
tentials does not deteriorate performance further. We actually observe a slight
improvement of performance, which can be attributed to the smaller number of
≤ 1P descriptions. For completeness, we will describe the structure of the syn-
thetic acyclic TBoxes used in the analysis.

The synthetic TBox for analyzing the performance of L3 KBs varied and extended
the TBox for testing equality. We now make use of three forms of number restric-
tions, namely ≥ 0P , ≥ 1P 22 and ≤ 1P . We could not observe any usage of ≤ 0P
in the DAML.ORG ontology library and therefore omitted this class constructor,
which could nevertheless be expressed in L3. The analysis of the DAML.ORG on-
tology additionally suggests that ∃P.C constitutes only 2 % of the class descrip-
tions. We therefore instantiate the constructor on every 40th class23. The resulting
TBox size and the number of contained descriptions is summarized in Table 8.11.
The generated TBox must be acyclic such that the analysis of skolemized logic

Named Absolute Number
Depth Classes ∀P.C ∃P.C ≥ 0P ≥ 1P ≤ 1P Sum

TS 40 13 1 13 13 13 93
TM 364 121 9 121 121 121 857
TL 3280 1093 82 1093 1093 1093 7734

Table 8.11.: Size and Content of TBox with Existential Restrictions

program terminates. As a result of this restriction, both constructors introducing
skolem functions are instantiated on properties and classes that are not used in any
other class descriptions.
22The reader may recall that ≥ 1 P ≡ ∃P.>.
23This of course leads to an average of 2,5 %, but guarantees the presence of one existential restriction

in the TS knowledge base variant.

218



8.6. Incremental Maintenance Analysis

8.5.4. Discussion

The presence of equality as found in Web ontologies introduces a new research
problem for logic databases, which traditionally deal with equality by providing
custom-tailored machinery outside of the logic program. In this "traditional" situa-
tion, which is also applied in automated theorem provers, the axiomatic system of
equality is fixed and typically achieved by a dedicated, extra-logical and procedu-
ral implementation.

With Web ontologies, the axiomatic system is not fixed since new rules for deducing
equality are defined by each inclusion axiom that makes use of ≤ 1P on the right-
hand side of the axiom. A sound and complete optimization is yet to be found and
is outside of the scope of this thesis. Our intuition is, that an optimization will be
able to exploit the fact that the new equality axioms follow the strict pattern of the
φLP translation of ≤ 1P .

An alternative to regaining acceptable performance on knowledge bases containing
equality is to depart from the official semantics of number restrictions and to un-
derstand number restrictions as integrity constraints such as done in (Motik et al.,
2002b). The translation of ≤ 1P would then yield the rule:

:- R(X,Y ), R(X,Z), (Y 6= Z).

The rule prevents that multiple property fillers can be assigned for R. It is impor-
tant to note that this translation is sound but incomplete, i.e. we do not deduce
wrong information but cannot deduce all information. In consequence, any knowl-
edge base handled by the logic database can be understood in exactly the same way
by other systems that implement the official OWL semantics, but not the other way
round.

A further alternative solution is presented through materialization, which allows
to precompute expensive inferences such as introduced by equality. The costs of
maintaining such a materialization will be analyzed in the next section.

8.6. Incremental Maintenance Analysis

This section presents our analysis of the effect of materializing knowledge bases
on the performance of solving instance retrieval problems. To this extent, we mea-
sure the time needed to setup a materialization and the time needed to carry out
incremental maintenance in case of changes to facts.

219



8. Performance Analysis

8.6.1. Goals and Assumptions

Our analysis particularly addresses the issue that the maintenance program con-
tains n times24 as many rules as the original program. Since a prototypical imple-
mentation of maintenance is only provided within KAON, we cannot evaluate XSB
and Racer.

Assumptions The reader may note that the measured time is the time needed
to complete each maintenance step. The maintenance typically involves two QLP
queries for the extension of P+ and P− for every materialized predicate P . We
assume that all predicates are materialized.

We obtain seven measures: (a) the time of query processing without materializa-
tion, (b) the time required to set up the materialization and the maintenance pro-
gram, (c) the time required to perform maintenance when rules are added, (d) rules
are removed, (e) facts are added, and (f) facts are removed. Finally, (g) assesses the
time of accessing the materialized predicate.

We carried out each test using varying Change ratios of 10% and 15% of the facts.
Facts to be removed are randomly chosen. We could only change single rules, due
to limitations of the KAON Datalog engine. We give up our focus to build a knowl-
edge base that is representative, since we have new observation targets, i.e. the
above mentioned costs, for this analysis. The actual analysis was carried out in the
context of (Volz et al., 2003g), which presents evaluation results on several knowl-
edge bases.

8.6.2. Knowledge Bases

For the purpose of this chapter, we present one of the knowledge bases studied
in (Volz et al., 2003g), which is very close to the P0 variant of the knowledge bases
used before. However, we used 5 subclasses per class instead of 3, such that a larger
number of rules was generated. Hence, every non-leaf class now has 5 subclasses.
Due to the structure of the maintenance rewriting (cf. Chapter 6 on page 145), the
maintenance program contains the following number of rules:

3 ∗ I + 2 ∗ E + 3 ∗A+ 3 ∗ L = 11 ∗ C − 3 = 11 ∗
d∑

i=0

5i − 3

where C,E, I, L and A are defined as in Table 8.12.

24n depends on the actual structure of the rules, but is a linear factor.
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C No. of classes
∑d

i=0 5i

A No. of C v D axioms C - 1
E No. of edb predicates C
I No. of idb predicates C
L Links between Pidb and Pedb C

Table 8.12.: Size of Maintenance

Since we were primarily interested in the observation of the costs associated with
each maintenance step, we only varied the depth d of the taxonomy between the
values 3,4 and 5. We did not alter the number of individuals, which was fixed to 5
as well, hence we have 5 ∗

∑d
i=0 5i individuals in the knowledge base.

Test Orig. Rule Facts Query
Depth Change Query Setup Remove Add Remove Add on Mat.

3 10 197 305 1386 1317 1302 1284 0
4 10 373 1347 7581 7265 7328 7310 0
5 10 1767 18391 494726 559407 631956 649123 1331
3 15 147 245 1452 1286 1301 1367 0
4 15 378 1382 7615 7308 7350 7310 0
5 15 1765 18293 273874 464588 542294 648495 1252

Table 8.13.: Costs of Materialization Procedures (in ms)

8.6.3. Results

Table 8.13 and Figure 8.7 present the average time25 needed to solve the instance
retrieval problem with and without using materialization. Additionally it shows
the costs of maintenance for different types of changes (adding and removing rules
and facts) and the associated cost of setting up the materialization. As we can see
from the table and the figure, maintenance costs do not vary significantly with the
quantity of updates, but are directly related to the size of the knowledge base.

8.6.4. Discussion

The different costs of each step in the maintenance procedure are all higher than
the costs of evaluating a single query. The question whether or not to materialize
is therefore determined by the application and the issue whether the system can

25In milliseconds on a logarithmic scale.
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handle its typical workload, e.g. can it handle the intended number of users if
answering a single query takes several minutes (such as in the knowledge bases
which make use of equality)?

With materialization, the cost of accessing the materialized predicates can be ne-
glected. However, the time for the analysis of the maintenance rules can be a sig-
nificant bottleneck for a system, especially for large knowledge bases. For example,
in one of our test runs it took almost 11 minutes to recompute the materialization
after fact changes for the test with taxonomic depth 5 and 15% change of facts. For-
tunately, materialization can be carried out in parallel to answering queries on top
of the existing materialization. In consequence, users will have to operate on stale
copies of data. Staleness of data cannot be avoided in distributed scenarios like the
Web in the first place. Existing experiences, e.g. with outdated page ranks of web
pages in Google, show that the quality of query answering is still good enough, if
data is updated occasionally.

Figure 8.7.: Cost of Maintenance Procedures for 10% Change in Facts

8.7. Conclusion

Since there have been very few previous analyses of reasoning performance in total,
our analysis methodology and the results of the analyses itself can be understood
as a contribution. The statistical analysis of the DAML.ORG ontology library can
be understood as a historic documentation of the present stage of Web ontologies.

Future analyses of Web ontology collections will almost definitely produce differ-
ent average characterizations, since individual Web ontologies vary tremendously
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both in size and usage of constructors. The novel insight produced by our analy-
sis is that both the distributions of super-classes and restrictions per class follow
Power Law distributions and therefore follow the Pareto law that can be observed
in many other human-influenced settings as well.

While the averages calculated here might present temporary results, we neverthe-
less believe that our approach to derive the synthesis from average numbers is
correct. For example, one can instantiate our methodology to substantiate buying
decisions in an enterprise, i.e. derive averages from the collection of ontologies
used in an enterprise and then follow our methodology to evaluate a particular
reasoner.

The comparative performance analysis shows how drastic the improvement on
ABox reasoning performance using logic databases is. We can safely say that logic
databases are the only practical and scalable solution for ABox reasoning available
today. The usability of such logic databases for producing correct reasoning re-
sults for the new standard Web ontology language (OWL) is the direct result of our
work, which provides the necessary translations and transformations.

