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Abstract
Finiteness spaces were introduced by Ehrhard as a refinement of the relational model of linear logic.
A finiteness space is a set equipped with a class of finitary subsets which can be thought of being
subsets that behave like finite sets. A morphism between finiteness spaces is a relation that preserves
the finitary structure. This model provided a semantics for finite non-determism and it gave a
semantical motivation for differential linear logic and the syntactic notion of Taylor expansion. In
this paper, we present a bicategorical extension of this construction where the relational model
is replaced with the model of generalized species of structures introduced by Fiore et al. and the
finiteness property now relies on finite presentability.
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1 Introduction

1.1 Quantitative semantics
In quantitative semantics, the interpretation of a program provides information on the number
of times the program uses its input to compute a given output whereas qualitative semantics
only allows us to recover which inputs were used. Quantitative semantics originates from
Girard’s normal functor semantics of system F [16]. His original intuition was to interpret
types as vector spaces such that linear maps between them correspond to programs using
their arguments exactly once and analytic functions correspond to general programs.

This approach led to the birth of linear logic but it does not directly provide a model
for it. Indeed, the exponential modality of linear logic leads to infinite dimensional vector
spaces which are no longer isomorphic to their double dual, a property required to model
classical negation. Topological vector spaces were therefore considered to circumvent this
issue [17, 6, 8]. In this setting, the series interpreting a program usually has infinite support
describing all its possible behaviors for all possible inputs which allows for the study of
non-deterministic languages.

1.2 Controlling non-deterministic computation
Finiteness spaces are a model of linear logic introduced by Ehrhard as a way to enforce finite
interactions between programs and reject infinite computations [9]. Finiteness spaces do
not provide a model of PCF since the fixpoint operator is not a morphism in the model.
Vaux showed however that it allows for primitive recursion and is hence a model of Gödel’s
system T [26].

The construction of the finiteness spaces model is done in two steps: the first step is
a double glueing construction (in the sense of Hyland and Schalk [20]) on the relational
model Rel. A finiteness space A = (|A| , FA) is a countable set |A| together with a set of
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10:2 A Bicategorical Model for Finite Nondeterminism

finitary subsets FA such that the intersection of a finitary subset in FA together with a
finitary subset in the dual type FA⊥ is always finite. Morphisms between finiteness spaces
are relations that preserve the finitary structure backward and forward.

The second step is parameterized by a fixed field (or commutative semi-ring) R: for every
finiteness space, one can define a vector space (or semi-module) whose vectors are linear
combinations with finitary support, and this space is endowed with a topology induced by
the duality. In this setting, morphisms in the linear category correspond to linear continuous
maps between these vector spaces and non-linear maps correspond to analytic maps for
which there is a natural notion of differentiation. This construction provided the semantical
motivation for differential linear logic and the syntactic notion of Taylor expansion which
associates a formal sum of resource terms to a given term [11, 10]. Finiteness spaces were
also used to characterize strongly normalizing terms in non-deterministic λ-calculus [25].
More recently, finiteness spaces were used in the theory of generalized power series rings and
topological groupoids [5, 1].

This finiteness space construction yields a model of controlled non-determinism: the
objects can be infinite dimensional vector spaces and the morphisms are series with possibly
infinite support but whenever an explicit computation is made, the result is always finite.
It corresponds to the operational property that a program always has a finite number of
reduction paths for a given input and output.

1.3 Generalized species of structures
In this paper, we use species of structures to extend the finiteness construction on the relational
model to a bicategorical setting. Species of structures were originally introduced by Joyal as
a unified framework for the theory of generating series in enumerative combinatorics [21].
Fiore et al. then presented a generalized definition that both encompasses Joyal’s species and
constitutes a model of differential linear logic [13]. This model of generalized species is based
on the bicategory of profunctors Prof and it can be considered as a generalization of the
differential relational model Rel. It follows the line of research of categorifying λ-calculus
models by replacing sets or preorders by richer categorical structures [7, 19]. Generalized
species are also connected to the Girard’s normal functor model [16] which was later extended
by Hasegawa [18].

The exponential modality in the model of generalized species is based on the free symmetric
monoidal completion for small categories which generalizes the finite multiset construction
for the relational model. Morphisms in the co-Kleisli bicategory correspond to the notion of
analytic functors which provide the series counterpart of generalized species [12].

1.4 Finiteness spaces with profunctors
In the original model of relational finiteness spaces, types are interpreted as pairs A =
(|A| , FA) of countable set |A| with a set of so-called finitary subsets FA ⊆ P(|A|) satisfying
FA = (FA)⊥⊥. In our setting, the types will correspond to pairs A = (|A| , FA) of a
locally finite category |A| equipped with a full subcategory of finite presheaves FA ↪→
[|A|op

, FinSet] such that FA ∼= (FA)⊥⊥.
The categorification of the orthogonality relation allows us to work in a better behaved

setting of focused orthogonalities where forward preservation is equivalent to backward
preservation for morphisms preserving the finiteness structure [20]. In our case, a morphism
from (|A| , FA) to (|B| , FB) will be a finite profunctor P : |A| −7−→f |B| such that (P )FA ↪→
FB which will imply that (P ⊥)FB⊥ ↪→ FA⊥. We follow the same pattern of the double-
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glueing construction for 1-categories to obtain a bicategory of finiteness spaces and profunctors
between them where computations are enforced to be finite and show that all the differential
linear logic constructions in Prof can be refined to our bicategory.

Notation
For an integer n ∈ N, we write n for the set {1, . . . , n}.
For a small category A, we denote by Â the presheaf category [Aop, Set] and write
yA : A → Â for the Yoneda embedding.
We denote by 1 the category with one object and one morphism and by 0 the empty
category.
We use ∼= for natural isomorphisms between functors or category isomorphisms and ≃
for equivalences.

2 Relational Finiteness Spaces

The model of relational finiteness spaces is obtained from Rel via a glueing construction
along hom-functors using the following orthogonality relation:

▶ Definition 1. For a countable set S, subsets x ∈ Rel(1, S) ∼= P(S) and x′ ∈ Rel(S, 1) ∼=
P(S), we say that x and x′ are orthogonal if x∩x′ is a finite set and we denote it by x ⊥S x′.

The idea is that morphisms in Rel(1, S) are thought of as closed programs of type S and
morphisms in Rel(S, 1) correspond to counter-programs or environments. The orthogonality
relation allows for more control on interactions between programs and environments as
we require their interaction to always be finite even if the type S is infinite. For a subset
F ⊆ P(S), we define its orthogonal as F ⊥ := {x ∈ P(S) | ∀x′ ∈ F , x ⊥ x′} ⊆ P(S). This
orthogonality relation induces a Galois connection on PP(S)

PP(S) PP(S)

(−)⊥

(−)⊥

⊥

where finiteness spaces, introduced below, are its fixpoints F = F ⊥⊥.

