5,885 research outputs found

    FPTAS for Weighted Fibonacci Gates and Its Applications

    Full text link
    Fibonacci gate problems have severed as computation primitives to solve other problems by holographic algorithm and play an important role in the dichotomy of exact counting for Holant and CSP frameworks. We generalize them to weighted cases and allow each vertex function to have different parameters, which is a much boarder family and #P-hard for exactly counting. We design a fully polynomial-time approximation scheme (FPTAS) for this generalization by correlation decay technique. This is the first deterministic FPTAS for approximate counting in the general Holant framework without a degree bound. We also formally introduce holographic reduction in the study of approximate counting and these weighted Fibonacci gate problems serve as computation primitives for approximate counting. Under holographic reduction, we obtain FPTAS for other Holant problems and spin problems. One important application is developing an FPTAS for a large range of ferromagnetic two-state spin systems. This is the first deterministic FPTAS in the ferromagnetic range for two-state spin systems without a degree bound. Besides these algorithms, we also develop several new tools and techniques to establish the correlation decay property, which are applicable in other problems

    Normal Factor Graphs and Holographic Transformations

    Full text link
    This paper stands at the intersection of two distinct lines of research. One line is "holographic algorithms," a powerful approach introduced by Valiant for solving various counting problems in computer science; the other is "normal factor graphs," an elegant framework proposed by Forney for representing codes defined on graphs. We introduce the notion of holographic transformations for normal factor graphs, and establish a very general theorem, called the generalized Holant theorem, which relates a normal factor graph to its holographic transformation. We show that the generalized Holant theorem on the one hand underlies the principle of holographic algorithms, and on the other hand reduces to a general duality theorem for normal factor graphs, a special case of which was first proved by Forney. In the course of our development, we formalize a new semantics for normal factor graphs, which highlights various linear algebraic properties that potentially enable the use of normal factor graphs as a linear algebraic tool.Comment: To appear IEEE Trans. Inform. Theor

    Holant Problems for Regular Graphs with Complex Edge Functions

    Get PDF
    We prove a complexity dichotomy theorem for Holant Problems on 3-regular graphs with an arbitrary complex-valued edge function. Three new techniques are introduced: (1) higher dimensional iterations in interpolation; (2) Eigenvalue Shifted Pairs, which allow us to prove that a pair of combinatorial gadgets in combination succeed in proving #P-hardness; and (3) algebraic symmetrization, which significantly lowers the symbolic complexity of the proof for computational complexity. With holographic reductions the classification theorem also applies to problems beyond the basic model.Comment: 19 pages, 4 figures, added proofs for full versio

    Counting degree-constrained subgraphs and orientations

    Get PDF
    The goal of this short paper to advertise the method of gauge transformations (aka holographic reduction, reparametrization) that is well-known in statistical physics and computer science, but less known in combinatorics. As an application of it we give a new proof of a theorem of A. Schrijver asserting that the number of Eulerian orientations of a dd--regular graph on nn vertices with even dd is at least ((dd/2)2d/2)n\left(\frac{\binom{d}{d/2}}{2^{d/2}}\right)^n. We also show that a dd--regular graph with even dd has always at least as many Eulerian orientations as (d/2)(d/2)--regular subgraphs

    Holographic Algorithm with Matchgates Is Universal for Planar #\#CSP Over Boolean Domain

    Full text link
    We prove a complexity classification theorem that classifies all counting constraint satisfaction problems (#\#CSP) over Boolean variables into exactly three categories: (1) Polynomial-time tractable; (2) #\#P-hard for general instances, but solvable in polynomial-time over planar graphs; and (3) #\#P-hard over planar graphs. The classification applies to all sets of local, not necessarily symmetric, constraint functions on Boolean variables that take complex values. It is shown that Valiant's holographic algorithm with matchgates is a universal strategy for all problems in category (2).Comment: 94 page
    • …
    corecore