1,125 research outputs found

    Homography-Based Tracking Control for Mobile Robots

    Get PDF
    This work presents a control strategy that allows a follower robot to track a target vehicle moving along an unknown trajectory with unknown velocity. It uses only artificial vision to establish both the robot’s position and orientation relative to the target. The control system is proved to be asymptotically stable at the equilibrium point, which corresponds to the navigation objective. Experimental results with two robots, a leader and a follower, are included to show the performance of the proposed vision-based tracking control system

    External localization system for mobile robotics

    Get PDF
    We present a fast and precise vision-based software intended for multiple robot localization. The core component of the proposed localization system is an efficient method for black and white circular pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision, and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost camera, its core algorithm is able to process hundreds of images per second while tracking hundreds of objects with millimeter precision. We propose a mathematical model of the method that allows to calculate its precision, area of coverage, and processing speed from the camera’s intrinsic parameters and hardware’s processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions are verified in several experiments. Apart from the method description, we also publish its source code; so, it can be used as an enabling technology for various mobile robotics problems

    A practical multirobot localization system

    Get PDF
    We present a fast and precise vision-based software intended for multiple robot localization. The core component of the software is a novel and efficient algorithm for black and white pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost cameras, the core algorithm is able to process hundreds of images per second while tracking hundreds of objects with a millimeter precision. In addition, we present the method's mathematical model, which allows to estimate the expected localization precision, area of coverage, and processing speed from the camera's intrinsic parameters and hardware's processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions is verified in several experiments. Apart from the method description, we also make its source code public at \emph{http://purl.org/robotics/whycon}; so, it can be used as an enabling technology for various mobile robotic problems

    Interest point detectors for visual SLAM

    Get PDF
    In this paper we present several interest points detectors and we analyze their suitability when used as landmark extractors for vision-based simultaneous localization and mapping (vSLAM). For this purpose, we evaluate the detectors according to their repeatability under changes in viewpoint and scale. These are the desired requirements for visual landmarks. Several experiments were carried out using sequence of images captured with high precision. The sequences represent planar objects as well as 3D scenes

    Homography-Based Ground Plane Detection for Mobile Robot Navigation Using a Modified EM Algorithm

    Get PDF
    In this paper, a homography-based approach for determining the ground plane using image pairs is presented. Our approach is unique in that it uses a Modified Expectation Maximization algorithm to cluster pixels on images as belonging to one of two possible classes: ground and non-ground pixels. This classification is very useful in mobile robot navigation because, by segmenting out the ground plane, we are left with all possible objects in the scene, which can then be used to implement many mobile robot navigation algorithms such as obstacle avoidance, path planning, target following, landmark detection, etc. Specifically, we demonstrate the usefulness and robustness of our approach by applying it to a target following algorithm. As the results section shows, the proposed algorithm for ground plane detection achieves an almost perfect detection rate (over 99%) despite the relatively higher number of errors in pixel correspondence from the feature matching algorithm used: SIFT

    Camera Marker Networks for Pose Estimation and Scene Understanding in Construction Automation and Robotics.

    Full text link
    The construction industry faces challenges that include high workplace injuries and fatalities, stagnant productivity, and skill shortage. Automation and Robotics in Construction (ARC) has been proposed in the literature as a potential solution that makes machinery easier to collaborate with, facilitates better decision-making, or enables autonomous behavior. However, there are two primary technical challenges in ARC: 1) unstructured and featureless environments; and 2) differences between the as-designed and the as-built. It is therefore impossible to directly replicate conventional automation methods adopted in industries such as manufacturing on construction sites. In particular, two fundamental problems, pose estimation and scene understanding, must be addressed to realize the full potential of ARC. This dissertation proposes a pose estimation and scene understanding framework that addresses the identified research gaps by exploiting cameras, markers, and planar structures to mitigate the identified technical challenges. A fast plane extraction algorithm is developed for efficient modeling and understanding of built environments. A marker registration algorithm is designed for robust, accurate, cost-efficient, and rapidly reconfigurable pose estimation in unstructured and featureless environments. Camera marker networks are then established for unified and systematic design, estimation, and uncertainty analysis in larger scale applications. The proposed algorithms' efficiency has been validated through comprehensive experiments. Specifically, the speed, accuracy and robustness of the fast plane extraction and the marker registration have been demonstrated to be superior to existing state-of-the-art algorithms. These algorithms have also been implemented in two groups of ARC applications to demonstrate the proposed framework's effectiveness, wherein the applications themselves have significant social and economic value. The first group is related to in-situ robotic machinery, including an autonomous manipulator for assembling digital architecture designs on construction sites to help improve productivity and quality; and an intelligent guidance and monitoring system for articulated machinery such as excavators to help improve safety. The second group emphasizes human-machine interaction to make ARC more effective, including a mobile Building Information Modeling and way-finding platform with discrete location recognition to increase indoor facility management efficiency; and a 3D scanning and modeling solution for rapid and cost-efficient dimension checking and concise as-built modeling.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113481/1/cforrest_1.pd
    corecore