▶ Definition 2. A relational finiteness space is a pair A = (|A| , F (A)) where |A| is a
countable set and F (A) is a subset of P(|A|) satisfying F (A) = F (A)⊥⊥.

For any countable set S, the smallest finiteness structure is given by the set of finite subsets of
S, Pfin(S) whose orthogonal is given by the whole powerset P(S). For a relational finiteness
space A, while elements of F (A) may be infinite subsets of |A|, they are called finitary
subsets as they “behave” like finite sets in that F (A) is closed under inclusion (for x ∈ F (A),
if x′ ⊆ x, then x′ ∈ F (A)) and finite unions.

▶ Definition 3. The category FinRel has objects finiteness spaces and morphisms are
relations that preserve the finitary structure forward and backward. Explicitly, for finiteness
spaces A = (|A| , F (A)) and B = (|B| , F (B)), a relation R ⊆ |A|×|B| induces two functions
R⋆ and R⋆ given by R⋆ : x 7→ {b ∈ |B| | ∃a ∈ |A| , (a, b) ∈ R} and R⋆ : y 7→ {a ∈ |A| | ∃b ∈
|B| , (a, b) ∈ R}. The relation R is said to be a morphism of finiteness spaces from A to B if
for all x ∈ F (A), R⋆ · x ∈ F (B) and for all y ∈ F (B)⊥, R⋆ · y ∈ F (A)⊥.

FSCD 2021
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P(|A|) P(|B|)

F (A) F (B)

R⋆ P(|B|) P(|A|)

F (B)⊥ F (A)⊥

R⋆

Formally, the category FinRel is the tight orthogonality category in the sense of Hyland
and Schalk obtained from the orthogonality relation defined above [20]. Ehrhard showed
that the linear logic structure from Rel can be lifted to FinRel which constitutes a model of
differential linear logic [10]. The morphisms in the co-Kleisli category of FinRel play the role
of supports for power series for the second part of the construction: for a fixed field (or semi-
ring) R, we can define for every relational finiteness space A = (|A| , F (A)), the following
vector space (or semi-module): R⟨A⟩ := {X ∈ R|A| | support(X) ∈ F (A)}. Ehrhard showed
that R⟨A⟩ can be endowed with a topology TA such that a matrix M ∈ R⟨A ⊸ B⟩
corresponds to a linear continuous map R⟨A⟩ → R⟨B⟩ and a matrix M ∈ R⟨!A ⊸ B⟩
corresponds to an analytic map R⟨A⟩ → R⟨B⟩ [9].

3 Profunctorial Finiteness Spaces

3.1 Orthogonality on bicategories
We work with a fragment of Prof where the objects are locally finite categories, it has the
important consequence that finitely presentable presheaves are always finite presheaves as
we will see below.

▶ Definition 4. A small category A is said to be locally finite if it is enriched over finite
sets i.e. for any objects a, a′ ∈ A, the homset A(a, a′) is finite.

▶ Definition 5. For a category A, a presheaf X : Aop → Set is said to be finite if for all
a ∈ A, X(a) is a finite set. We denote by Âfin ↪→ Â the full subcategory of finite presheaves.
Note that the Yoneda embedding yA for a locally finite category A factors through the inclusion
Âfin ↪→ Â by an embedding A ↪→ Âfin.

For presheaf categories, finitely presentable objects can be characterized as presheaves
that are isomorphic to a finite colimit of representables. For a locally finite category A, since
a finite colimit of finite presheaves is also a finite presheaf, there is an embedding from the
subcategory of finitely presentable objects Âfp to Âfin.

▶ Definition 6. A profunctor F : A −7−→ B between two small categories A and B is a functor
F : A × Bop → Set or equivalently a functor F : A → B̂. F is said to be a finite profunctor
if it can be factored as a functor F : A → B̂fin through the embedding B̂fin ↪→ B̂. In other
words, for all a ∈ A and b ∈ B, F (a, b) is a finite set. A finite profunctor will be denoted by
F : A −7−→f B.

The composite of two profunctors F : A −7−→ B and G : B −7−→ C is the profunctor
G ◦ F : A −7−→ C given by the coend formula:

(a, c) 7→
∫ b∈B

F (a, b) × G(b, c) ∼=

(∑
b∈B

F (a, b) × G(b, c)
)

/∼

where ∼ is the least equivalence relation such that (b, F (a, f)(s), t) ∼ (b′, s, G(f, c)(t)) for
s ∈ F (a, b′), t ∈ G(b, c) and f : b → b′ ∈ B. Composition of profunctors is associative only
up to natural isomorphisms which puts us in the setting of a bicategory [3]. Note that the
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composite of two finite profunctors between locally finite categories need not to be finite
(since the sum above can be infinite if B has an infinite object set for example) but we will
see how finiteness structures will enable us to make this notion compositional.

▶ Definition 7. Let A be a locally finite category, X : Aop → Set a presheaf and X ′ :
A → Set a copresheaf, we say that X and X ′ are orthogonal and write X ⊥A X ′ if the set
⟨X, X ′⟩ :=

∫ a∈A
X(a) × X ′(a) is finite.

In the bicategorical case, presheaves in Â or equivalently profunctors 1 −7−→ A (where 1
is the terminal category) are thought of as closed programs of type A and co-presheaves
in Âop or profunctors A −7−→ 1 correspond to environments. In our setting, the interaction
between a program X : Aop → Set and an environment X ′ : A → Set corresponds to their
composition in Prof : X ′ ◦ X =

∫ a∈A
X(a) × X ′(a).

Adding the orthogonality structure on categories allows us to work in a setting where we
enforce this composite to always be finite. Note that the condition in Definition 7 becomes
X ′ ◦ X ∈ FinSet ↪→ Set ∼= Prof(1, 1). In the case of 1-categories, for C a model of
linear logic with monoidal units 1 and ⊥, and for ‚⊆ C(1, ⊥) a distinguished pole, if the
orthogonality relation ⊥c↪→ C(1, c) × C(c, ⊥) is given by:

⊥c = {(x, x′) ∈ C(1, c) × C(c, ⊥) | x′ ◦ x ∈‚}

we say that the orthogonality is focused and it is one of the better behaved cases [20]. It
implies in particular that for all x ∈ C(1, c), f ∈ C(c, d) and y ∈ C(d, ⊥), f ◦ x ⊥d y if and
only if x ⊥c y ◦ f . In the general case, a morphism preserving the orthogonality needs to
preserve it forward and backward whereas in the focused case, forward preservation becomes
equivalent to backward preservation which simplifies the proofs significantly since we do not
have to prove both directions every time. Unlike the relational case, the orthogonality in the
categorified setting becomes focused so that the two preservation conditions for relations
of Definition 3 reduce to a single preservation condition for profunctors as we will see in
Definition 14.