We can also see from the results that the current strategy of ABox reasoning applied
in DL reasoners, i.e. to simulate retrieval problems by translation into satisfiabil-
ity problems, does not work in practise. We conjecture that a practical solution is
only possible if individuals are processed in sets, such as done in logic databases.
Furthermore, first experiences with an extension (Motik et al., 2003) of our work to
provide complete support for all OWL constructors appears to show that it is feasi-
ble to handle all OWL constructors using disjunctive deductive databases such as
DLV (Leone et al., 2002).

The results of the expressivity analysis, however, shows that future work is nec-
essary to provide scalable support for the more expressive variants of DLP. These
optimizations will have to provide a different treatment of equality, which most
likely must be handled outside of the logic program itself.

An alternative to regain scalability of query answering has been presented in our
work through materialization. Finally, we were able to show through our last anal-
ysis, that it is feasible to incrementally maintaining such materializations, since the
associated costs in computing time are tolerable.

Our results do not say that DL reasoners are not useful. Many applications, for ex-
ample large-scale ontology engineering (Rector et al., 1999), indeed require efficient
support for taxonomic reasoning. Therefore, we conjecture that a dual reasoning
strategy employing logic databases and DL classifiers in parallel is needed to fully
cover all aspects of Web ontology reasoning.
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Treues Echo dieser Orten,
Sollt ich bei den Schmeichelworten

Süsser Leitung irrig sein?
Gib mir deine Antwort: Nein!

(Echo) Nein!
Oder sollte das Ermahnen,

Das so mancher Arbeit nah,
Mir die Wege besser bahnen?

Ach! so sage lieber: Ja!
(Echo) Ja!

5th Aria (Alto) of Cantata
"Lasst uns sorgen, lasst uns wachen"
Johann-Sebastian Bach (BWV 213)

http://www.cs.ualberta.ca/~wfb/cantatas/213.html

In this thesis we gave convincing arguments that the usage of Web ontology reason-
ing with logic databases is both useful and feasible. After a summary of the main
contributions of this work, we suggest further applications for logic databases in
Semantic Web applications, and conclude with an appeal for the pervasion of logic
databases in modern Semantic Web applications.

9.1. Summary

The main contribution of this thesis is the enabling of Web ontology reasoning with
logic databases for the new standard Web ontology language (OWL). On the theo-
retical side, we have shown which subset of the new standard Web ontology lan-
guage can be completely supported in a correct manner. On the practical side, we
have shown that logic databases allow to overcome the predominant limitation of
current approaches to ABox reasoning with Description Logics such as OWL.

We take up on the subproblems formulated in the introduction and review their
solutions as they were presented in this work:
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• Which fragment of OWL can be implemented in logic databases ? We outlined
a strategy to identify the fragment in Chapter 4. The strategy is based on
the translation of DL axioms into first-order logic, followed by a transforma-
tion into a conjunction of Horn formulae. These formulae can be translated
into the different Logic Programming languages which are supported by logic
databases. While our strategy defines a general pattern that can be instanti-
ated on arbitrary Description Logics, we instantiated the strategy on OWL
to identify the fragment of OWL that can be supported. We discovered that
logic databases can express almost all OWL constructors for partial class def-
initions. However, the constructors available for building the left-hand side
of inclusions, which expresses sufficient conditions for class membership, is
more restricted. Therefore the core language which can be used in class equiv-
alence axioms is much less expressive than OWL (but more expressive than
RDFS). Furthermore, we can support all OWL constructors for the definition
of property characteristics.

• What are the theoretical properties of the fragment ? We defined Description Logic
Programs (DLP) in Chapter 5 as a family of new ontology languages, which
precisely contain the fragment, viz. those Description Logic constructors that
can be supported by logic databases. We utilized these languages to study
the theoretical properties of the fragment. In particular, we were able to show
that we can solve ABox related reasoning problems, independent of the TBox,
with a low polynomial complexity O(|ADLP

i≤2 |)4 in the size of the DLP ABox
ADLP .

• How can DL reasoning be reduced to queries on logic databases ? We showed in
Section 5.4 which DL reasoning problems can be reduced to queries on logic
databases. Unfortunately, certain limitations have arisen from the fact that
we can only retrieve individuals from LL

i class descriptions. Similarly, we can
only check the subsumption between LL

i and LR
i class descriptions. Never-

theless, we could capture an important fragment of DL queries and showed
the procedure for translating DL reasoning problems into queries on logic
databases. For this purpose we were able to utilize the φLP function, which
is used to translate DL knowledge bases into logic programs, which can be
executed by logic databases.

• How useful is the related fragment as a practical Web ontology language ? We an-
swered this question by showing two separate hypotheses.

Hypothesis 1: The fragment is sufficient to express most available Web ontologies.
Section 5.3 analyzed the largest currently available collection of Web ontolo-
gies and checks which fragment of those ontologies can be expressed in the
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DLP languages. We were able to quantify most in several respects. Firstly,
we showed that even the least-expressive DLP language L0 completely suf-
fices to express 77% of all Web ontologies in the library. The most-expressive
DLP language L3 could completely express 87% of all Web ontologies in the
library. Secondly, we could express an average of 93% of all axioms in those
ontologies in L0. Similarly, 99% of all axioms in the ontologies could be ex-
pressed in L3.

Hypothesis 2: We can efficiently and scalably reason with DLP. Our analyses in
Chapter 8 showed that logic databases exhibit satisfactory performance for
ABox-related reasoning problems in DLP knowledge bases that do not make
use of equality reasoning. Our comparative analysis additionally showed that
logic databases compare favorably with the only Description Logic reasoner,
which supports ABox-reasoning today. We empirically showed, that the cur-
rent approach of solving any ABox-related reasoning problem in DL reason-
ers, which is essentially based on simulating the retrieval problem through
satisfiability checking, is impractical. DL reasoners, however, outperform
logic databases in with respect to class subsumption problems. As a side-
product of our performance analysis, we introduced a sophisticated method-
ology to obtain representative performance measures from arbitrary reason-
ers.

• How can we improve the performance of ABox-related reasoning problems ? As we
could see in the expressivity performance analysis presented in Section 8.5,
the introduction of equality deteriorates the performance of logic databases
severely. We therefore introduced materialization as a technique to store com-
puted entailments, such as derived through an equality theory. We showed
in Chapter 6 how we can maintain such a materialization incrementally in
the case of changes to the TBox and ABox. The performance analysis of our
technique provided in Section 8.6 illustrated that the associated costs of incre-
mental maintenance are tolerable, viz. that our solution is practically feasible.
As a side effect, our maintenance technique, which extends previous work
in the logic database context, showed how synergies between the two fields
of knowledge representation - Logic Programming and Description Logics -
can be established through applying techniques developed in either field for
problem settings of the other.

Put together, the solutions to these problems allow scalable and practical solu-
tions to ABox-related reasoning problems for Semantic Web applications which are
based on OWL. These solutions are based on delegating those reasoning problems
to logic databases. The thesis covers all necessary stages to obtain this delegation,
starting from the identification of the (sub)languages for which this delegation can
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be achieved, via the theoretical analysis of the properties of these languages, to
the assessment of the performance obtained by the delegation. Even though logic
databases have been used for Semantic Web related applications from the early
phases of the Semantic Web on, no comprehensive solution, which guarantees the
correctness of the obtained answers, has been presented before for OWL or its pre-
decessors.

9.2. Further Applications

Apart from the ABox-reasoning scenario, which was the basis of this thesis, Web
ontology reasoning in logic databases is helpful for further Semantic Web purposes
that were identified in the introduction:

Rule Language The φLP translation of DLP ontologies immediately allows users
to use the target rule language of the logic database to extend the ontology with
further rules. A mapping from a rule language for the Semantic Web is then as
simple as a syntactic transformation into the language of the host. DLP reduces the
expressiveness of the ontology language. Hence, such a rule language operating
on the DLP ontology is still efficient in practise, if the rule language itself does
not contain intractable language features. The reader may note that any direct and
naïve rule language extension of OWL would immediately yield an undecidable
language (Levy & Rousset, 1996; Schmidt-Schauß, 1989).

Query Language Similarly, logic databases typically offer more rich (but often
proprietary) querying facilities and will be an interesting implementation environ-
ment for a standardized Semantic Web query language. Available research results
of deductive databases present a rich source of readily available research results
and can help to avoid making wrong decisions for a standard query language, such
as the DL research contributions were helpful for the selection of OWL language
features and could be utilized to proof the decidability of OWL DL.

