research

Holant Problems for Regular Graphs with Complex Edge Functions

Abstract

We prove a complexity dichotomy theorem for Holant Problems on 3-regular graphs with an arbitrary complex-valued edge function. Three new techniques are introduced: (1) higher dimensional iterations in interpolation; (2) Eigenvalue Shifted Pairs, which allow us to prove that a pair of combinatorial gadgets in combination succeed in proving #P-hardness; and (3) algebraic symmetrization, which significantly lowers the symbolic complexity of the proof for computational complexity. With holographic reductions the classification theorem also applies to problems beyond the basic model.Comment: 19 pages, 4 figures, added proofs for full versio

    Similar works