▶ Lemma 8. For all X : 1 −7−→f A, Y : B −7−→f 1 and F : A −7−→f B, we have:

F ◦ X ⊥B Y ⇔ X ⊥A Y ◦ F.

Proof. It follows from the fact that the sets ⟨F ◦ X, Y ⟩ and ⟨X, Y ◦ F ⟩ are both isomorphic
to
∫ a∈A ∫ b∈B

F (a, b) × X(a) × Y (b). ◀

For a set A considered as a discrete category, a subset x ⊆ A can be viewed as a presheaf
x : Aop → Set (or a copresheaf x : A → Set) that maps a ∈ A to the singleton {⋆} if a ∈ x

and to the empty set otherwise. Hence, for x ⊆ A viewed as a presheaf and x′ ⊆ A viewed
as a copresheaf, x ∩ x′ is finite is equivalent to the set

∫ a∈A
x(a) × x′(a) being finite. This

analogy provides the connection between the bicategorical case and the relational case.

▶ Definition 9. For a subcategory C ↪→ Âfin, we denote by C⊥, the full subcategory of Âopfin
of finite copresheaves X ′ such that for all X ∈ C, X ′ ⊥A X.

Let Sub(Â) be the poset of full subcategories of Â, the orthogonality relation induces a
Galois connection:

FSCD 2021
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Sub(Â) Sub(Âop)op

(−)⊥

(−)⊥

⊥

whose fixed points are full subcategories C verifiying C⊥⊥ ∼= C.

▶ Definition 10. A finiteness structure is a pair A = (|A| , FA) of a locally finite category
|A| and a full subcategory FA ↪→ |̂A|fin verifying FA ∼= FA⊥⊥.

▶ Lemma 11. For a finiteness structure A = (|A| , FA), the subcategory of finitely present-
able objects |̂A|fp ↪→ |̂A|fin is always a full subcategory of FA.

Proof. If X is finitely presentable, then X is isomorphic to a finite colimit of representables
X ∼= lim−→i∈I

|A| (−, ai) : |A|op → Set. For any X ′ ∈ (FA)⊥,

⟨X, X ′⟩ =
∫ a∈|A|

X(a) × X ′(a) ∼= lim−→
i∈I

∫ a∈|A|
|A| (a, ai) × X ′(a) ∼= lim−→

i∈I

X ′(ai).

Since a finite colimit of finite sets is finite, we obtain that X ⊥A X ′ as desired. ◀

The minimal finiteness structure is (|A| , |̂A|fp) and its orthogonal is the maximal finiteness
structure (|A| , |̂A|fin) so for any finiteness structure A = (|A| , FA), we have

(|A| , |̂A|fp) A (|A| , |̂A|fin).

▶ Lemma 12. If A is a finite category (both the object and morphism sets are finite), then
there is a unique finiteness structure given by Âfin.

Proof. By Lemma 11, it suffices to show that if A is finite, then any finite presheaf X :
Aop → FinSet is finitely presentable. If A is finite, then the category of elements

∫
X of X

is finite as well and since X ∼= lim−→(
∫

X → A → Â), X is a finite colimit of representables
and hence is finitely presentable. ◀

In the relational case, for a finiteness structure A = (|A| , FA), FA can be larger than
Pfin(|A|) but its elements “behave” like finite sets in the sense that x ⊆ y ∈ F (A) implies
x ∈ F (A) and a finite union of finitary elements is finitary. In the categorical case, F (A)
can be thought of as a category larger than |̂A|fp but its elements “behave” like finitely
presentable elements as F (A) is closed under retractions and finite colimits.

▶ Lemma 13. Let A = (|A| , F (A)) be a finiteness structure, then the following two
properties hold:
1. if X ′ is a retract of an element X ∈ F (A), then X ′ ∈ F (A);
2. F (A) is closed under finite colimits.

Proof. Let α : X ⇒ X ′ be a retraction in |̂A|. Since a retraction is an epimorphism and
colimits in |̂A| are computed pointwise, for every a ∈ |A|, αa : X(a) → X ′(a) is a surjection.
Hence, for every Y ∈ F (A)⊥,

⟨Y, X⟩ =
∫ a∈|A|

Y (a) × X(a) ↠
∫ a∈|A|

Y (a) × X ′(a) = ⟨Y, X ′⟩

which implies that ⟨Y, X ′⟩ is a finite set as well so that X ′ ∈ F (A). The second property
follows from the fact that a finite colimit of finite sets is finite. ◀
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▶ Definition 14. Given two finiteness structures A = (|A| , FA) and B = (|B| , FB), a
finite profunctor F : |A| −7−→f |B| is called a finiteness profunctor if F̂ := Lany|A|F : |̂A| → |̂B|
verifies F̂ (FA) ↪→ FB i.e if there exists a functor FA → FB making the diagram below
commute:

|̂A| |̂B|

FA FB

F̂

▶ Lemma 15. Given two finiteness structures A = (|A| , FA) and B = (|B| , FB),
a profunctor F : |A| −7−→f |B| is a finiteness profunctor A −7−→f B if and only if F ⊥ :
(|B|op

, FB⊥) −7−→f (|A|op
, FA⊥) is also a finiteness profunctor.

Proof. Direct consequence of Lemma 8. ◀

Since the categories Prof(1, |A|) and |̂A| are isomorphic, we will abuse notation and identify
presheaves X ∈ |̂A| with profunctors 1 −7−→ |A| and write F ◦ X instead of F̂X. Under this
isomorphism, we can reformulate the condition of Definition 14 as follows: F is a finiteness
profunctor if for all presheaves X in FA, F ◦ X is in FB. Likewise, using the isomorphism
Prof(|B| , 1) ∼= |̂B|op, F ⊥ is a finiteness profunctor if for all copresheaves Y in FB⊥, Y ◦ F

is in FA⊥.

▶ Definition 16. Define FinProf to be the bicategory whose 0-cells are finiteness structures,
1-cells are finiteness profunctors as in Definition 14 and 2-cells are natural transformations
between such profunctors.

Proof. We show below that FinProf is indeed a bicategory.
Identity For a finiteness structure A = (|A| , FA), id|A| : |A| −7−→ |A| is a finite profunctor

as |A| is a locally finite category. Since id|A| verifies îd|A| ∼= id
|̂A|

, it is a finiteness
profunctor A −7−→f A.