Bootstrapping the Semantic Web As Section 5.3.1 shows, the convenience
primitives defined for L0 map nicely to the core language aspects provided by
object-oriented models (Cattell et al., 2000; Object Management Group, 2003), this
relation can be used to bootstrap (Stojanovic et al., 2002) the Semantic Web by
reusing available information models.
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Legacy data integration Today, the majority of data on the Web is no longer
static but resides in databases, e.g. to dynamically generate web pages. Exposing
this data to the Semantic Web will require the access to the content of underlying
databases (Volz et al., 2004). Description Logic reasoners such as FaCT (Horrocks
et al., 1999) or Racer (Haarslev & Moller, 2001) currently require the replication of
that data to enable ontology-based processing. Logic databases such as XSB (Sago-
nas et al., 1994), Ontobroker (Decker et al., 1999) or CORAL (Ramakrishnan et al.,
1994), however, can access relational databases directly through built-in predicates.
Hence, Logic Programming allows closer interaction with live data and data can
remain where it can be handled most efficiently - in relational databases. Fur-
thermore, more restricted variants of logic database languages can be directly im-
plemented on top of SQL99-compliant relational databases (Ullman, 1988), which
would increase the possible system basis further.

9.3. An Appeal

The main focus of many Semantic Web applications such as TAP1 and AKTive
Space2 lies in ABox-related problems. Our analysis has made it clear that poor per-
formance for ABox-related tasks in native Description Logic reasoners is a pressing
problem on all levels of these applications. If the Semantic Web increases in size
and more and more publicly available data will become available from more and
more autonomous sources, the problem will increase in the future. To make full use
of the opportunity to reason with those large amounts of data from various sources,
logic databases must be applied.

Our results suggest that logic databases are currently the best solution for ABox-
related OWL reasoning problems. While logic databases can only support a re-
stricted fragment of the OWL language, we have seen that the large majority of
currently available ontologies can be expressed in this fragment. These results can
be understood as a critical assessment how a practical sub-language of OWL such
as OWL Lite should practically look like.

For those ontologies that are not completely expressible, we only lose a small per-
centage of the encoded information. We can conjecture that this incompleteness is
tolerable in applications, since no practical and scalable alternative exists today.

Since we were able to characterize the incompleteness of logic databases precisely,
first extensions of our work (Motik et al., 2003) could directly tackle the charac-
terized limitations and already show that we can overcome the incompleteness by

1http://tap.semanticweb.org/ .
2http://www.aktors.org/ .
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usage of disjunctive database techniques.

Our conjecture for the future of Web ontology reasoning is therefore that dual rea-
soning strategies will evolve, which employ logic database / resolution-based tech-
niques for ABox and DL reasoner / tableau-based techniques for TBox reasoning
tasks. This dual reasoning strategy will eventually allow us to practically and scal-
ably cover all aspects of Web ontology reasoning.
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A. BNF Grammar for DLP

The following grammar allows a textual specification of DLP L3 ontologies and
has been derived from the concrete abstract syntax grammar of OWL (Bechhofer
et al., 2003a). It is compatible with the (Bechhofer et al., 2003a) grammar except for
the convenience primitives introduced for specifying local domains and ranges of
object properties.

ontology ::= namespace* ’Ontology(’ ontologyID? directive* ’)’

directive ::= ’Annotation(’
( ontologyPropertyID ontologyID

| annotationPropertyID URIreference
| annotationPropertyID dataLiteral
| annotationPropertyID individual )

’)’
| fact
| axiom

fact ::= individual
| ’SameIndividual(’ individualID individualID+ ’)’
| ’DifferentIndividuals(’ individualID individualID+ ’)’

individual ::= ’Individual(’ individualID? annotation*
(’type(’ descriptionRight ’)’)* value* ’)’

value ::= ’value(’
( individualvaluedPropertyID individualID

| individualvaluedPropertyID individual
| datavaluedPropertyID dataLiteral )

’)’

type ::= description

axiom ::= ’Class(’ classID ’Deprecated’?
’partial’ annotation* descriptionRight*
(’localdomain(’ individualvaluedPropertyID descriptionRight ’)’)*
(’localrange(’ individualValuedPropertyID descriptionRight ’)’ )* )’

| ’Class(’ classID ’Deprecated’? ’complete’ annotation* description* ’)’
| ’EnumeratedClass(’ classID ’Deprecated’? annotation* individualID ’)’
| ’DisjointClasses(’ descriptionLeft descriptionRight+ ’)’
| ’EquivalentClasses(’ description description* ’)’
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| ’SubClassOf(’ descriptionLeft descriptionRight ’)’
| ’Datatype(’ datatypeID ’Deprecated’? annotation* )’
| ’DatatypeProperty(’ datavaluedPropertyID ’Deprecated’? annotation*

(’super(’ datavaluedPropertyID ’)’ )* ’Functional’?
(’domain(’ descriptionRight ’)’)* (’range(’ dataRange ’)’)* ’)’

| ’ObjectProperty(’ individualvaluedPropertyID ’Deprecated’? annotation*
( ’super(’ individualvaluedPropertyID ’)’)*
( ’inverseOf(’ individualvaluedPropertyID ’)’ )? ’Symmetric’?
( ’Functional’ | ’InverseFunctional’ | ’Transitive’ )?
( ’domain(’ descriptionRight ’)’ )*
( ’range(’ descriptionRight ’)’ )*

’)’
| ’AnnotationProperty(’ annotationPropertyID annotation* ’)’
| ’OntologyProperty(’ ontologyPropertyID annotation* ’)’
| ’EquivalentProperties(’ datavaluedPropertyID datavaluedPropertyID

datavaluedPropertyID* ’)’
| ’EquivalentProperties(’ individualvaluedPropertyID

individualvaluedPropertyID
individualvaluedPropertyID* ’)’

| ’SubPropertyOf(’ datavaluedPropertyID datavaluedPropertyID ’)’
| ’SubPropertyOf(’ individualvaluedPropertyID

individualvaluedPropertyID ’)’

annotation ::= ’annotation(’
( annotationPropertyID URIreference

| annotationPropertyID dataLiteral
| annotationPropertyID individual )

’)’

description ::= classID
| ’intersectionOf(’ description* ’)’
| ’oneOf(’ individualID ’)’

descriptionLeft ::= description
| ’intersectionOf(’ descriptionLeft* ’)’
| someRestriction
| ’unionOf(’ descriptionLeft* ’)’
| ’oneOf(’ individualID* ’)’

descriptionRight ::= description
| ’intersectionOf(’ descriptionRight* ’)’
| ’complementOf(’ descriptionRight ’)’
| allRestriction

someRestriction ::= ’restriction(’
( datavaluedPropertyID

dataSomeRestrictionComponent
dataSomeRestrictionComponent*
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| individualvaluedPropertyID
individualSomeRestrictionComponent
individualSomeRestrictionComponent*

)
’)’

allRestriction ::= ’restriction(’
( datavaluedPropertyID

dataAllRestrictionComponent
dataAllRestrictionComponent*
| individualvaluedPropertyID
individualAllRestrictionComponent
individualAllRestrictionComponent*

)
’)’

dataSomeRestrictionComponent ::= ’someValuesFrom(’ dataRange ’)’
| ’value(’ dataLiteral ’)’
| mincardinality

individualSomeRestrictionComponent ::= ’someValuesFrom(’ descriptionLeft ’)’
| ’value(’ individualID ’)’
| mincardinality

dataAllRestrictionComponent ::= ’allValuesFrom(’ dataRange ’)’
| ’value(’ dataLiteral ’)’
| maxcardinality
| cardinality

individualAllRestrictionComponent ::= ’allValuesFrom(’ descriptionRight ’)’
| ’value(’ individualID ’)’
| maxcardinality
| cardinality

mincardinality ::= ’minCardinality(’ cardNr ’)’
maxcardinality ::= ’maxCardinality(’ cardNr ’)’
cardinality ::= ’cardinality(’ cardNr ’)’
cardNr ::= ’0’ | ’1’

dataRange ::= datatypeID
| ’rdfs:Literal’
| ’oneOf(’ dataLiteral* ’)’

datatypeID ::= URIreference
classID ::= URIreference
individualID ::= URIreference
ontologyID ::= URIreference
datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference
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annotationPropertyID ::= URIreference
ontologyPropertyID ::= URIreference

/****************************************************************
* The following rules are extensions to the original grammar
* provided in the
* OWL S&AS (http://www.w3.org/TR/owl-semantics/) document.
*
* They extend the grammar with a Namespace declaration and give
* a specification for URIreferences and dataLiterals.
****************************************************************/

namespace ::= ’Namespace(’ prefix ’=’ ’<’ absoluteURI ’>’ ’)’

URIreference ::= ’<’ absoluteURI ’>’ | qname
qname ::= prefix ’:’ localname
prefix ::= letter+
localname ::= letter (letter | number | ’_’)*
letter ::= Any Unicode Letter
number ::= Any Unicode Number

dataLiteral ::= langString | datatypeString
langString ::= ’"’ string ’"’ ( ’@’ language )?
datatypeString ::= ’"’ string ’"’ ’^^’ URIreference
language ::= [a-z]+ (’-’ [a-z0-9]+ )* encoding a language tag.

string ::= character* /* with escapes as defined below */
absoluteURI ::= character+ /* being a valid URI Reference */

/* Comments follow standard Java/C conventions, and can appear anywhere */

comment ::= ’/*’ character* ’*/’ |
’//’ (character-’\n’)*

character ::= Any Unicode character

/* string escapes:
#x0022 ’"’ represented as \"
#x005C ’\’ represented as \\

*/
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B.1. Comparative Performance Results

