10,467 research outputs found

    A molecular phylogenetic study of Deschampsia (Poaceae: Aveneae) inferred from nuclear ITS and plastid trnL sequence data: support for the recognition of Avenella and Vahlodea

    Get PDF
    The circumscription and phylogeny of Deschampsia were studied for the first time by parsimony analysis of nuclear ribosomal internal transcribed spacer (ITS) and plastid trnL intron sequences. The traditional sectional division based on morphology was not supported by sequence data, which showed differences between core Deschampsia s.str. (mainly represented by D. cespitosa), D. atropurpurea and D. flexuosa. Differences in the ITS marker included insertions in the sequence of D. atropurpurea; the trnL marker contained a deletion shared by all Deschampsia sequences, excluding D. atropurpurea and D. flexuosa, and an insertion in D. flexuosa. ITS sequences also differed in an insertion shared by Northern Hemisphere accessions. Both markers produced similar tree topologies but D. klossi, in spite of being morphologically close to Deschampsia s.str., fell with D. flexuosa outside the core of the genus in the trnL tree. Molecular evidence corroborates morphological and cytological data supporting exclusion of D. atropurpurea and D. flexuosa from Deschampsia and their treatment as separate genera. The position of D. klossi needs further investigation.Fil: Chiapella, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentin

    Epithelioid Cell Histiocytoma – An Unusual Variant of Dermatofibroma at an Uncommon Site

    Get PDF
    Epithelioid cell histiocytoma (ECH) is a rare variant of cutaneous fibrous histiocytoma involving primarily trunk and the extremities. It can delude the pathologist in considering other benign non neoplastic and neoplastic lesions. Awareness of this new entity can avert unnecessary treatment. We report a case of epithelioid cell histiocytoma in a 40 yr old male who presented with a painless nodular swelling over the dorsum of nose. The case is presented here for its rarity and an uncommon site of involvement

    Delimitation of Major Lineages within \u3cem\u3eCuscuta\u3c/em\u3e Subgenus \u3cem\u3eGrammica\u3c/em\u3e (Convolvulaceae) using Plastid and Nuclear DNA Sequences

    Get PDF
    Subgenus Grammica, the largest and most diverse group in the parasitic genus Cuscuta, includes ~130 species distributed primarily throughout the New World, with Mexico as its center of diversity. To circumscribe the subgenus ans assess the relationships among its major lineages, we conducted the first phylogenetic study of Grammica using plastid trnL F and nrITS sequences from a wide taxonomic sampling covering its morphological, physiological, and geographical diversiity. With the exception of of one species belonging elsewhere, the subgenus was found to be monophyletic. The results further indicate the presence of 15 well supported major clades within Grammica. Some of those lineages correspond partially to earlier taxonomic treatments, but the majority of groups are identified in this study for the first time. The backbone relationships among major clades, however, remain weakly supported or unresolved in some cases. The phylogenetic results indicate that the fruit dehiscence character is homoplastic, thus compromising its value as a major taxonomic and evolutionary feature. While several striking cases of long distance dispersal are inferred, vicariance emerges as the most dominant biogeographical pattern for Cuscuta. Species placed within one of the caldes with a predominantly South American distribution are hypothesized to have substantially altered plastid genomes

    Mathematical Models and Biological Meaning: Taking Trees Seriously

    Get PDF
    We compare three basic kinds of discrete mathematical models used to portray phylogenetic relationships among species and higher taxa: phylogenetic trees, Hennig trees and Nelson cladograms. All three models are trees, as that term is commonly used in mathematics; the difference between them lies in the biological interpretation of their vertices and edges. Phylogenetic trees and Hennig trees carry exactly the same information, and translation between these two kinds of trees can be accomplished by a simple algorithm. On the other hand, evolutionary concepts such as monophyly are represented as different mathematical substructures are represented differently in the two models. For each phylogenetic or Hennig tree, there is a Nelson cladogram carrying the same information, but the requirement that all taxa be represented by leaves necessarily makes the representation less efficient. Moreover, we claim that it is necessary to give some interpretation to the edges and internal vertices of a Nelson cladogram in order to make it useful as a biological model. One possibility is to interpret internal vertices as sets of characters and the edges as statements of inclusion; however, this interpretation carries little more than incomplete phenetic information. We assert that from the standpoint of phylogenetics, one is forced to regard each internal vertex of a Nelson cladogram as an actual (albeit unsampled) species simply to justify the use of synapomorphies rather than symplesiomorphies.Comment: 15 pages including 6 figures [5 pdf, 1 jpg]. Converted from original MS Word manuscript to PDFLaTe

    Reasoning about Action: An Argumentation - Theoretic Approach

    Full text link
    We present a uniform non-monotonic solution to the problems of reasoning about action on the basis of an argumentation-theoretic approach. Our theory is provably correct relative to a sensible minimisation policy introduced on top of a temporal propositional logic. Sophisticated problem domains can be formalised in our framework. As much attention of researchers in the field has been paid to the traditional and basic problems in reasoning about actions such as the frame, the qualification and the ramification problems, approaches to these problems within our formalisation lie at heart of the expositions presented in this paper