Composition Let A = (|A| , FA), B = (|B| , FB) and C = (|C| , FC) be finiteness struc-
tures and F : A −7−→f B and G : B −7−→f C be finiteness profunctors. It is clear that
if F̂ (FA) ↪→ FB and Ĝ(FB) ↪→ FC, then Ĝ ◦ F (FA) ∼= Ĝ ◦ F̂ (FA) ↪→ FC. It
remains to show that G ◦ F is a finite profunctor. For all a ∈ |A| and c ∈ |C|, we have

(G ◦ F )(a, c) =
∫ b∈|B|

F (a, b) × G(b, c) ∼= Ĝ(F̂ (y(a)))(c).

Since y(a) ∈ FA, Ĝ(F̂ (y(a)) is an element of FC so it is a finite presheaf, which implies
that Ĝ(F̂ (y(a)))(c) is finite as desired. ◀

We obtain as a corollary of Lemma 15 that the mapping A 7→ A⊥ := (|A|op
, FA⊥) can

be extended to a full and faithful functor FinProfop → FinProf .

▶ Lemma 17. The forgetful functor U : FinProf → Prof is locally fully faithful and
injective on 1-cells. Explicitely, for finiteness structures A and B, the induced functor
FinProf(A, B) → Prof(|A| , |B|) is injective on objects and fully faithful.

FSCD 2021
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4 Linear Logic Structure

In this section, we prove that the differential linear logic structure in Prof can be lifted
to FinProf . While the full definition of a bicategorical model of linear logic has yet to be
spelled out, the standard 1-categorical constructions have canonical bicategorical analogues
which we use. The proofs will make use of the lemma below that shows how certain families of
adjoint equivalences needed for the linear logic structure can be lifted from Prof to FinProf
using the fact that the forgetful functor is locally fully faithful.

▶ Lemma 18. Let A, B, C, D be categories and (L : A → B, R : B → A, η, ε) be an adjoint equi-
valence. Let L′ : C → D, R′ : D → C, F : C → A and G : D → B be functors such that F and
G are fully faithful, GL′ = LF and FR′ = RG. Then L′ and R′ are adjoint equivalent L′ ⊣ R′.

A B

C D

L

R

L′

R′

F G

≃ ⊥

Proof. For objects c ∈ C and d ∈ D, using the hypotheses above, we have:

C(c, R′d) ∼= A(Fc, FR′(d)) = A(Fc, RGd) ∼= B(LFc, Gd) = B(GL′c, Gd) ∼= D(L′c, d)

which implies that L′ ⊣ R′.
For c ∈ C, the component of the unit η′ of the adjunction L′ ⊣ R′ is the morphism

η′
c determined by F (η′

c) = ηF (c). It is an isomorphism since F is fully faithful and hence
conservative. We can show that the counit of the adjunction L′ ⊣ R′ is an isomorphism in a
similar fashion. ◀

4.1 Additive structure
Similarly to the 1-categorical case, FinProf is endowed with a finite biproduct structure.
For a family of categories (Ai)i∈I , we denote by &iAi their coproduct in Cat. There is an
isomorphism &̂iAi

∼=
∏

i Âi, so we will often identify a presheaf Z ∈ &̂iAi with a tuple of
presheaves (Zi)i∈I ∈

∏
i Âi.

▶ Lemma 19. For a finite family of finiteness structures (Ai)i∈I , &iAi := (&i |Ai| ,
∏

i FAi)
is a finiteness structure.

Proof. It suffices to show that (
∏

i FAi)⊥ ∼=
∏

i(FAi)⊥. ◀

▶ Definition 20. For a family of finiteness structures (Ai)i∈I , we define the finiteness
structure ⊕iAi by (&i |Ai| , (F (&iA⊥

i ))⊥).

▶ Lemma 21. The empty category 0 with its presheaf category (0, 0̂) forms a finiteness
structure that is the neutral for & and ⊕.

▶ Lemma 22. For a finite family of finiteness structures (Ai)i∈I , the profunctors πi :
&i |Ai| −7−→ |Ai| and inji : |Ai| −7−→ &i |Ai| are finiteness profunctors &iAi −7−→f Ai and
Ai −7−→f ⊕iAi respectively. They induce adjoint equivalences:

FinProf(X, &iAi) ≃
∏

i

FinProf(X, Ai) and FinProf(⊕iAi, X) ≃
∏

i

FinProf(Ai, X).
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Proof. The profunctors πi and inji are given by πi : ((i, ai), a) 7→ |Ai| (a, ai) and inji :
(a, (i, ai)) 7→ |Ai| (ai, a) so they are finite profunctors since the category |Ai| is locally
finite. For Z ∈ F (&iAi) and X ∈ FA⊥

i , ⟨πiZ, X⟩ ∼= ⟨Zi, X⟩ ∈ FinSet which implies
that πi ∈ FinProf(&iAi, Ai). Likewise, for X in FAi and Z ∈ F (⊕iAi)⊥, ⟨injiX, Z⟩ ∼=
⟨X, Zi⟩ ∈ FinSet so that inji ∈ FinProf(Ai, ⊕iAi).

Using Lemma 18, the adjoint equivalences above follow from the biproduct structure
in Prof where we have adjoint equivalences Prof(|X| , &i |Ai|) ≃

∏
i Prof(|X| , |Ai|) and

Prof(&i |Ai| , |X|) ≃
∏

i Prof(|Ai| , |X|). ◀

4.2 Star-Autonomous Structure
The bicategory Prof is symmetric monoidal with tensor product given by the cartesian
product of categories (A, B) 7→ A × B and monoidal unit 1. The duality functor A 7→ Aop

provides Prof with a compact closed structure. Adding the orthogonality structure allows for
less degenerate model as the bicategory FinProf is now ∗-autonomous with dualizing object
1. To show that the symmetric monoidal structure in Prof lifts to FinProf , it suffices to
prove that the tensor product lifts to a pseudo-functor FinProf × FinProf → FinProf
and that the symmetry, associator and left and right unitors pseudo-natural transformations
have components in FinProf .

For relational finiteness spaces, the tensor product of A = (|A| , F (A)) and B =
(|B| , F (B)) is the smallest structure that contains all products x × y of subsets x ∈ F (A)
and y ∈ F (B). Since the set {x × y | x ∈ F (A), y ∈ F (B)} is not necessarily closed under
double orthogonality A ⊗ B is defined as (|A| × |B| , {x × y | x ∈ F (A), y ∈ F (B)}⊥⊥).
In the categorified case, the construction is similar, for finiteness structures A and B,
F (A ⊗ B) is the smallest finiteness structure containing all products X × Y for X ∈ F (A)
and Y ∈ F (B) where X × Y : (|A| × |B|)op → Set is the presheaf given by the pointwise
product (a, b) 7→ X(a) × Y (b).