B.1.1. Instance Retrieval

KB Test P0 Variant PF Variant P1 Variant
Variant Nr. KAON Racer XSB KAON Racer XSB KAON Racer XSB

TS IL 1 10 80 20 10 641 310 10 110 421
TS IL 2 10 60 10 10 481 301 10 90 801
TS IL 3 20 60 10 10 480 10 10 90 210
TS IL 4 10 50 30 10 390 801 10 80 210
TS IL 5 10 60 10 0 411 400 10 90 801
TS IS 1 10 10 201 10 70 201 10 280 180
TS IS 2 10 20 0 0 50 200 10 10 0
TS IS 3 20 10 0 10 30 200 0 10 0
TS IS 4 10 20 0 10 40 0 20 20 0
TS IS 5 10 10 0 10 30 200 10 11 0
TS IM 1 10 90 10 10 260 10 10 230 10
TS IM 2 10 50 10 10 170 10 10 80 10
TS IM 3 20 40 10 10 151 400 10 60 10
TS IM 4 10 30 10 20 240 300 20 100 10
TS IM 5 11 30 10 0 151 10 0 30 10
TM IL 1 100 3806 241 90 1594323 230 90 8623 441
TM IL 2 80 3155 140 50 76791 151 70 7421 1312
TM IL 3 60 2684 140 30 70772 1102 30 7511 140
TM IL 4 50 2994 130 70 76110 541 40 5798 1021
TM IL 5 40 2454 130 30 74447 761 41 5678 531
TM IS 1 101 250 30 90 6370 131 100 2323 151
TM IS 2 60 331 1121 40 6630 30 50 431 30
TM IS 3 40 240 711 30 1672 220 30 430 30
TM IS 4 40 311 811 40 1422 441 40 451 30
TM IS 5 30 331 220 30 3134 1002 30 430 30
TM IM 1 90 1141 90 90 156876 1352 100 2453 90
TM IM 2 60 1162 80 50 24726 90 80 2373 80
TM IM 3 40 1052 80 30 23053 90 40 2373 80
TM IM 4 90 1092 110 30 434484 160 40 2303 80
TM IM 5 30 1082 81 40 23524 100 30 2424 81
TL IL 1 691 186758 1832 601 - 1472 1062 - 2263
TL IL 2 471 186668 2203 371 - 3014 411 - 3425
TL IL 3 491 190464 1863 370 - 2794 721 - 3696
TL IL 4 490 462836 2313 361 - 2593 791 - 4506
TL IL 5 591 462395 2213 360 - 2764 420 - 2844
TL IS 1 641 13249 270 601 - 470 631 19598 1001
TL IS 2 330 8942 270 311 - 1162 370 18317 291
TL IS 3 301 8753 281 291 - 1302 491 17706 290
TL IS 4 301 9083 280 291 - 350 431 18626 291
TL IS 5 310 8602 270 301 - 1472 461 18266 280
TL IM 1 601 60297 861 621 - 1152 881 209512 881
TL IM 2 360 58014 902 381 - 961 310 167621 1432
TL IM 3 360 58074 881 381 - 1542 351 159499 2173
TL IM 4 361 68508 841 370 - 2033 801 495272 871
TL IM 5 360 140352 851 370 - 1562 671 266994 971
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B.1.2. Property Filler Retrieval

KB Test PF Variant P1 Variant
Variant Nr. KAON Racer XSB KAON Racer XSB

TS IL 1 10 999517 0 0 53717 100
TS IL 2 10 844825 0 10 68448 111
TS IL 3 10 1647720 100 0 53187 0
TS IL 4 0 1464766 0 20 46577 100
TS IL 5 0 1468061 100 0 50072 100
TS IS 1 10 1262 100 0 951 0
TS IS 2 0 1862 100 10 671 110
TS IS 3 10 1172 101 0 530 110
TS IS 4 10 1672 0 10 521 100
TS IS 5 10 1872 0 10 530 0
TS IM 1 11 32196 10 0 10886 0
TS IM 2 10 28081 0 10 10916 0
TS IM 3 10 42511 100 0 10686 0
TS IM 4 0 35891 100 10 10926 0
TS IM 5 0 40257 0 10 10586 0
TM IL 1 30 - 0 20 - 100
TM IL 2 0 - 200 0 - 100
TM IL 3 0 - 200 10 - 100
TM IL 4 0 - 201 0 - 100
TM IL 5 0 - 200 0 - 100
TM IS 1 20 999517 0 30 405413 0
TM IS 2 10 844825 0 0 419833 0
TM IS 3 0 1647720 100 0 396080 0
TM IS 4 10 1464766 100 10 386516 0
TM IS 5 0 1468061 0 10 419694 0
TM IM 1 60 - 0 20 - 0
TM IM 2 10 - 0 0 - 0
TM IM 3 0 - 0 0 - 0
TM IM 4 10 - 0 0 - 0
TM IM 5 0 - 0 0 - 0
TL IL 1 20 - 1112 30 - 0
TL IL 2 10 - 1302 20 - 100
TL IL 3 20 - 721 20 - 100
TL IL 4 20 - 221 30 - 100
TL IL 5 10 - 421 20 - 100
TL IS 1 20 - 400 30 - 0
TL IS 2 10 - 411 30 - 0
TL IS 3 10 - 401 30 - 0
TL IS 4 10 - 0 30 - 0
TL IS 5 10 - 401 30 - 0
TL IM 1 20 - 511 30 - 100
TL IM 2 20 - 1001 30 - 130
TL IM 3 20 - 130 31 - 310
TL IM 4 20 - 701 80 - 40
TL IM 5 10 - 1002 30 - 440
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B.1.3. Class Subsumption

KB Test P0 Variant PF Variant P1 Variant
Variant Nr. KAON Racer XSB KAON Racer XSB KAON Racer XSB

TS IS 1 20 0 0 30 80 100 50 0 300
TS IS 2 20 10 0 30 0 0 50 0 301
TS IS 3 20 0 0 31 0 0 30 0 300
TS IS 4 30 0 0 10 0 0 41 0 0
TS IS 5 20 0 0 10 0 210 20 0 0
TS IM 1 10 0 0 30 0 0 90 0 0
TS IM 2 20 0 0 30 0 0 50 0 200
TS IM 3 10 0 0 20 0 0 50 0 300
TS IM 4 20 10 0 10 0 0 30 0 301
TS IM 5 10 0 100 20 0 0 40 0 301
TS IL 1 20 0 0 30 10 300 90 0 0
TS IL 2 20 0 0 30 0 301 50 0 100
TS IL 3 10 0 0 20 0 0 40 0 300
TS IL 4 20 0 0 10 0 301 30 0 300
TS IL 5 20 0 0 20 0 301 40 0 300
TM IS 1 150 10 300 291 0 0 201 10 100
TM IS 2 90 0 301 110 10 0 110 0 100
TM IS 3 60 0 300 100 10 0 90 0 301
TM IS 4 100 10 300 120 0 0 91 0 0
TM IS 5 90 0 300 110 10 0 100 10 100
TM IM 1 150 10 0 210 0 0 181 0 300
TM IM 2 121 0 0 100 0 0 100 0 0
TM IM 3 60 0 0 100 0 0 80 0 0
TM IM 4 60 0 0 100 0 0 80 0 0
TM IM 5 60 0 0 100 0 0 110 0 0
TM IL 1 150 0 0 200 10 200 170 571 0
TM IL 2 70 0 0 160 10 0 80 0 301
TM IL 3 50 0 0 101 0 301 70 0 0
TM IL 4 50 10 0 101 0 301 60 0 400
TM IL 5 50 0 0 170 0 201 60 0 301
TL IS 1 701 0 0 2133 0 0 741 0 300
TL IS 2 1032 0 0 1372 0 0 711 20 301
TL IS 3 701 0 0 1252 0 0 741 0 301
TL IS 4 701 0 0 1322 0 0 731 0 300
TL IS 5 701 10 0 1252 0 0 721 10 201
TL IM 1 691 10 0 1412 0 371 721 31 301
TL IM 2 631 0 0 1563 0 421 681 0 300
TL IM 3 631 10 0 1692 30 381 681 0 301
TL IM 4 620 0 0 2413 371 120 701 0 301
TL IM 5 621 10 0 1442 30 20 671 0 300
TL IL 1 721 0 0 1592 20 301 611 0 300
TL IL 2 691 381 0 1021 1412 0 610 10 200
TL IL 3 711 371 120 1322 0 300 531 40 301
TL IL 4 711 360 0 1242 30 100 551 0 300
TL IL 5 701 370 0 1562 0 300 551 0 300
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B.2. Expressivity Performance Results

