140,041 research outputs found

    Comparative Analysis of Decision Tree Algorithms for Data Warehouse Fragmentation

    Get PDF
    One of the main problems faced by Data Warehouse designers is fragmentation.Several studies have proposed data mining-based horizontal fragmentation methods.However, not exists a horizontal fragmentation technique that uses a decision tree. This paper presents the analysis of different decision tree algorithms to select the best one to implement the fragmentation method. Such analysis was performed under version 3.9.4 of Weka, considering four evaluation metrics (Precision, ROC Area, Recall and F-measure) for different selected data sets using the Star Schema Benchmark. The results showed that the two best algorithms were J48 and Random Forest in most cases; nevertheless, J48 was selected because it is more efficient in building the model.One of the main problems faced by Data Warehouse designers is fragmentation.Several studies have proposed data mining-based horizontal fragmentation methods.However, not exists a horizontal fragmentation technique that uses a decision tree. This paper presents the analysis of different decision tree algorithms to select the best one to implement the fragmentation method. Such analysis was performed under version 3.9.4 of Weka, considering four evaluation metrics (Precision, ROC Area, Recall and F-measure) for different selected data sets using the Star Schema Benchmark. The results showed that the two best algorithms were J48 and Random Forest in most cases; nevertheless, J48 was selected because it is more efficient in building the model

    Crossover of the weighted mean fragment mass scaling in 2D brittle fragmentation

    Full text link
    We performed vertical and horizontal sandwich 2D brittle fragmentation experiments. The weighted mean fragment mass was scaled using the multiplicity ÎŒ\mu. The scaling exponent crossed over at logâĄÎŒc≃−1.4\log \mu_c \simeq -1.4. In the small ÎŒ(â‰ȘÎŒc)\mu (\ll\mu_c) regime, the binomial multiplicative (BM) model was suitable and the fragment mass distribution obeyed log-normal form. However, in the large ÎŒ(≫Όc)\mu (\gg\mu_c) regime, in which a clear power-law cumulative fragment mass distribution was observed, it was impossible to describe the scaling exponent using the BM model. We also found that the scaling exponent of the cumulative fragment mass distribution depended on the manner of impact (loading conditions): it was 0.5 in the vertical sandwich experiment, and approximately 1.0 in the horizontal sandwich experiment.Comment: 5 pages, 3 figure

    The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone

    Get PDF
    We present three-dimensional numerical simulations of the rise and fragmentation of twisted, initially horizontal magnetic flux tubes which evolve into emerging Omega-loops. The flux tubes rise buoyantly through an adiabatically stratified plasma that represents the solar convection zone. The MHD equations are solved in the anelastic approximation, and the results are compared with studies of flux tube fragmentation in two dimensions. We find that if the initial amount of field line twist is below a critical value, the degree of fragmentation at the apex of a rising Omega-loop depends on its three-dimensional geometry: the greater the apex curvature of a given Omega-loop, the lesser the degree of fragmentation of the loop as it approaches the photosphere. Thus, the amount of initial twist necessary for the loop to retain its cohesion can be reduced substantially from the two-dimensional limit. The simulations also suggest that as a fragmented flux tube emerges through a relatively quiet portion of the solar disk, extended crescent-shaped magnetic features of opposite polarity should form and steadily recede from one another. These features eventually coalesce after the fragmented portion of the Omega-loop emerges through the photosphere.Comment: 17 pages, 17 figures, uses AAS LaTeX macros v5.0. ApJ, in pres

    Tracking granules on the Sun's surface and reconstructing horizontal velocity fields: I. the CST algorithm

    Full text link
    Determination of horizontal velocity fields on the solar surface is crucial for understanding the dynamics of structures like mesogranulation or supergranulation or simply the distribution of magnetic fields. We pursue here the development of a method called CST for coherent structure tracking, which determines the horizontal motion of granules in the field of view. We first devise a generalization of Strous method for the segmentation of images and show that when segmentation follows the shape of granules more closely, granule tracking is less effective for large granules because of increased sensitivity to granule fragmentation. We then introduce the multi-resolution analysis on the velocity field, based on Daubechies wavelets, which provides a view of this field on different scales. An algorithm for computing the field derivatives, like the horizontal divergence and the vertical vorticity, is also devised. The effects from the lack of data or from terrestrial atmospheric distortion of the images are also briefly discussed.Comment: in press in Astronomy and Astrophysics, 9 page
    • 

    corecore