▶ Definition 23. For finiteness structures A = (|A| , FA) and B = (|B| , FB), their tensor
product is defined as A⊗B := (|A|× |B| , F (A⊗B)) where F (A⊗B) is the full subcategory
of ̂|A| × |B|fin whose object set is given by {X × Y | X ∈ FA and Y ∈ FB}⊥⊥.

▶ Lemma 24. For finiteness profunctors F1 : A1 −7−→f B1 and F2 : A2 −7−→f B2, the profunctor
F1⊗F2 : |A1|×|A2| −7−→ |B1|×|B2| given by (F1⊗F2)((a1, a2), (b1, b2)) := F1(a1, b1)×F2(a2, b2)
is in FinProf(A1 ⊗ A2, B1 ⊗ B2).

Proof. Using Lemma 15, we show that (F1 ⊗ F2)⊥F (B1 ⊗ B2)⊥ ↪→ F (A1 ⊗ A2)⊥. Let
Z be in F (B1 ⊗ B2)⊥ i.e. for all Y1 ∈ FB1 and Y2 ∈ FB2, ⟨Z, Y1 × Y2⟩ ∈ FinSet.
(F1 ⊗ F2)⊥(Z) ∈ F (A1 ⊗ A2)⊥ is equivalent to:

∀X1 ∈ FA1, ∀X2 ∈ FA2, ⟨(F1 ⊗ F2)⊥(Z), X1 × X2⟩ ∈ FinSet
⇔∀X1 ∈ FA1, ∀X2 ∈ FA2, ⟨Z, (F1X1) × (F2X2)⟩ ∈ FinSet

Since F1X1 is in FB1 and F2X2 is in FB2, we obtain the desired result. ◀

▶ Lemma 25. (1, FinSet) is the tensor unit.

Proof. Let A be a finiteness structure, we show that F (A)⊥ ∼= F (A ⊗ 1)⊥ ∼= F (1 ⊗A)⊥

so that the components of the left unitor l|A| : |A| × |1| −7−→ |A| and right unitor r|A| :
|1| × |A| −7−→ |A| are in FinProf . Let Y ∈ F (A)⊥, X ∈ F (A) and S ∈ FinSet. We
have ⟨Y, X × S⟩ ∈ FinSet ⇔ ⟨Y × S, X⟩ ∈ FinSet. Since F (A)⊥ is closed under finite
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10:10 A Bicategorical Model for Finite Nondeterminism

colimits, Y × S is in F (A)⊥ which implies the desired result. Now, for Y ∈ F (A ⊗ 1)⊥ and
X ∈ F (A), ⟨Y, X⟩ ∼= ⟨Y, X × {∗}⟩ ∈ FinSet so that Y ∈ F (A)⊥ as desired. The proof for
F (A)⊥ ∼= F (1 ⊗A)⊥ is similar. ◀

▶ Lemma 26. For finiteness structures A = (|A| , FA) and B = (|B| , FB), the categories
F (A ⊗ B) and F (B ⊗ A) are isomorphic which implies that the component of the symmetry
σ|A|,|B| : |A| × |B| −7−→ |B| × |A| is in FinProf(A ⊗ B, B ⊗ A).

Proof. Immediate. ◀

Showing that the associator has components in FinProf is difficult to prove directly so
we make use of the duality between the tensor and the internal hom to do it.

▶ Lemma 27. For finiteness structures A = (|A| , FA) and B = (|B| , FB), define the
finiteness structure A ⊸ B as (|A|op × |B| , F (A ⊸ B)) where F (A ⊸ B) is the full
subcategory of finite presheaves ̂|A|op × |B|fin that verify Definition 14.

Proof. We prove that A ⊸ B is indeed a finiteness structure. We first show that for
X ∈ FA and Y ′ ∈ FB⊥, X × Y ′ ∈ F (A ⊸ B)⊥. Indeed, for F ∈ F (A ⊸ B), we have:

⟨X × Y ′, F ⟩ =
∫ a∈|A|,b∈|B|

X(a) × Y ′(b) × F (a, b) ∼= ⟨Y ′, FX⟩ ∈ FinSet.

Now, let W ∈ F (A ⊸ B)⊥⊥, we want to show that W ∈ F (A ⊸ B), i.e. that for all
X ∈ FA, WX ∈ FB. Let Y ′ ∈ FB⊥, ⟨Y ′, WX⟩ ∼= ⟨X × Y ′, W ⟩ ∈ FinSet by the previous
remark. ◀

▶ Lemma 28. For finiteness structures A = (|A| , FA) and B = (|B| , FB), the categories
F (A ⊗ B) and F (A ⊸ B⊥)⊥ are isomorphic.

Proof. We prove that F (A ⊗ B)⊥ ∼= F (A ⊸ B⊥). Let F : A −7−→ Bop, we have:

F ∈ F (A ⊗ B)⊥ ⇔ ∀X ∈ F (A), ∀Y ∈ F (B)⟨F, X × Y ⟩ ∈ FinSet
⇔ ∀X ∈ F (A), ∀Y ∈ F (B)⟨FX, Y ⟩ ∈ FinSet
⇔ ∀X ∈ F (A), FX ∈ F (B)⊥ ⇔ F ∈ F (A ⊸ B⊥) ◀

▶ Lemma 29. For finiteness structures A = (|A| , FA), B = (|B| , FB) and C = (|C| , FC),
the categories F ((A ⊗ B) ⊸ C) and F (A ⊸ (B ⊸ C)) are isomorphic.

Proof. Let F : |A| × |B| −7−→f |C| be in F ((A ⊗ B) ⊸ C) and denote by F : |A| −7−→f |B|op ×
|C| the corresponding profunctor obtained from the isomorphism Prof(|A| × |B| , |C|) ∼=
Prof(|A| , |B|op × |C|). Let X ∈ F (A), we want to show that FX is in F (B ⊸ C),
i.e. for all Y ∈ F (B), F (X)(Y ) ∈ F (C). We have that X × Y is in F (A ⊗ B) so that
F ◦ (X × Y ) ∼= F (X)(Y ) is in F (C).

For the other direction, let G : |A| −7−→f |B|op × |C| be in F (A ⊸ (B ⊸ C)) and denote
by G the corresponding profunctor in Prof(|A| × |B| , |C|). We show that G

⊥ ∈ F (C⊥ ⊸

(A ⊗ B)⊥). Let Z ∈ F (C)⊥, we want G
⊥

Z ∈ F (A ⊗ B)⊥ i.e. for all X ∈ FA and
Y ∈ FB, ⟨G⊥

Z, X × Y ⟩ ∈ FinSet. Since ⟨G⊥
Z, X × Y ⟩ ∼= ⟨G(X)(Y ), Z⟩, we obtain the

desired result. ◀
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▶ Corollary 30. For finiteness structures A = (|A| , FA), B = (|B| , FB) and C =
(|C| , FC), the component of the associator α|A|,|B|,|C| : (|A| × |B|) × |C| −7−→ |A| × (|B| × |C|)
given by:

((a1, b1, c1), (a2, b2, c2)) 7→ |A| (a2, a1) × |B| (b2, b1) × |C| (c2, c1)

is a finiteness profunctor in FinProf((A ⊗ B) ⊗ C, A ⊗ (B ⊗ C)).