Knowledge KAON XSB
Knowledge Test Equal. Exist. Equal. Exist. Indiv.
TS IS 1 1362 1772 1031 961 117
TS IS 2 1062 1082 1122 971 117
TS IS 3 1041 962 1032 1001 117
TS IS 4 762 1011 1022 1052 117
TS IS 5 1031 951 1021 1052 117
TS IM 1 2243 2603 190964 187229 351
TS IM 2 1922 1712 181551 207428 351
TS IM 3 1852 1503 217683 219806 351
TS IM 4 1972 1893 211755 186168 351
TS IM 5 1882 1943 213788 212535 351
TS IL 1 4095 2874 - - 585
TS IL 2 3134 3014 - - 585
TS IL 3 2994 2664 - - 585
TS IL 4 3285 2073 - - 585
TS IL 5 3705 2895 - - 585
TM IS 1 47368 43122 - - 3267
TM IS 2 51815 40748 - - 3267
TM IS 3 47578 49602 - - 3267
TM IS 4 41169 47408 - - 3267
TM IS 5 54489 48850 - - 3267
TM IM 1 397732 333359 - - 5445
TM IM 2 618690 570220 - - 5445
TM IM 3 550261 593413 - - 5445
TM IM 4 792500 601265 - - 5445
TM IM 5 412944 615565 - - 5445
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B.3. Materialization
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C. DAML Ontology Library in DLP

C.1. Individual Evaluation Results

URI # Axioms (Absolute) # Axioms (Relative1)
L0 L1 L2 L3 OWL L0 L1 L2 L3

http://daml.umbc.edu/ontologies/cobra/0.3/agent 19 0 0 0 0 100% 0% 0% 0%
http://daml.umbc.edu/ontologies/ittalks/event 1 0 0 0 0 100% 0% 0% 0%
http://daml.umbc.edu/ontologies/ittalks/person 1 0 0 0 0 100% 0% 0% 0%
http://daml.umbc.edu/ontologies/ittalks/talk 2 0 0 0 0 100% 0% 0% 0%
http://daml.umbc.edu/ontologies/profile-ont 7 0 0 0 0 100% 0% 0% 0%
http://daml.umbc.edu/ontologies/talk-ont 4 0 0 0 0 100% 0% 0% 0%
http://derpi.tuwien.ac.at/ andrei/cerif-rdf-dc-mn.daml 230 0 10 121 1 63,54% 0% 2,76% 33,43%
http://edge.mcs.drexel.edu/MUG/2001/05/16/sbf.daml 266 0 0 0 0 100% 0% 0% 0%
http://jupiter.tezu.ernet.in/ontology/tumca.daml 15 0 1 0 1 88,24% 0% 5,88% 0%
http://ksl.stanford.edu/projects/DAML/chimaera-jtp-cardinality-test1.daml 13 1 0 0 1 86,67% 6,67% 0% 0%
http://loki.cae.drexel.edu/ how/HydrologicUnits/2003/09/hu# 4 0 0 0 0 100% 0% 0% 0%
http://mr.teknowledge.com/DAML/Imaging.daml 2 2 0 0 0 50% 50% 0% 0%
http://onto.cs.yale.edu:8080/ontologies/wsdl-ont.daml 2 0 0 2 0 50% 0% 0% 50%
http://onto.cs.yale.edu:8080/umls/UMLSinDAML/NET/SRSTR.daml 1450 0 0 0 0 100% 0% 0% 0%
http://ontolingua.stanford.edu/doc/chimaera/ontologies/wines.daml 873 36 39 41 49 84,1% 3,47% 3,76% 3,95%
http://opencyc.sourceforge.net/daml/cyc-transportation.daml 526 1 26 0 0 95,12% 0,18% 4,7% 0%
http://orlando.drc.com/daml/ontology/
.. Bibliographic/current/ 12 0 0 0 0 100% 0% 0% 0%
.. Condition/UJTL/v4.0/current/ 3 0 0 0 0 100% 0% 0% 0%
.. Locator/current/ 2 0 0 0 0 100% 0% 0% 0%
.. Organization/current/ 3 0 0 0 0 100% 0% 0% 0%
.. TaskList/current/ 3 0 0 0 0 100% 0% 0% 0%
.. TaskListUJTLScenario/current/ 4 0 12 0 0 25% 0% 75% 0%
.. Thesaurus/CALL/current/ 11 0 0 0 0 100% 0% 0% 0%
http://orlando.drc.com/SemanticWeb/DAML/Ontology/
.. Goal-Objective 2 0 0 0 0 100% 0% 0% 0%
.. NationalSecurity 5 0 0 0 0 100% 0% 0% 0%
http://orlando.drc.com/SemanticWeb/OWL/Ontology/
.. Contact/ver/1.0.0/Contact-ont.owl 29 12 0 0 0 70,73% 29,27% 0% 0%
.. Holiday/ver/1.0.0/Holiday-ont.owl 6 2 0 2 0 60% 20% 0% 20%
.. TimeZone/ver/1.0.0/TimeZone-ont.owl 5 5 0 0 0 50% 50% 0% 0%
http://purl.org/rss/1.0/ 4 0 0 0 0 100% 0% 0% 0%
http://reliant.teknowledge.com/DAML/
.. ATO98MessageSet_Ontology.owl 50 0 0 0 0 100% 0% 0% 0%
.. ATO_Mission_Models.owl 199 0 0 0 0 100% 0% 0% 0%
.. ATO_Ontology.owl 513 0 0 0 0 100% 0% 0% 0%
.. Communications.owl 193 0 0 0 0 100% 0% 0% 0%
.. Economy.owl 1050 0 0 0 0 100% 0% 0% 0%
.. Elements.owl 118 0 0 0 0 100% 0% 0% 0%
.. Government.owl 1574 0 0 0 0 100% 0% 0% 0%
.. Mid-level-ontology.owl 2004 0 0 0 0 100% 0% 0% 0%
.. Military.owl 62 0 0 0 0 100% 0% 0% 0%
.. SUMO.owl 1831 0 0 0 0 100% 0% 0% 0%
.. Terrorists.owl 177 0 0 0 0 100% 0% 0% 0%
.. WMD.owl 464 0 0 0 0 100% 0% 0% 0%
http://siul02.si.ehu.es/Aingeru/OperOnt.owl 165 6 24 24 2 74,66% 2,71% 10,86% 10,86%
http://taga.umbc.edu/ontologies/fipaowl 10 0 0 0 0 100% 0% 0% 0%
http://taga.umbc.edu/ontologies/fipaowl.owl 156 0 0 0 0 100% 0% 0% 0%
http://ubot.lockheedmartin.com/ubot/2001/08/
.. baby-shoe/shoeproj-ont.daml 4 0 0 0 0 100% 0% 0% 0%
.. extraction-ont.daml 6 0 0 0 0 100% 0% 0% 0%
.. ubot-ont.daml 66 0 0 0 0 100% 0% 0% 0%
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Time.daml 10 0 0 0 0 100% 0% 0% 0%
http://www.aktors.org/ontology/portal 166 0 0 0 0 100% 0% 0% 0%
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URI # Axioms (Absolute) # Axioms (Relative2)
L0 L1 L2 L3 SHINO L0 L1 L2 L3

