84 research outputs found

    Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    Full text link

    Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD): a review

    Get PDF
    The concept is highly critical for robotic technologies that rely on visual feedback. In this context, robot systems tend to be unresponsive due to reliance on pre-programmed trajectory and path, meaning the occurrence of a change in the environment or the absence of an object. This review paper aims to provide comprehensive studies on the recent application of visual servoing and DNN. PBVS and Mobilenet-SSD were chosen algorithms for alignment control of the film handler mechanism of the portable x-ray system. It also discussed the theoretical framework features extraction and description, visual servoing, and Mobilenet-SSD. Likewise, the latest applications of visual servoing and DNN was summarized, including the comparison of Mobilenet-SSD with other sophisticated models. As a result of a previous study presented, visual servoing and MobileNet-SSD provide reliable tools and models for manipulating robotics systems, including where occlusion is present. Furthermore, effective alignment control relies significantly on visual servoing and deep neural reliability, shaped by different parameters such as the type of visual servoing, feature extraction and description, and DNNs used to construct a robust state estimator. Therefore, visual servoing and MobileNet-SSD are parameterized concepts that require enhanced optimization to achieve a specific purpose with distinct tools

    Homography-Based Tracking Control for Mobile Robots

    Get PDF
    This work presents a control strategy that allows a follower robot to track a target vehicle moving along an unknown trajectory with unknown velocity. It uses only artificial vision to establish both the robot’s position and orientation relative to the target. The control system is proved to be asymptotically stable at the equilibrium point, which corresponds to the navigation objective. Experimental results with two robots, a leader and a follower, are included to show the performance of the proposed vision-based tracking control system

    Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    Full text link

    Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    Full text link

    Efficient and secure real-time mobile robots cooperation using visual servoing

    Get PDF
    This paper deals with the challenging problem of navigation in formation of mobiles robots fleet. For that purpose, a secure approach is used based on visual servoing to control velocities (linear and angular) of the multiple robots. To construct our system, we develop the interaction matrix which combines the moments in the image with robots velocities and we estimate the depth between each robot and the targeted object. This is done without any communication between the robots which eliminate the problem of the influence of each robot errors on the whole. For a successful visual servoing, we propose a powerful mechanism to execute safely the robots navigation, exploiting a robot accident reporting system using raspberry Pi3. In addition, in case of problem, a robot accident detection reporting system testbed is used to send an accident notification, in the form of a specifical message. Experimental results are presented using nonholonomic mobiles robots with on-board real time cameras, to show the effectiveness of the proposed method

    Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition

    Get PDF
    For the monocular camera-based mobile robot system, an adaptive hybrid visual servo regulation algorithm which is based on a fast homography decomposition method is proposed to drive the mobile robot to its desired position and orientation, even when object’s imaging depth and camera’s position extrinsic parameters are unknown. Firstly, the homography’s particular properties caused by mobile robot’s 2-DOF motion are taken into account to induce a fast homography decomposition method. Secondly, the homography matrix and the extracted orientation error, incorporated with the desired view’s single feature point, are utilized to form an error vector and its open-loop error function. Finally, Lyapunov-based techniques are exploited to construct an adaptive regulation control law, followed by the experimental verification. The experimental results show that the proposed fast homography decomposition method is not only simple and efficient, but also highly precise. Meanwhile, the designed control law can well enable mobile robot position and orientation regulation despite the lack of depth information and camera’s position extrinsic parameters
    • …
    corecore