Proof. It suffices to show that the categories F ((A ⊗ B) ⊗ C) and F (A ⊗ (B ⊗ C)) are
isomorphic. By Lemmas 28 and 29, we have

F ((A ⊗ B) ⊗ C) ∼= F ((A ⊗ B) ⊸ C⊥)⊥ ∼= F (A ⊸ (B ⊸ C⊥))⊥

∼= F (A ⊸ (B ⊸ C⊥)⊥⊥)⊥ ∼= F (A ⊗ (B ⊗ C)). ◀

A symmetric monoidal bicategory B is ∗-autonomous if there exists a full and faithful
functor (−)∗ : Bop → B verifying A ≃ A∗∗ and for every objects A, B and C, a pseudo-
natural family of adjoint equivalences B(A ⊗ B, C∗) ≃ B(A, (B ⊗ C)∗).

▶ Proposition 31. FinProf a ⋆-autonomous bicategory.

Proof. The duality (−)⊥ : A 7→ A⊥ = (|A|op
, FA⊥) induces a full and faithful functor by

Lemma 15. For finiteness structures A = (|A| , FA), B = (|B| , FB) and C = (|C| , FC),
by Lemma 18, there is a pseudo-natural family of adjoint equivalences FinProf(A⊗B, C⊥) ≃
FinProf(A, (B ⊗ C)⊥). ◀

The interpretation of the ` connective is defined by dualizing the tensor A ` B =
(A⊥ ⊗ B⊥)⊥. In the compact closed bicategory Prof , the two connectives have the same
interpretation whereas in FinProf , adding the orthogonality eliminates this degeneracy. The
inclusion F (A ⊗ B) ↪→ F (A ` B) always hold which implies that we can interpret the mix
rule in FinProf . It can be derived from the set inclusion

{X × Y | X ∈ FA⊥ and Y ∈ FB⊥} ↪→ {X × Y | X ∈ FA and Y ∈ FB}⊥

and the fact that F (A ` B) has object set {X × Y | X ∈ F (A)⊥ and Y ∈ F (B)⊥}⊥.
The other inclusion does not hold in general: consider the presheaf P : ((! 1)op × ! 1)op →

Set given by (n, m) 7→ ! 1(m, n) corresponding to the identity profunctor ! 1 −7−→f ! 1. P is in
F (! 1 ⊸ ! 1) ∼= F ((! 1)⊥ ` ! 1) but it is not in F ((! 1)⊥ ⊗ ! 1). Indeed, let Q : (! 1)op × ! 1) →
Set be dually given by (n, m) 7→ ! 1(n, m), it verifies that for all X ∈ F (! 1)⊥ and Y ∈ F (! 1),

⟨X × Y, Q⟩ =
∫ n,m

X(n) × Y (m) × ! 1(n, m) ∼= ⟨X, Y ⟩ ∈ FinSet

which implies that Q is in F ((! 1)⊥ ⊗ ! 1)⊥. However, ⟨P, Q⟩ =
∫ n,m ! 1(m, n) × ! 1(n, m) ∼=∫ n ! 1(n, n) /∈ FinSet.

4.3 Exponential structure
The exponential modality in the setting of generalized species presented by Fiore et al. relies
on the free symmetric strict monoidal completion construction for a small category.

▶ Definition 32. For a small category A, define !A as the category whose objects are finite
sequences ⟨a1, . . . , an⟩ of objects of A and a morphism f between two sequences ⟨a1, . . . , an⟩
and ⟨b1, . . . bn⟩ consists of a pair (σ, (fi)i∈n) where σ is a permutation in the symmetric group
Sn and (fi : ai → bσ(i))i∈n is a sequence of morphisms in A.
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10:12 A Bicategorical Model for Finite Nondeterminism

The category !A described above is symmetric monoidal with tensor product ⊗ : (u, v) 7→
u⊗v given by the concatenation of sequences and unit the empty sequence. This construction
induces a 2-monad on Cat which lifts to a pseudo-monad on Prof [14]. By dualization, one
obtains a pseudo-comonad on Prof where the counit der and the comultiplication dig have
the following components:

derA : !A −7−→ A digA : !A −7−→ !!A
(u, a) 7→ !A(⟨a⟩, u) (u, ⟨u1, . . . , un⟩) 7→ !A(u1 ⊗ · · · ⊗ un, u)

For a profunctor P : A −7−→ B, the action of the pseudo-comonad is given by

!P : (u, v) 7→
∑

σ∈Sn

n∏
i=1

P (ui, vσ(i))

if u ∈ !A and v ∈ !B are sequences of length n and !P : (u, v) 7→ ∅ if u and v have different
lengths. Generalized species correspond to the 1-cells in the co-Kleisli bicategory Prof !. For a
species F : !A −7−→ B, its comonadic lifting F ! : !A −7−→ !B is given by (!F ) ◦digA. The composite
of two species G : !B −7−→ C and F : !A −7−→ B in Prof ! is then given by G ◦ F ! : !A −7−→ C.

We show in this section that the comonadic structure described above can be refined to
the setting of finiteness structures.

▶ Definition 33. For a finiteness structure A = (|A| , FA), we define !(A, FA) :=
(! |A| , F !A) where F !A is the full subcategory of !̂ |A|fin with object set {X ! | X ∈ FA}⊥⊥.

Note that for a presheaf X : |A|op → Set (seen as a species ! 0 −7−→ |A|), its lifting X ! :
(!A)op → Set is given by ⟨a1, . . . , an⟩ 7→ !X ◦ dig0(⟨a1, . . . , an⟩) ∼=

∏
i∈n X(ai). In particular,

if X is a finite presheaf, then so is X !.
Joyal presented the notion of analytic functor as the Taylor series counterpart of combin-

atorial species [22]. Fiore extended Joyal’s results in the setting of generalized species and
showed that there is a biequivalence between the bicategory of generalized species (restricted
to groupoids) and the 2-category of analytic functors [12]. For small categories A and B, a
functor P : Â → B̂ is said to be analytic if there exists a generalized species F : !A −7−→ B such
that P is isomorphic to LansAF (denoted by F̃ ):

!A B̂

Â

⇓

F

LansAF = F̃sA

where sA : !A → Â is the functor that maps a sequence ⟨a1, . . . an⟩ in !A to the presheaf
n∑

i=1
yA(ai) in Â so that F̃ is given by X 7→

∫ u∈!A
F (u) × Â(sA(u), X) ∼=

∫ u∈!A
F (u) × X !(u).