http://www.cs.man.ac.uk/ horrocks/Ontologies/
..tambis.daml 370 0 0 0 0 100% 0% 0% 0%
http://www.cs.man.ac.uk/ horrocks/OWL/Ontologies/
.. galen.owl 3197 150 0 1895 0 60,99% 2,86% 0% 36,15%
.. ka.owl 216 0 0 0 0 100% 0% 0% 0%
.. mad_cows.owl 80 1 4 17 7 73,39% 0,92% 3,67% 15,6%
http://www.cs.man.ac.uk/ lopatena/cerif/cerif.daml 351 12 6 137 0 69,37% 2,37% 1,19% 27,08%
http://www.cs.umbc.edu/ yzou1/daml/acl.daml 5 1 0 0 1 71,43% 14,29% 0% 0%
http://www.cs.umbc.edu/ yzou1/daml/acldaml.daml 2 1 0 0 1 50% 25% 0% 0%
http://www.cs.umd.edu/ golbeck/daml/running.daml 1 0 0 0 0 100% 0% 0% 0%
http://www.cs.umd.edu/ golbeck/daml/vegetarian.daml 15 0 0 0 0 100% 0% 0% 0%
http://www.cs.yale.edu/ dvm/daml/drsonto.daml 60 0 0 0 1 98,36% 0% 0% 0%
http://www.cse.dmu.ac.uk/ monika/Pages/
.. Ontologies/CinemaAndMovies.daml 26 2 0 0 2 86,67% 6,67% 0% 0%
http://www.daml.org
../2001/01/gedcom/gedcom 6 0 0 0 0 100% 0% 0% 0%
../2001/02/geofile/geofile-ont 106 0 0 0 0 100% 0% 0% 0%
../2001/02/projectplan/projectplan 21 0 0 0 0 100% 0% 0% 0%
../2001/06/itinerary/itinerary-ont 4 0 0 0 0 100% 0% 0% 0%
../2001/06/map/map-ont 6 0 0 0 0 100% 0% 0% 0%
../2001/08/baseball/baseball-ont 100 0 0 0 0 100% 0% 0% 0%
../2001/10/agenda/agenda-ont 7 0 0 0 0 100% 0% 0% 0%
../2001/10/cvslog/cvslog-ont 2 0 0 0 0 100% 0% 0% 0%
../2001/10/office/office 4 0 0 0 0 100% 0% 0% 0%
../2002/02/chiefs/chiefs-ont 1 0 0 0 0 100% 0% 0% 0%
../2002/03/agents/agent-ont 16 0 0 0 0 100% 0% 0% 0%
../2002/03/agents/mcda 3 0 0 0 0 100% 0% 0% 0%
../2002/03/darpadir/darpadir-ont 2 0 0 0 0 100% 0% 0% 0%
../2002/04/geonames/geonames-ont 1 0 0 0 0 100% 0% 0% 0%
../2002/05/mcda/mcda-ont 8 0 0 0 0 100% 0% 0% 0%
../2002/10/units/units-ont 3 0 0 0 0 100% 0% 0% 0%
../2002/11/jbi/jbi-ont 2 0 0 0 0 100% 0% 0% 0%
../2003/01/movienight/movienight-ont 4 0 0 0 0 100% 0% 0% 0%
../2003/02/usps/usps-ont.owl 61 0 0 0 0 100% 0% 0% 0%
../2003/04/agents/enpmap 1 0 0 0 0 100% 0% 0% 0%
../2003/05/subway/subway-ont 4 0 0 0 0 100% 0% 0% 0%
../2003/09/factbook/factbook-ont 35 0 0 0 0 100% 0% 0% 0%
../projects/integration/projects-20010811 13 0 0 0 0 100% 0% 0% 0%
../tools/tools-ont 5 0 0 0 0 100% 0% 0% 0%
http://www.daml.ri.cmu.edu/ont/AirportCodes.daml 4 0 0 0 0 100% 0% 0% 0%
http://www.daml.ri.cmu.edu/ont/homework/atlas-date.daml 14 2 0 0 2 77,78% 11,11% 0% 0%
http://www.daml.ri.cmu.edu/ont/homework/
.. cmu-ri-center-ont.daml 18 0 0 0 0 100% 0% 0% 0%
.. cmu-ri-courses-ont.daml 15 0 1 0 1 88,24% 0% 5,88% 0%
.. cmu-ri-employmenttypes-ont.daml 29 0 0 0 0 100% 0% 0% 0%
.. cmu-ri-labgroup-ont.daml 22 0 0 0 0 100% 0% 0% 0%
.. cmu-ri-people-ont.daml 21 0 0 0 0 100% 0% 0% 0%
.. cmu-ri-project-ont.daml 20 0 0 0 0 100% 0% 0% 0%
.. cmu-ri-publications-ont.daml 84 0 91 0 1 47,73% 0% 51,7% 0%
http://www.daml.ri.cmu.edu/ont/USCity.daml 4 0 0 0 0 100% 0% 0% 0%
http://www.daml.ri.cmu.edu/ont/USRegionState.daml 398 0 0 0 0 100% 0% 0% 0%
http://www.isi.edu/webscripter/communityreview/
.. abstract-review-o 6 3 0 2 1 50% 25% 0% 16,67%
.. scientific-review-o 1 0 0 0 0 100% 0% 0% 0%
http://www.isi.edu/webscripter/todo.o.daml 29 0 0 0 0 100% 0% 0% 0%
http://www.kestrel.edu/DAML/2000/12/TIME.daml 10 0 0 0 0 100% 0% 0% 0%
http://www.ksl.stanford.edu/projects/DAML/
..ksl-daml-desc.daml 102 0 0 0 0 100% 0% 0% 0%
..UNSPSC.daml 9795 0 0 0 0 100% 0% 0% 0%
http://www.mindswap.org/2003/CancerOntology/
.. nciOncology.owl 32979 0 0 13961 0 70,26% 0% 0% 29,74%
http://www.site.uottawa.ca/ mkhedr/
..Context.daml 83 0 0 0 0 100% 0% 0% 0%
..Context2.daml 83 0 0 0 0 100% 0% 0% 0%
..ContextDependancy.daml 29 0 2 0 0 93,55% 0% 6,45% 0%
..NewFuzzy.owl 66 1 9 3 6 77,65% 1,18% 10,59% 3,53%
http://www.tridedalo.com.br/2003/07/umls/ 135 0 0 0 0 100% 0% 0% 0%
http://www.w3.org/2000/10/annotation-ns# 4 0 0 0 0 100% 0% 0% 0%
http://www.w3.org/2000/10/annotationType# 7 0 0 0 0 100% 0% 0% 0%
http://www.w3.org/2000/10/swap/pim/contact.rdf 23 0 0 0 0 100% 0% 0% 0%
http://www.w3.org/2000/10/swap/pim/doc.rdf 24 0 0 0 0 100% 0% 0% 0%
http://www.w3.org/2001/05/rdf-ds/datastore-schema 3 0 0 0 0 100% 0% 0% 0%

2Aggregated Σj≤iLj
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C.1. Individual Evaluation Results

C.1.1. Converted DAML+OIL Ontologies

The following ontologies have been converted to OWL by means of the the OilEd
tool (CVS Version of August 20, 2003). The correctness of the conversion has been
assessed empirically, but is not guaranteed.

