2,255 research outputs found

    Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints

    Full text link
    In parameterized complexity, it is a natural idea to consider different generalizations of classic problems. Usually, such generalization are obtained by introducing a "relaxation" variable, where the original problem corresponds to setting this variable to a constant value. For instance, the problem of packing sets of size at most pp into a given universe generalizes the Maximum Matching problem, which is recovered by taking p=2p=2. Most often, the complexity of the problem increases with the relaxation variable, but very recently Abasi et al. have given a surprising example of a problem --- rr-Simple kk-Path --- that can be solved by a randomized algorithm with running time O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}). That is, the complexity of the problem decreases with rr. In this paper we pursue further the direction sketched by Abasi et al. Our main contribution is a derandomization tool that provides a deterministic counterpart of the main technical result of Abasi et al.: the O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}) algorithm for (r,k)(r,k)-Monomial Detection, which is the problem of finding a monomial of total degree kk and individual degrees at most rr in a polynomial given as an arithmetic circuit. Our technique works for a large class of circuits, and in particular it can be used to derandomize the result of Abasi et al. for rr-Simple kk-Path. On our way to this result we introduce the notion of representative sets for multisets, which may be of independent interest. Finally, we give two more examples of problems that were already studied in the literature, where the same relaxation phenomenon happens. The first one is a natural relaxation of the Set Packing problem, where we allow the packed sets to overlap at each element at most rr times. The second one is Degree Bounded Spanning Tree, where we seek for a spanning tree of the graph with a small maximum degree

    On Hitting-Set Generators for Polynomials That Vanish Rarely

    Get PDF
    The problem of constructing hitting-set generators for polynomials of low degree is fundamental in complexity theory and has numerous well-known applications. We study the following question, which is a relaxation of this problem: Is it easier to construct a hitting-set generator for polynomials p: ?? ? ? of degree d if we are guaranteed that the polynomial vanishes on at most an ? > 0 fraction of its inputs? We will specifically be interested in tiny values of ?? d/|?|. This question was first considered by Goldreich and Wigderson (STOC 2014), who studied a specific setting geared for a particular application, and another specific setting was later studied by the third author (CCC 2017). In this work our main interest is a systematic study of the relaxed problem, in its general form, and we prove results that significantly improve and extend the two previously-known results. Our contributions are of two types: - Over fields of size 2 ? |?| ? poly(n), we show that the seed length of any hitting-set generator for polynomials of degree d ? n^{.49} that vanish on at most ? = |?|^{-t} of their inputs is at least ?((d/t)?log(n)). - Over ??, we show that there exists a (non-explicit) hitting-set generator for polynomials of degree d ? n^{.99} that vanish on at most ? = |?|^{-t} of their inputs with seed length O((d-t)?log(n)). We also show a polynomial-time computable hitting-set generator with seed length O((d-t)?(2^{d-t}+log(n))). In addition, we prove that the problem we study is closely related to the following question: "Does there exist a small set S ? ?? whose degree-d closure is very large?", where the degree-d closure of S is the variety induced by the set of degree-d polynomials that vanish on S

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]

    Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

    Get PDF
    Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential advantage, that can apply polynomial transformations to the singular values of a block of a unitary, generalizing the optimal Hamiltonian simulation results of Low and Chuang. The proposed quantum circuits have a very simple structure, often give rise to optimal algorithms and have appealing constant factors, while usually only use a constant number of ancilla qubits. We show that singular value transformation leads to novel algorithms. We give an efficient solution to a certain "non-commutative" measurement problem and propose a new method for singular value estimation. We also show how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum. Finally, as a quantum machine learning application we show how to efficiently implement principal component regression. "Singular value transformation" is conceptually simple and efficient, and leads to a unified framework of quantum algorithms incorporating a variety of quantum speed-ups. We illustrate this by showing how it generalizes a number of prominent quantum algorithms, including: optimal Hamiltonian simulation, implementing the Moore-Penrose pseudoinverse with exponential precision, fixed-point amplitude amplification, robust oblivious amplitude amplification, fast QMA amplification, fast quantum OR lemma, certain quantum walk results and several quantum machine learning algorithms. In order to exploit the strengths of the presented method it is useful to know its limitations too, therefore we also prove a lower bound on the efficiency of singular value transformation, which often gives optimal bounds.Comment: 67 pages, 1 figur

    Polynomial Identity Testing for Low Degree Polynomials with Optimal Randomness

    Get PDF
    We give a randomized polynomial time algorithm for polynomial identity testing for the class of n-variate poynomials of degree bounded by d over a field ?, in the blackbox setting. Our algorithm works for every field ? with | ? | ? d+1, and uses only d log n + log (1/ ?) + O(d log log n) random bits to achieve a success probability 1 - ? for some ? > 0. In the low degree regime that is d ? n, it hits the information theoretic lower bound and differs from it only in the lower order terms. Previous best known algorithms achieve the number of random bits (Guruswami-Xing, CCC\u2714 and Bshouty, ITCS\u2714) that are constant factor away from our bound. Like Bshouty, we use Sidon sets for our algorithm. However, we use a new construction of Sidon sets to achieve the improved bound. We also collect two simple constructions of hitting sets with information theoretically optimal size against the class of n-variate, degree d polynomials. Our contribution is that we give new, very simple proofs for both the constructions

    Algebraic Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. In some of the most exciting recent progress in Computational Complexity the algebraic theme still plays a central role. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Also the areas of derandomization and coding theory have experimented important advances. The seminar aimed to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and the goal of the seminar was to play an important role in educating a diverse community about the latest new techniques
    corecore