▶ Lemma 34. For finiteness structures A = (|A| , FA) and B = (|B| , FB), a species
F : |!A| −7−→f |B| is in F (!A ⊸ B) (viewed as a finite presheaf (|!A|op × |B|)op → Set) if and
only if for all X ∈ F (A), F̃X is in F (B).

Proof. Assume that F is in F (!A ⊸ B) and let X be in F (A). Since X ! is in F (!A), we
have that FX ! ∼= F̃X ∈ F (B).

For the other direction, it suffices to show that if for all X ∈ F (A), FX ! is in F (B),
then F ⊥(F (B)⊥) ↪→ (F (!A)⊥). Let Y be in (FB)⊥ and X ∈ FA, since ⟨F ⊥Y, X !⟩ ∼=
⟨FX !, Y ⟩ ∈ FinSet, we obtain the desired result. ◀
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We obtain as a corollary that for a finiteness structure A = (|A| , FA), (F !A)⊥ is
isomorphic to the full subcategory of finite copresheaves P : |!A| → Set (or equivalently
finite profunctors |!A| −7−→f 1) such that P̃ (FA) ↪→ FinSet.

▶ Example 35. In particular, F (! 1)⊥ is isomorphic to species whose analytic functor maps
finite sets to finite sets. In other words, F : ! 1 → Set must verify that for all S ∈ FinSet,∑
n∈N

F (n) ×Sn
Sn is finite.

Similarly to relational finiteness spaces, we can see here that the fixpoint operator cannot
be interpreted in FinProf . Indeed, consider the species of binary trees B : ! 1 −7−→ 1, it
is a solution of the fixpoint equation B = 1 + X · B2 where 1 : ! 1 −7−→ 1 is the species
(u, ⋆) 7→ ! 1(⟨⟩, u) whose analytic functor Set → Set is the constant S 7→ {⋆} and X : ! 1 −7−→ 1
is the species (u, ⋆) 7→ ! 1(⟨⋆⟩, u) whose analytic functor Set → Set is the identity S 7→ S

(see [4] for more details). Both 1 and X are finiteness species since their analytic functors
restrict to FinSet → FinSet. The species of binary trees however has analytic functor
Set → Set given by S 7→

∑
n∈N Cn ×Sn where Cn is the nth Catalan number so this functor

can not be restricted as a functor FinSet → FinSet.

▶ Lemma 36. For finiteness structures A = (|A| , FA) and B = (|B| , FB), if F : A −7−→f B
is a finiteness profunctor, then !F : |!A| −7−→ |!B| is in FinProf(!A, !B).

Proof. We show that (!F )(F !B⊥) ↪→ F !A⊥. Let P be in F !B⊥, i.e. for all Y in FB, P̃ Y

is in FinSet.

(!F )(P ) ∈ F !A⊥ ⇔ ∀X ∈ FA,

∫ u∈|!A|,v∈!|B|
!F (u, v) × P (v) × X !(u) ∈ FinSet

⇔ ∀X ∈ FA,

∫ v∈|!B|
P (v) × (!F ◦ X !)(v) ∈ FinSet

⇔ ∀X ∈ FA,

∫ v∈|!B|
P (v) × (F ◦ X)!(v) ∈ FinSet

Since FX is in FB, (FX)! ∈ F !B which implies the desired result. ◀

We now show that the pseudo-comonad structure in Prof can be restricted to FinProf .

▶ Lemma 37. For a finiteness structure A = (|A| , FA), the component of the counit
pseudo-natural transformation der|A| : |!A| −7−→ |A| is in FinProf(!A, A).

Proof. Since ! |A| is locally finite, der|A| is a finite profunctor. By Lemma 15, it remains
to show that der⊥

|A|((FA)⊥) ↪→ (F !A)⊥ i.e. that for all X ′ ∈ (FA)⊥ and X ∈ FA,
(der⊥

|A|)X ′ ⊥ X !.

⟨(der⊥
|A|)X ′, X !⟩ =

∫ u∈!|A|
X !(u) ×

∫ a∈|A|
! |A| (⟨a⟩, u) × X ′(a)

∼=
∫ a,a′∈|A|

X(a′) × |A| (a, a′) × X ′(a) ∼=
∫ a∈|A|

X(a) × X ′(a) ∈ FinSet ◀

▶ Lemma 38. For a finiteness structure A = (|A| , FA), the component of the comultiplica-
tion pseudo-natural transformation dig|A| : |!A| −7−→ |!!A| is in FinProf(!A, !!A).

Proof. Since ! |A| is locally finite, dig|A| is a finite profunctor. We show that
(dig⊥

|A|)(F !!A)⊥ ↪→ (F !A)⊥.
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10:14 A Bicategorical Model for Finite Nondeterminism

For a presheaf X in FA considered as a species ! 0 −7−→ |A|, we have dig|A| ◦ X ! =
dig|A| ◦ !X ◦ dig0

∼= !!X ◦ dig! 0 ◦ dig0
∼= !!X ◦ !dig0 ◦ dig0

∼= X !!, the first isomorphism follows
from the pseudo-naturality of dig and the last from the pseudo-comonad axioms. Hence, for
W in F !!A⊥ and X in FA, we have ⟨(dig⊥

|A|)W, X !⟩ ∼= ⟨W, dig|A|X
!⟩ ∼= ⟨W, X !!⟩. Since X !!

is in F !!A, we obtain the desired result. ◀

4.4 Cartesian closed structure
We show in this section that the cartesian closed structure of Prof ! exhibited by Fiore et
al. [13] can be extended to FinProf .

▶ Definition 39. A cartesian bicategory B is closed if for every pair of objects A, B ∈ B,
we have:
1. an exponential object A ⇒ B together with an evaluation map EvA,B ∈ B((A ⇒ B)&A, B)

and
2. for every X ∈ B, an adjoint equivalence pseudo-natural in A, B and X:

B(X, BA) B(X & A, B)

EvA,B ◦ ((−) & A)

Λ

⊥

For finiteness structures A and B, the exponential object A ⇒ B is given by !A ⊸ B. We
first show that the Seely adjoint equivalence in Prof lifts to FinProf .

▶ Lemma 40. For finiteness structures A = (|A| , FA) and B = (|B| , FB), the Seely
profunctors S|A|,|B| : !(|A| & |B|) −7−→ ! |A| ⊗ ! |B| and I|A|,|B| : ! |A| ⊗ ! |B| −7−→ !(|A| & |B|)
induce an adjoint equivalence !(A & B) ≃ !A ⊗ !B in FinProf .