http://daml.umbc.edu/ontologies/classification.daml
http://daml.umbc.edu/ontologies/ittalks/address
http://daml.umbc.edu/ontologies/ittalks/assertions
http://daml.umbc.edu/ontologies/cobra/0.3/agent
http://daml.umbc.edu/ontologies/ittalks/event
http://daml.umbc.edu/ontologies/ittalks/person
http://daml.umbc.edu/ontologies/ittalks/talk
http://daml.umbc.edu/ontologies/ittalks/topic
http://daml.umbc.edu/ontologies/profile-ont
http://daml.umbc.edu/ontologies/talk-ont
http://derpi.tuwien.ac.at/~andrei/cerif-rdf-dc-mn.daml
http://edge.mcs.drexel.edu/MUG/2001/05/16/sbf.daml
http://jupiter.tezu.ernet.in/ontology/tumca.daml
http://ksl.stanford.edu/projects/DAML/chimaera-jtp-cardinality-test1.daml
http://loki.cae.drexel.edu/~how/HydrologicUnits/2003/09/hu
http://mr.teknowledge.com/DAML/Imaging.daml
http://mr.teknowledge.com/DAML/pptOntology.daml
http://onto.cs.yale.edu:8080/ontologies/wsdl-ont.daml
http://onto.cs.yale.edu:8080/umls/UMLSinDAML/NET/SRDEF.daml
http://onto.cs.yale.edu:8080/umls/UMLSinDAML/NET/SRSTR.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I1.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I2.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I3.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I4.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II1.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II2.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II3.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II4.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III1.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III2.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III3.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III4.daml
http://ontolingua.stanford.edu/doc/chimaera/ontologies/wines.daml
http://opencyc.sourceforge.net/daml/cyc-transportation.daml
http://opencyc.sourceforge.net/daml/naics
http://orlando.drc.com/daml/ontology/Bibliographic/current/
http://orlando.drc.com/daml/Ontology/Commercial/Shipping/current/
http://orlando.drc.com/daml/Ontology/Condition/UJTL/v4.0/current/
http://orlando.drc.com/daml/ontology/Fugitive/current/
http://orlando.drc.com/daml/Ontology/Genealogy/current/
http://orlando.drc.com/daml/ontology/Glossary/current/
http://orlando.drc.com/daml/Ontology/GPS/Coordinates/current/
http://orlando.drc.com/daml/Ontology/Intelligence/Report/current/
http://orlando.drc.com/daml/ontology/Locator/current/
http://orlando.drc.com/daml/ontology/Organization/current/
http://orlando.drc.com/daml/ontology/Person/current/
http://orlando.drc.com/daml/Ontology/POC/current/
http://orlando.drc.com/daml/ontology/TaskList/current/
http://orlando.drc.com/daml/Ontology/TaskListUJTLScenario/current/
http://orlando.drc.com/daml/Ontology/Thesaurus/CALL/current/
http://orlando.drc.com/daml/ontology/UniversalProperty/current/
http://orlando.drc.com/SemanticWeb/DAML/Ontology/dc
http://orlando.drc.com/SemanticWeb/DAML/Ontology/DIS/Entity/Platform/Land
http://orlando.drc.com/SemanticWeb/DAML/Ontology/Goal-Objective
http://orlando.drc.com/SemanticWeb/DAML/Ontology/NationalSecurity
http://orlando.drc.com/SemanticWeb/OWL/Ontology/spaceshuttle/crew
http://orlando.drc.com/SemanticWeb/OWL/Ontology/spaceshuttle/mission
http://orlando.drc.com/semanticweb/owl/ontology/spaceshuttle/system
http://purl.org/net/swn
http://purl.org/rss/1.0/
http://reliant.teknowledge.com/DAML/terroristAttackTypes.daml
http://taga.umbc.edu/ontologies/fipaowl
http://ubot.lockheedmartin.com/ubot/2001/08/baby-shoe/shoeproj-ont.daml
http://ubot.lockheedmartin.com/ubot/2001/08/extraction-ont.daml
http://ubot.lockheedmartin.com/ubot/2001/08/ubot-ont.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Awards.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Bio.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/ContactInfo.daml
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http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Course.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Date.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Image.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Organization.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Person.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Project.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Publication.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Researcher.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Time.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Topic.daml
http://www.aktors.org/ontology/portal
http://www.civil.auc.dk/~i6ycl/itcode/test/itcode-projectteam.rdf
http://www.cs.man.ac.uk/~horrocks/Ontologies/tambis.daml
http://www.cs.man.ac.uk/~lopatena/cerif/cerif.daml
http://www.cs.umbc.edu/~yzou1/daml/acl.daml
http://www.cs.umbc.edu/~yzou1/daml/acldaml.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/beer1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/cs1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/general1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/personal1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/tseont.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml
http://www.cs.umd.edu/~golbeck/daml/baseball.daml
http://www.cs.umd.edu/~golbeck/daml/running.daml
http://www.cs.umd.edu/~golbeck/daml/vegetarian.daml
http://www.cs.yale.edu/~dvm/daml/agent-ont.daml
http://www.cs.yale.edu/~dvm/daml/bib-ont.daml
http://www.cs.yale.edu/~dvm/daml/drsonto.daml
http://www.cs.yale.edu/~dvm/daml/exp-ont.daml
http://www.cs.yale.edu/~dvm/daml/pddlonto.daml
http://www.cse.dmu.ac.uk/~monika/Pages/Ontologies/CinemaAndMovies.daml
http://www.daml.ecs.soton.ac.uk/ont/currency.daml
http://www.daml.org/2000/10/daml-ont
http://www.daml.org/2001/01/gedcom/gedcom
http://www.daml.org/2001/02/geofile/geofile-ont
http://www.daml.org/2001/02/projectplan/projectplan
http://www.daml.org/2001/06/expenses/amex-ont
http://www.daml.org/2001/06/expenses/check-ont
http://www.daml.org/2001/06/expenses/eecr-ont
http://www.daml.org/2001/06/expenses/trip-ont
http://www.daml.org/2001/06/itinerary/itinerary-ont
http://www.daml.org/2001/06/map/map-ont
http://www.daml.org/2001/08/baseball/baseball-ont
http://www.daml.org/2001/09/countries/fips-10-4-ont
http://www.daml.org/2001/09/countries/iso-3166-ont
http://www.daml.org/2001/10/agenda/agenda-ont
http://www.daml.org/2001/10/cvslog/cvslog-ont
http://www.daml.org/2001/10/html/airport-ont
http://www.daml.org/2001/10/html/nyse-ont
http://www.daml.org/2001/10/html/zipcode-ont
http://www.daml.org/2001/10/office/office
http://www.daml.org/2002/02/chiefs/chiefs-ont
http://www.daml.org/2002/02/telephone/1/areacodes-ont
http://www.daml.org/2002/03/agents/agent-ont
http://www.daml.org/2002/03/agents/mcda
http://www.daml.org/2002/03/darpadir/darpadir-ont
http://www.daml.org/2002/03/metrics/metrics-ont
http://www.daml.org/2002/03/ranks/rank-ont
http://www.daml.org/2002/03/usnships/ship-ont
http://www.daml.org/2002/04/classification/classification-ont
http://www.daml.org/2002/04/geonames/geonames-ont
http://www.daml.org/2002/05/mcda/mcda-ont
http://www.daml.org/2002/08/nasdaq/nasdaq-ont
http://www.daml.org/2002/09/milservices/milservices-ont
http://www.daml.org/2002/10/sndl/unit-ont
http://www.daml.org/2002/10/units/units-ont
http://www.daml.org/2002/11/jbi/jbi-ont
http://www.daml.org/2003/01/movienight/movienight-ont
http://www.daml.org/2003/04/agents/enpmap
http://www.daml.org/2003/05/subway/subway-ont
http://www.daml.org/2003/09/factbook/factbook-ont
http://www.daml.org/projects/integration/projects-20010811
http://www.daml.org/tools/tools-ont
http://www.daml.ri.cmu.edu/ont/AirportCodes.daml
http://www.daml.ri.cmu.edu/ont/homework/atlas-date.daml
http://www.daml.ri.cmu.edu/ont/homework/atlas-publications.daml
http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-center-ont.daml
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http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-courses-ont.daml
http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-employmenttypes-ont.daml
http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-labgroup-ont.daml
http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-people-ont.daml
http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-project-ont.daml
http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-publications-ont.daml
http://www.daml.ri.cmu.edu/ont/USCity.daml
http://www.daml.ri.cmu.edu/ont/USRegionState.daml
http://www.davincinetbook.com:8080/daml/rdf/homework3/projectGutenbergOnt.daml
http://www.isi.edu/webscripter/bibtex.o.daml
http://www.isi.edu/webscripter/communityreview/abstract-review-o
http://www.isi.edu/webscripter/communityreview/scientific-review-o
http://www.isi.edu/webscripter/division.o.daml
http://www.isi.edu/webscripter/document.o.daml
http://www.isi.edu/webscripter/event.o.daml
http://www.isi.edu/webscripter/person.o.daml
http://www.isi.edu/webscripter/project.o.daml
http://www.isi.edu/webscripter/publication.o.daml
http://www.isi.edu/webscripter/snapshot.o.daml
http://www.isi.edu/webscripter/todo.o.daml
http://www.kestrel.edu/DAML/2000/12/CAPACITY.daml
http://www.kestrel.edu/DAML/2000/12/DEMAND.daml
http://www.kestrel.edu/DAML/2000/12/instances.daml
http://www.kestrel.edu/DAML/2000/12/OPERATION.daml
http://www.kestrel.edu/DAML/2000/12/RESOURCE.daml
http://www.kestrel.edu/DAML/2000/12/TIME.daml
http://www.ksl.stanford.edu/projects/DAML/ksl-daml-desc.daml
http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml
http://www.semanticweb.org/library/wordnet/wordnet-20000620.rdfs
http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml
http://www.site.uottawa.ca/~mkhedr/Context.daml
http://www.site.uottawa.ca/~mkhedr/Context2.daml
http://www.site.uottawa.ca/~mkhedr/ContextDependancy.daml
http://www.site.uottawa.ca/~mkhedr/ContextFinal2.daml
http://www.tridedalo.com.br/2003/07/umls/
http://www.w3.org/2000/10/annotation-ns
http://www.w3.org/2000/10/annotationType
http://www.w3.org/2000/10/swap/pim/contact.rdf
http://www.w3.org/2001/03/thread
http://www.w3.org/2000/10/swap/pim/doc.rdf
http://www.w3.org/2001/05/rdf-ds/datastore-schema

C.1.2. Excluded Ontologies

The following ontologies could not be included in the analysis due to several types
of errors. 32 ontologies could not be found at the specified URL, 5 ontologies could
not be parsed, 23 ontologies were not OWL DL ontologies, 72 ontologies could not
be converted from DAML+OIL to OWL.

Parsing Failure

http://orlando.drc.com/SemanticWeb/OWL/Ontology/Contact/ver/1.0.0/Contact-ont.owl
http://projects.teknowledge.com/DAML/DynamicOntology1.owl
http://projects.teknowledge.com/DAML/Ontology.owl
http://reliant.teknowledge.com/DAML/Geography.owl
http://reliant.teknowledge.com/DAML/Transportation.owl

HTTP 404 Error (Not Found)

http://cim4.ie.psu.edu:12/daml/rios/2001/05/RIOS\_Operation.daml
http://cim4.ie.psu.edu:12/daml/rios/2001/05/RIOS\_Operation_requirement.daml
http://cim4.ie.psu.edu:12/daml/rios/2001/05/RIOS\_Process.daml
http://cim4.ie.psu.edu:12/daml/rios/2001/05/RIOS\_process_requirement.daml
http://cim4.ie.psu.edu:12/daml/rios/2001/05/ServiceDescription.daml
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http://cse.seu.edu.cn/people/ysdong/kqml.owl
http://daml.umbc.edu/ontologies/calendar-ont.daml
http://daml.umbc.edu/ontologies/cobra/0.4/action.owl
http://daml.umbc.edu/ontologies/cobra/0.4/adjustlighting.owl
http://daml.umbc.edu/ontologies/cobra/0.4/space-basic.owl
http://daml.umbc.edu/ontologies/cobra/0.4/time-basic.owl
http://daml.umbc.edu/ontologies/dreggie-ont.daml
http://daml.umbc.edu/ontologies/topic-ont.daml
http://daml.umbc.edu/ontologies/trust-ont.daml
http://grcinet.grci.com/maria/www/codipsite/Onto/DublinCore/DublinCore\_V27Aug2001.daml
http://grcinet.grci.com/maria/www/codipsite/Onto/Project/ProjectOntology\_V26Jul2001.daml
http://grcinet.grci.com/maria/www/codipsite/Onto/TMD/TMDOntology\_V27Aug2001.daml
http://grcinet.grci.com/maria/www/codipsite/Onto/WebDirectory/WebDirectory\_V27Aug2001.daml
http://grcinet.grci.com/maria/www/CodipSite/Onto/WebSite/WebSiteOntology\_V27Aug2001.daml
http://hjkhasdjkasljd
http://jupiter.tezu.ernet.in/ontology/mca.daml
http://mnemosyne.umd.edu/~aelkiss/daml/serial1.2.daml
http://mnemosyne.umd.edu/~aelkiss/weather-ont.daml
http://mr.teknowledge.com/daml/Homeworks/HomeWork1/ResearchProjectOntology.daml
http://mr.teknowledge.com/daml/homeworks/HomeWork3/BriefingOntology.daml
http://mr.teknowledge.com/daml/homeworks/HomeWork3/SurveyOntology.daml
http://mr.teknowledge.com/daml/ontologies/ImageFingerprinting/2001/04/BriefingsOntology.daml
http://mr.teknowledge.com/daml/ontologies/ImageFingerprinting/2001/04/ImageFingerprintingOntology-web.daml
http://mr.teknowledge.com/daml/ontologies/ImageFingerprinting/2001/04/ImageFingerprintsOntology-briefings.daml
http://www.cyc.com/cyc-2-1/cyc-vocab.daml
http://www.engr.sc.edu/research/cit/projects/DAML.html
http://www.lgi2p.ema.fr/~ranwezs/ontologies/musicV1.0.daml
http://www.lgi2p.ema.fr/~ranwezs/ontologies/soccerV2.0.daml

