53 research outputs found

    A Note on the Hyperbolicity Cone of the Specialized V\'amos Polynomial

    Full text link
    The specialized V\'amos polynomial is a hyperbolic polynomial of degree four in four variables with the property that none of its powers admits a definite determinantal representation. We will use a heuristical method to prove that its hyperbolicity cone is a spectrahedron.Comment: Notable easier arguments and minor correction

    A converse to the Grace--Walsh--Szeg\H{o} theorem

    Full text link
    We prove that the symmetrizer of a permutation group preserves stability of a polynomial if and only if the group is orbit homogeneous. A consequence is that the hypothesis of permutation invariance in the Grace-Walsh-Szeg\H{o} Coincidence Theorem cannot be relaxed. In the process we obtain a new characterization of the \emph{Grace-like polynomials} introduced by D. Ruelle, and prove that the class of such polynomials can be endowed with a natural multiplication.Comment: 7 page

    Obstructions to determinantal representability

    Get PDF
    There has recently been ample interest in the question of which sets can be represented by linear matrix inequalities (LMIs). A necessary condition is that the set is rigidly convex, and it has been conjectured that rigid convexity is also sufficient. To this end Helton and Vinnikov conjectured that any real zero polynomial admits a determinantal representation with symmetric matrices. We disprove this conjecture. By relating the question of finding LMI representations to the problem of determining whether a polymatroid is representable over the complex numbers, we find a real zero polynomial such that no power of it admits a determinantal representation. The proof uses recent results of Wagner and Wei on matroids with the half-plane property, and the polymatroids associated to hyperbolic polynomials introduced by Gurvits.Comment: 10 pages. To appear in Advances in Mathematic

    Hyperbolic Polynomials and Generalized Clifford Algebras

    Full text link
    We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if -1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, then its hyperbolicity cone is spectrahedral. Our result also has computational applications, since this sufficient condition can be checked with a single semidefinite program

    A Reciprocity Theorem for Monomer-Dimer Coverings

    Full text link
    The problem of counting monomer-dimer coverings of a lattice is a longstanding problem in statistical mechanics. It has only been exactly solved for the special case of dimer coverings in two dimensions. In earlier work, Stanley proved a reciprocity principle governing the number N(m,n)N(m,n) of dimer coverings of an mm by nn rectangular grid (also known as perfect matchings), where mm is fixed and nn is allowed to vary. As reinterpreted by Propp, Stanley's result concerns the unique way of extending N(m,n)N(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, N(m,n)N(m,n) for n∈Zn \in {Z}, satisfies a linear recurrence relation with constant coefficients. In particular, Stanley shows that N(m,n)N(m,n) is always an integer satisfying the relation N(m,−2−n)=ϵm,nN(m,n)N(m,-2-n) = \epsilon_{m,n}N(m,n) where ϵm,n=1\epsilon_{m,n} = 1 unless m≡m\equiv 2(mod 4) and nn is odd, in which case ϵm,n=−1\epsilon_{m,n} = -1. Furthermore, Propp's method is applicable to higher-dimensional cases. This paper discusses similar investigations of the numbers M(m,n)M(m,n), of monomer-dimer coverings, or equivalently (not necessarily perfect) matchings of an mm by nn rectangular grid. We show that for each fixed mm there is a unique way of extending M(m,n)M(m,n) to n<0n < 0 so that the resulting bi-infinite sequence, M(m,n)M(m,n) for n∈Zn \in {Z}, satisfies a linear recurrence relation with constant coefficients. We show that M(m,n)M(m,n), a priori a rational number, is always an integer, using a generalization of the combinatorial model offered by Propp. Lastly, we give a new statement of reciprocity in terms of multivariate generating functions from which Stanley's result follows.Comment: 13 pages, 12 figures, to appear in the proceedings of the Discrete Models for Complex Systems (DMCS) 2003 conference. (v2 - some minor changes

    Correlation bounds for fields and matroids

    Full text link
    Let GG be a finite connected graph, and let TT be a spanning tree of GG chosen uniformly at random. The work of Kirchhoff on electrical networks can be used to show that the events e1∈Te_1 \in T and e2∈Te_2 \in T are negatively correlated for any distinct edges e1e_1 and e2e_2. What can be said for such events when the underlying matroid is not necessarily graphic? We use Hodge theory for matroids to bound the correlation between the events e∈Be \in B, where BB is a randomly chosen basis of a matroid. As an application, we prove Mason's conjecture that the number of kk-element independent sets of a matroid forms an ultra-log-concave sequence in kk.Comment: 16 pages. Supersedes arXiv:1804.0307
    • …
    corecore