Proof.
We first show that S|A|,|B| : !(|A| & |B|) −7−→ ! |A| ⊗ ! |B| given by (w, (u, v)) 7→
! |A| (u, π1w)×! |B| (v, π2w) is in FinProf(!(A&B), !A⊗!B) i.e. (S⊥

|A|,|B|)F (!A⊗!B)⊥ ↪→
(F !(A & B))⊥.
Let T be in F (!A ⊗ !B)⊥, we want to show that for all W = (W1, W2) ∈ F (A & B),
⟨S⊥

|A|,|B|(T ), W !⟩ ∈ FinSet. The set ⟨S⊥
|A|,|B|(T ), W !⟩ is isomorphic to:

∫ w∈!(|A|&|B|)
W !(w) ×

∫ u∈!|A|,v∈!|B|
! |A| (u, π1w) × ! |B| (v, π2w) × T (u, v)

∼=
∫ u∈!|A|,v∈!|B|

W !
1(u) × W !

2(v) × T (u, v)

Since W is in F (A & B), W1 and W2 are in F (A) and F (B) respectively, so that W !
1

and W !
2 are in F (!A) and F (!B) respectively. Hence, T ⊥ W !

1 × W !
2 as desired.

We show that I|A|,|B| : ! |A| ⊗ ! |B| −7−→ !(|A| & |B|) given by ((u, v), w) 7→ ! |A| (π1w, u) ×
! |B| (π2w, v) is in F ((!A⊗ !B) ⊸ !(A&B)). By Lemma 29, F ((!A⊗ !B) ⊸ !(A&B)) ∼=
F (!A ⊸ (!B ⊸ !(A & B)) and using Lemma 27 twice, it suffices to show that for all
X ∈ FA and Y ∈ FB, (I|A|,|B|X

!)Y ! is in F !(A & B). Let Z be F (!(A & B))⊥, the
set ⟨(IA,BX !)Y !, Z⟩ is isomorphic to:
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∫ w∈!(A&B),u∈!A,v∈!B
Z(w) × !A(π1w, u) × !B(π2w, v) × X !(u) × Y !(v)

∼=
∫ w∈!(A&B)

Z(w) × (X, Y )!(w)

Since (X, Y )! is in F (!(A & B)), we obtain the desired result. ◀

It remains to show that the non-linear evaluation and currying preserve the finiteness
structure. The non-linear evaluation Ev|A|,|B| : !((|A| ⇒ |B|) & |A|) −7−→ |B| is given by the
composite ev!|A|,|B| ◦(der|A|⇒|B| ⊗id)◦S|A|⇒|B|,|A| where ev|A|,|B| : A⊗(A ⊸ B) −7−→ B is the
linear evaluation coming from the monoidal closed structure in the linear bicategory FinProf .
As a composite of finiteness profunctors, Ev|A|,|B| is in FinProf !((A ⇒ B) & A, B). For a
finiteness species P in FinProf !(A & B, C), its currying Λ(P ) ∈ FinProf !(A, B ⇒ C) is
given by λ(P ◦ I|A|,|B|) where λ : FinProf(!A⊗ !B, C) → FinProf(!A, !B ⊸ C) is provided
by the monoidal closed structure on FinProf .

▶ Theorem 41. FinProf ! is cartesian closed.

Proof. Direct consequence of the remarks above and Lemma 18. ◀

4.5 Differential structure
The bicategory of generalized species Prof ! is a model of differential linear logic where
differentiation on analytic functors generalises the standard differential operation on formal
power series [13]. We show in this section that the differential structure extends to FinProf .
It suffices to show that the codereliction, coweakening and cocontraction pseudo-natural trans-
formations have components in FinProf and all the coherence axioms will be immediately
verified.

▶ Lemma 42. For a finiteness structure A = (|A| , FA), the component of codereliction
pseudo-natural transformation der|A| : |A| −7−→ ! |A| given by (a, u) 7→ ! |A| (u, ⟨a⟩) is a
finiteness profunctor A −7−→f !A.

Proof. Since |A| is locally finite, der|A| is a finite profunctor. By Lemma 15, it remains
to show that der⊥

|A|((F !A)⊥) ↪→ (FA)⊥ i.e. that for all Z ∈ (F !A)⊥ and X ∈ FA,
(der⊥

|A|)Z ⊥ X.

⟨(der⊥
|A|)Z, X⟩ =

∫ u∈!|A|,a∈|A|
Z(u) × ! |A| (u, ⟨a⟩) × X(a)

∼=
∫ a∈|A|

Z(⟨a⟩) × X(a) ↪→
∫ u∈!|A|

Z(u) × X !(u) ∈ FinSet

The last inclusion follows from the isomorphism X !(⟨a⟩) ∼= X(a). ◀

Since the components of the coweakening w|A| : 1 −7−→ ! |A| and cocontraction
c|A| : ! |A| × ! |A| −7−→ ! |A| pseudo-natural transformations are obtained from the Seely equi-
valences and the biproduct structure, it is immediate that they can be extended to FinProf .
It implies that the deriving pseudo-natural transformation δ|A| : |A| −7−→ ! |A| × |A| given by

! |A| × |A| ! |A| × ! |A| ! |A|
id × der|A| c|A|
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is therefore a finiteness profunctor !A ⊗ A −7−→f !A so that for a finiteness species F : !A −7−→ B
its differential F ◦ δ|A| : !A ⊗ A −7−→f B given by ((u, a), b) 7→ F (u ⊗ ⟨a⟩, b) is also a finiteness
species.

Conclusion and perspectives
We have constructed a new bicategorical model of differential linear logic categorifying the
finiteness model first introduced by Ehrhard [9]. The resulting cartesian closed bicategory
refines the model of generalized species by Fiore et al. [13]. The objects are endowed with an
additional structure which enables to enforce finite computations as morphisms are species
that preserve the finiteness structure.

In future work, we aim to prove that our construction can be generalized to the setting of
enriched species studied by Gambino and Joyal [15]. In the 1-categorical model of finiteness
spaces, we can express various forms of non-determinism depending on the semi-ring of
scalars chosen for the series coefficients. In our case, the analogous variation would come
from changing the enrichment basis. In particular, for species enriched over vector spaces,
our construction will guarantee that computations are always finite dimensional even if we
work in an infinite dimensional setting which could lead to interesting applications for the
semantics of quantum λ-calculus [24] and stochastic rewriting systems [2].

In this paper, we have worked on a focused orthogonality on the subclass of finitely
presented objects. Our construction opens the way for a lot of variation in terms of the
chosen class of objects: for example, restricting the interactions to absolutely presentable
objects could yield to a model of totality in the spirit of the one studied by Loader [23].
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