8 research outputs found

    Weak topologies for Linear Logic

    Full text link
    We construct a denotational model of linear logic, whose objects are all the locally convex and separated topological vector spaces endowed with their weak topology. The negation is interpreted as the dual, linear proofs are interpreted as continuous linear functions, and non-linear proofs as sequences of monomials. We do not complete our constructions by a double-orthogonality operation. This yields an interpretation of the polarity of the connectives in terms of topology

    Lifting Coalgebra Modalities and IMELL Model Structure to Eilenberg-Moore Categories

    Get PDF
    A categorical model of the multiplicative and exponential fragments of intuitionistic linear logic (IMELL), known as a linear category, is a symmetric monoidal closed category with a monoidal coalgebra modality (also known as a linear exponential comonad). Inspired by R. Blute and P. Scott\u27s work on categories of modules of Hopf algebras as models of linear logic, we study Eilenberg-Moore categories of monads as models of IMELL. We define an IMELL lifting monad on a linear category as a Hopf monad - in the Bruguieres, Lack, and Virelizier sense - with a mixed distributive law over the monoidal coalgebra modality. As our main result, we show that the linear category structure lifts to Eilenberg-Moore categories of IMELL lifting monads. We explain how monoids in the Eilenberg-Moore category of the monoidal coalgebra modality can induce IMELL lifting monads and provide sources for such monoids. Along the way, we also define mixed distributive laws of bimonads over coalgebra modalities and lifting differential category structure to Eilenberg-Moore categories of exponential lifting monads

    A Bicategorical Model for Finite Nondeterminism

    Get PDF
    Finiteness spaces were introduced by Ehrhard as a refinement of the relational model of linear logic. A finiteness space is a set equipped with a class of finitary subsets which can be thought of being subsets that behave like finite sets. A morphism between finiteness spaces is a relation that preserves the finitary structure. This model provided a semantics for finite non-determism and it gave a semantical motivation for differential linear logic and the syntactic notion of Taylor expansion. In this paper, we present a bicategorical extension of this construction where the relational model is replaced with the model of generalized species of structures introduced by Fiore et al. and the finiteness property now relies on finite presentability

    Lifting Coalgebra Modalities and MELL\mathsf{MELL} Model Structure to Eilenberg-Moore Categories

    Full text link
    A categorical model of the multiplicative and exponential fragments of intuitionistic linear logic (MELL\mathsf{MELL}), known as a \emph{linear category}, is a symmetric monoidal closed category with a monoidal coalgebra modality (also known as a linear exponential comonad). Inspired by Blute and Scott's work on categories of modules of Hopf algebras as models of linear logic, we study categories of algebras of monads (also known as Eilenberg-Moore categories) as models of MELL\mathsf{MELL}. We define a MELL\mathsf{MELL} lifting monad on a linear category as a Hopf monad -- in the Brugui{\`e}res, Lack, and Virelizier sense -- with a special kind of mixed distributive law over the monoidal coalgebra modality. As our main result, we show that the linear category structure lifts to the category of algebras of MELL\mathsf{MELL} lifting monads. We explain how groups in the category of coalgebras of the monoidal coalgebra modality induce MELL\mathsf{MELL} lifting monads and provide a source for such groups from enrichment over abelian groups. Along the way we also define mixed distributive laws of symmetric comonoidal monads over symmetric monoidal comonads and lifting differential category structure.Comment: An extend abstract version of this paper appears in the conference proceedings of the 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018), under the title "Lifting Coalgebra Modalities and MELL\mathsf{MELL} Model Structure to Eilenberg-Moore Categories

    Dagger linear logic for categorical quantum mechanics

    Get PDF
    Categorical quantum mechanics exploits the dagger compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. This article starts the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dagger linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics

    This Week's Finds in Mathematical Physics (1-50)

    Full text link
    These are the first 50 issues of This Week's Finds of Mathematical Physics, from January 19, 1993 to March 12, 1995. These issues focus on quantum gravity, topological quantum field theory, knot theory, and applications of nn-categories to these subjects. However, there are also digressions into Lie algebras, elliptic curves, linear logic and other subjects. They were typeset in 2020 by Tim Hosgood. If you see typos or other problems please report them. (I already know the cover page looks weird).Comment: 242 page
    corecore