    Circumscription and phylogeny of the Laurales

    Get PDF
    The order Laurales comprises a few indisputed core constituents, namely Gomortegaceae, Hernandiaceae, Lauraceae, and Monimiaceae sensu lato, and an equal number of families that have recently been included in, or excluded from, the order, namely Amborellaceae, Calycanthaceae, Chloranthaceae, Idiospermaceae, and Trimeniaceae. In addition, the circumscription of the second largest family in the order, the Monimiaceae, has been problematic. I conducted two analyses, one on 82 rbcL sequences representing all putative Laurales and major lineages of basal angiosperms to clarify the composition of the order and to determine the relationships of the controversal families, and the other on a concatenated matrix of sequences from 28 taxa and six plastid genome regions (rbcL, rpl16, trnT-trnL, trnL-trnF, atpB-rbcL, and psbA-trnH) that together yielded 898 parsimony-informative characters. Fifteen morphological characters that play a key role in the evolution and classification of Laurales were analyzed on the most parsimonious molecular trees as well as being included directly in the analysis in a total evidence approach. The resulting trees strongly support the monophyly of the core Laurales (as listed above) plus Calycanthaceae and Idiospermaceae. Trimeniaceae form a clade with Illiciaceae, Schisandraceae, and Austrobaileyaceae, whereas Amborellaceae and Chloranthaceae represent isolated clades that cannot be placed securely based on rbcL alone. Within Laurales, the deepest split is between Calycanthaceae (including Idiospermaceae) and the remaining six families, which in turn form two clades, the Siparunaceae (Atherospermataceae-Gomortegaceae) and the Hernandiaceae (Monimiaceae s.str. [sensu stricto]-Lauraceae). Monimiaceae clearly are polyphyletic as long as they include Atherospermataceae and Siparunaceae. Several morphological character state changes are congruent with the molecular tree: (1) Calycanthaceae have disulculate tectate-columellate pollen, while their sister clade has inaperturate thin-exined pollen, with the exception of Atherospermataceae, which have columellate but meridionosulcate or disulcate pollen. (2) Calycanthaceae have two ventral ovules while their sister clade has solitary ovules. Within this sister clade, the Hernandiaceae (Lauraceae-Monimiaceae) have apical ovules, while the Siparunaceae (Atherospermataceae-Gomortegaceae) are inferred to ancestrally have basal ovules, a condition lost in Gomortega, the only lauralean genus with a syncarpous ovary. (3) Calycanthaceae lack floral nectaries (except for isolated nectarogeneous fields on the inner tepals), while their sister clade ancestrally has paired nectar glands on the filaments. Filament glands were independently lost in higher Monimiaceae and in Siparunaceae concomitant with pollinator changes away from nectar-foraging flies and bees to non-nectar feeding beetles and gall midges. (4) Disporangiate stamens with anthers dehiscing by two apically hinged valves are ancestral in Siparunaceae-(Atherospermataceae- Gomortegaceae) and evolved independently within Hernandiaceae and Lauraceae. Depending on the correct placement of Calycanthaceae-like fossil flowers, tetrasporangiate anthers with valvate dehiscence (with the valves laterally hinged) may be ancestral in Laurales and lost in modern Calycanthaceae and Monimiaceae

    Using Event Calculus to Formalise Policy Specification and Analysis

    Get PDF
    As the interest in using policy-based approaches for systems management grows, it is becoming increasingly important to develop methods for performing analysis and refinement of policy specifications. Although this is an area that researchers have devoted some attention to, none of the proposed solutions address the issues of analysing specifications that combine authorisation and management policies; analysing policy specifications that contain constraints on the applicability of the policies; and performing a priori analysis of the specification that will both detect the presence of inconsistencies and explain the situations in which the conflict will occur. We present a method for transforming both policy and system behaviour specifications into a formal notation that is based on event calculus. Additionally it describes how this formalism can be used in conjunction with abductive reasoning techniques to perform a priori analysis of policy specifications for the various conflict types identified in the literature. Finally, it presents some initial thoughts on how this notation and analysis technique could be used to perform policy refinement

    Can Dispositionalism About Belief Vindicate Doxasticism About Delusion?

    Get PDF
    Clinical delusions have traditionally been characterized as beliefs in psychiatry. However, philosophers have recently engaged with the empirical literature and produced a number of objections to the so-called doxastic status of delusion, stemming mainly from the mismatch between the functional role of delusions and that expected of beliefs. In response to this, an appeal to dispositionalism about the nature of belief has been proposed to vindicate the doxastic status of delusion. In this paper, I first present the objections to attributing beliefs to delusional patients and the application of dispositionalism in the attempt to vindicate doxasticism. I then assess this application and some responses to the objections to the doxastic characterization. Finally, I offer some conclusions about the limits of folk-psychological concepts in the characterization and explanation of complex psychological phenomena such as delusions
    corecore