HTTP Error 403 - No Access Rights

http://horus.isx.com/markup/2002/01/countries2.rdf
http://horus.isx.com/onts/2001/12/draft/horuslocusont.daml
http://isx.com/~phaglic/horus/daml/onts/englishpubont.daml
http://www.cse.sc.edu/~dukle/ontologies/football-ont.daml
http://www.daml.org/ontologies/ontologies-ont

DAML+OIL to OWL Conversion Errors

http://cicho0.tripod.com/cs\_Courses\_ont
http://cicho0.tripod.com/cs\_LecturingStaff\_ont
http://cicho0.tripod.com/cs\_Staff\_ont
http://cicho0.tripod.com/Dep\_of\_Computer\_Science
http://daml.umbc.edu/ontologies/classification.daml
http://daml.umbc.edu/ontologies/ittalks/address
http://daml.umbc.edu/ontologies/ittalks/assertions
http://daml.umbc.edu/ontologies/ittalks/topic
http://mr.teknowledge.com/DAML/ArtOntology.daml
http://mr.teknowledge.com/DAML/pptOntology.daml
http://onto.cs.yale.edu:8080/umls/UMLSinDAML/NET/SRDEF.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I1.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I2.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I3.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_I4.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II1.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II2.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II3.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_II4.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III1.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III2.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III3.daml
http://ontobroker.semanticweb.org/ontos/compontos/tourism\_III4.daml
http://ontolingua.stanford.edu/doc/chimaera/ontologies/world-fact-book.daml
http://opencyc.sourceforge.net/daml/cyc.daml
http://orlando.drc.com/daml/Ontology/Commercial/Shipping/current/
http://orlando.drc.com/daml/Ontology/DAML-extension/current/
http://orlando.drc.com/daml/ontology/DC/current/
http://orlando.drc.com/daml/ontology/Fugitive/current/
http://orlando.drc.com/daml/Ontology/GPS/Coordinates/current/
http://orlando.drc.com/daml/Ontology/Intelligence/Report/current/
http://orlando.drc.com/daml/Ontology/POC/current/
http://orlando.drc.com/daml/ontology/UniversalProperty/current/
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http://orlando.drc.com/daml/ontology/VES/current/
http://orlando.drc.com/SemanticWeb/DAML/Ontology/dc
http://orlando.drc.com/SemanticWeb/DAML/Ontology/DIS/Entity/Platform/Land
http://orlando.drc.com/SemanticWeb/DAML/Ontology/VES
http://purl.org/net/swn
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/ProfessionalExperienceAndEducation.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/beer1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/cs1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/cs1.1.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/general1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/personal1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/tseont.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml
http://www.cs.umd.edu/~golbeck/daml/baseball.daml
http://www.cs.yale.edu/~dvm/daml/agent-ont.daml
http://www.cs.yale.edu/~dvm/daml/bib-ont.daml
http://www.cs.yale.edu/~dvm/daml/exp-ont.daml
http://www.cyc.com/2002/04/08/cyc.daml
http://www.cyc.com/2003/04/01/cyc
http://www.daml.ecs.soton.ac.uk/ont/currency.daml
http://www.daml.org/2000/10/daml-ont
http://www.daml.org/2000/12/daml+oil
http://www.daml.org/2001/03/daml+oil
http://www.daml.org/2001/06/expenses/amex-ont
http://www.daml.org/2001/06/expenses/check-ont
http://www.daml.org/2001/06/expenses/eecr-ont
http://www.daml.org/2001/06/expenses/trip-ont
http://www.daml.org/2001/09/countries/fips-10-4-ont
http://www.daml.org/2001/09/countries/iso-3166-ont
http://www.daml.org/2001/10/html/airport-ont
http://www.daml.org/2001/10/html/nyse-ont
http://www.daml.org/2001/10/html/zipcode-ont
http://www.daml.org/2002/02/telephone/1/areacodes-ont
http://www.daml.org/2002/03/metrics/metrics-ont
http://www.daml.org/2002/03/ranks/rank-ont
http://www.daml.org/2002/03/usnships/ship-ont
http://www.daml.org/2002/08/nasdaq/nasdaq-ont
http://www.daml.org/2002/09/milservices/milservices-ont
http://www.daml.org/2002/10/hazardous/hazardous-cargo-ont
http://www.daml.org/2002/10/sndl/unit-ont
http://www.daml.ri.cmu.edu/ont/homework/atlas-cmu.daml
http://www.daml.ri.cmu.edu/ont/homework/atlas-employment\_categories.daml
http://www.daml.ri.cmu.edu/ont/homework/atlas-publications.daml
http://www.davincinetbook.com:8080/daml/rdf/homework3/projectGutenbergOnt.daml
http://www.davincinetbook.com:8080/daml/rdf/personal-info.daml
http://www.ics.mq.edu.au/~borgun/Software.html
http://www.imt.edu.pk
http://www.isi.edu/webscripter/bibtex.o.daml
http://www.isi.edu/webscripter/division.o.daml
http://www.isi.edu/webscripter/document.o.daml
http://www.isi.edu/webscripter/event.o.daml
http://www.isi.edu/webscripter/person.o.daml
http://www.isi.edu/webscripter/project.o.daml
http://www.isi.edu/webscripter/publication.o.daml
http://www.isi.edu/webscripter/snapshot.o.daml
http://www.kestrel.edu/DAML/2000/12/CAPACITY.daml
http://www.kestrel.edu/DAML/2000/12/DEMAND.daml
http://www.kestrel.edu/DAML/2000/12/instances.daml
http://www.kestrel.edu/DAML/2000/12/OPERATION.daml
http://www.kestrel.edu/DAML/2000/12/RESOURCE.daml
http://www.ksl.stanford.edu/projects/DAML/ksl-daml-instances.daml
http://www.ksl.stanford.edu/software/IW/spec/iw.daml
http://www.semanticweb.org/library/wordnet/wordnet-20000620.rdfs
http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml
http://www.tridedalo.com.br/2003/07/cns/
http://www.w3.org/2000/10/swap/infoset/infoset-diagram.rdf
http://www.w3.org/2001/03/earl/0.95.rdf
http://www.w3.org/2001/03/thread
http://www.w3.org/2001/03swell/rcs

Not OWL DL

http://opencyc.sourceforge.net/daml/naics
http://orlando.drc.com/daml/Ontology/Genealogy/current/
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http://orlando.drc.com/daml/ontology/Glossary/current/
http://orlando.drc.com/daml/ontology/Person/current/
http://orlando.drc.com/SemanticWeb/OWL/Ontology/spaceshuttle/crew
http://orlando.drc.com/SemanticWeb/OWL/Ontology/spaceshuttle/mission
http://orlando.drc.com/semanticweb/owl/ontology/spaceshuttle/system
http://reliant.teknowledge.com/DAML/terroristAttackTypes.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Awards.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Bio.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/ContactInfo.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Course.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Date.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Image.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Organization.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Person.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Project.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Publication.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Researcher.daml
http://www.ai.sri.com/daml/ontologies/sri-basic/1-0/Topic.daml
http://www.civil.auc.dk/~i6ycl/itcode/test/itcode-projectteam.rdf
http://www.cs.yale.edu/~dvm/daml/pddlonto.daml
http://www.site.uottawa.ca/~mkhedr/ContextFinal2.daml
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D. Statistical Analysis of DAML+OIL
ontologies

This appendix describes the statistical analysis of 95 DAML+ORG ontologies, that
was carried out in July 2003 in context of the (Tempich & Volz, 2003) paper.
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D.1. Counts

D.1. Counts

D.1.1. Absolute Counts
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D.1.2. Relative Counts
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D.2. Distributions

D.2.1. Super-Class Distributions
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D.2. Distributions

D.2.2. Restriction Distributions
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