7,118 research outputs found

    Topology Construction in RPL Networks over Beacon-Enabled 802.15.4

    Full text link
    In this paper, we propose a new scheme that allows coupling beacon-enabled IEEE 802.15.4 with the RPL routing protocol while keeping full compliance with both standards. We provide a means for RPL to pass the routing information to Layer 2 before the 802.15.4 topology is created by encapsulating RPL DIO messages in beacon frames. The scheme takes advantage of 802.15.4 command frames to solicit RPL DIO messages. The effect of the command frames is to reset the Trickle timer that governs sending DIO messages. We provide a detailed analysis of the overhead incurred by the proposed scheme to understand topology construction costs. We have evaluated the scheme using Contiki and the instruction-level Cooja simulator and compared our results against the most common scheme used for dissemination of the upper-layer information in beacon-enabled PANs. The results show energy savings during the topology construction phase and in the steady state

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Efficient Power Management based on Application Timing Semantics for Wireless Sensor Networks

    Get PDF
    This paper proposes Eļ¬ƒcient Sleep Scheduling based on Application Timing (ESSAT), a novel power manage-ment scheme that aggressively exploits the timing seman-tics of wireless sensor network applications. We present three ESSAT protocols each of which integrates (1) a light-weight traļ¬ƒc shaper that actively shapes the workload inside the network to achieve predictable timing proper-ties over multiple hops, and (2) a local scheduling algorithm that wakes up nodes just-in-time based on the tim-ing properties of shaped workloads. Our ESSAT protocols have several distinguishing features. First, they can save signiļ¬cant energy with minimal delay penalties. Second, they do not maintain TDMA schedules or communication backbones; as such, they are highly eļ¬ƒcient and suitable for resource constrained sensor platforms. Moreover, the protocols are robust in highly dynamic network environ-ments, i.e., they can handle variable multi-hop communication delays and aggregate workloads involving multiple queries, and can adapt to varying workload and network topologies. Our simulations showed that DTS-SS, an ES-SAT protocol, achieved an average node duty cycle 38-87% lower than SPAN, and query latencies 36-98% lower than PSM and SYNC

    On the schedulability of deadline-constrained traffic in TDMA Wireless Mesh Networks

    Get PDF
    In this paper, we evaluate the schedulability of traffic with arbitrary end-to-end deadline constraints in Wireless Mesh Networks (WMNs). We formulate the problem as a mixed integer linear optimization problem, and show that, depending on the flow aggregation policy used in the network, the problem can be either convex or non-convex. We optimally solve the problem in both cases, and prove that the schedulability does depend on the aggregation policy. This allows us to derive rules of thumb to identify which policy improves the schedulability with a given traffic. Furthermore, we propose a heuristic solution strategy that allows good suboptimal solutions to the scheduling problem to be computed in relatively small times, comparable to those required for online admission control in relatively large WMNs

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    Walking across Wikipedia: a scale-free network model of semantic memory retrieval.

    Get PDF
    Semantic knowledge has been investigated using both online and offline methods. One common online method is category recall, in which members of a semantic category like "animals" are retrieved in a given period of time. The order, timing, and number of retrievals are used as assays of semantic memory processes. One common offline method is corpus analysis, in which the structure of semantic knowledge is extracted from texts using co-occurrence or encyclopedic methods. Online measures of semantic processing, as well as offline measures of semantic structure, have yielded data resembling inverse power law distributions. The aim of the present study is to investigate whether these patterns in data might be related. A semantic network model of animal knowledge is formulated on the basis of Wikipedia pages and their overlap in word probability distributions. The network is scale-free, in that node degree is related to node frequency as an inverse power law. A random walk over this network is shown to simulate a number of results from a category recall experiment, including power law-like distributions of inter-response intervals. Results are discussed in terms of theories of semantic structure and processing
    • ā€¦
    corecore